
Strong normalisation of Herbelin's explicit substitution

calculus with substitution propagation

Roy Dyckho�1? and Christian Urban2

1 University of St Andrews rd@dcs.st-and.ac.uk
2 University of Cambridge cu200@dpmms.cam.ac.uk

Abstract. Herbelin presented (at CSL'94) a simple sequent calculus for minimal impli-

cational logic, extensible to full �rst-order intuitionistic logic, with a complete system of

cut-reduction rules which is both conuent and strongly normalising. Some of the cut rules
may be regarded as rules to construct explicit substitutions. He observed that the addition

of a cut permutation rule, for propagation of such substitutions, breaks the proof of strong

normalisation; the implicit conjecture is that the rule may be added without breaking strong
normalisation. We prove this conjecture, thus showing how to model beta-reduction in his

calculus (extended with rules to allow cut permutations).

1 Introduction

Herbelin gave in [8] a calculus for minimal implicational logic, using a notation for proof terms

that, in contrast to the usual lambda-calculus notation for natural deduction, brings head variables

to the surface. It is thus a sequent calculus, with the nice feature that its cut-free terms are

in a natural 1-1 correspondence with the normal terms of the simply typed �-calculus. Other

intuitionistic connectives can be added without diÆculty.

The cut rules of the calculus are in part analogous to explicit substitution constructors [11]

and certain auxiliary operators (e.g. list concatenation); the only exception is a rule that in some

circumstances constructs an auxiliary term and in others constructs a term analogous to a �-redex.

Herbelin showed strong normalisation and conuence of a complete system of rules for eliminating

cuts, observed that the addition of a further \cut permutation" rule, needed to allow explicit

substitutions to propagate properly, as required for the simulation of �-reduction of the simply

typed �-calculus, would break the strong normalisation proof, thus raising the question of whether

it also broke the strong normalisation result. In the present paper we answer this question; strong

normalisation holds for the calculus with the addition of this rule (and of other cut permutation

rules, to retain conuence).

Herbelin's calculus can thus be seen in two ways:

1. In the cut-free case it is a natural basis [5] for automated proof search in logic programming,

since it is a sequent calculus but free from the permutation problems of Gentzen's calculus;

2. In the general case, when extended with the cut permutation rules, it can simulate �-reduction

and thus, with its strong proof-theoretic foundations, may be a natural basis for implementa-

tion of functional languages.

Our proof uses standard techniques, e.g. from [2]. That paper, in its use of recursive path

ordering techniques, shows the use of higher-order rewriting to be unnecessary, by translating to

a �rst-order system. In order not to obscure our argument, we omit the details of this translation;

the conscientious reader is invited to �ll in the missing details.

? Thanks are due to the second author's family and the Dresden University of Technology for support of

various kinds during a visit to Dresden covering the genesis of this paper.



2 Roy Dyckho�, Christian Urban

2 Technical Background

We use a notation developed in [6], since it distinguishes the di�erent kinds of cut term and in

proofs emphasises the role of the stoup formula. The syntax of the calculus is as follows: formulae

A are as in implicational logic, there are (term-)variables x; y; : : :, there are two kinds Ms;M of

proof-term and two kinds of sequent, one with and one without a stoup formula, which is written in

the �rst case below the sequent arrow.Ms is used in the stoup sequents; although the notation may

suggest a list, not all terms Ms are lists. Notions of \free" and \bound" and variable conventions

are as usual, with variable binding not just in �-terms but also in cut2 and cut4 terms. Contexts �

are �nite functions from variables to formulae; � ; x : A indicates the extension, by the assignment

of A to x, of a context � in which there is no assignment to x.

Syntax of cut-free terms
Ms ::= [] j (M ::Ms)

M ::= (x;Ms) j �x:M

Logical/Typing rules

� ) M : A � ��!

B
Ms : C

� ��!

A�B
(M ::Ms) : C

S�
� ��!

A
[] : A

Ax

�; x : A ��!

A
Ms : B

�; x : A ) (x;Ms) : B
Sel

�; x : A ) M : B

� ) �x:M : A � B
R�

Syntax of cut terms (type information is omitted in the type-free case)

Ms ::= cutA1 (Ms;Ms) j cutA2 (M;x:Ms)

M ::= cutA3 (M;Ms) j cutA4 (M;x:M )

Logical/Typing rules for Cuts

� ��!

B
Ms : A � ��!

A
Ms0 : C

� ��!

B
cutA1 (Ms;Ms0) : C

Cut1
� ) M : A �; x : A ��!

B
Ms : C

� ��!

B
cutA2 (M;x:Ms) : C

Cut2

� ) M : A � ��!

A
Ms : B

� ) cutA3 (M;Ms) : B
Cut3

� ) M : A �; x : A ) M 0 : B

� ) cutA4 (M;x:M 0) : B
Cut4

Rules for cut-reduction

Let ES denote the system of \explicit substitution" rules 1 : : :4 on terms, and CC the system of

\commuting cuts" rule 5 on terms:

1. (a) cutA1 ([];Ms) ; Ms

(b) cutA1 ((M ::Ms);Ms0) ; (M :: cutA1 (Ms;Ms0))

2. (a) cutA2 (M;x:[]) ; []

(b) cutA2 (M;x:(M 0 ::Ms)) ; (cutA4 (M;x:M 0) :: cutA2 (M;x:Ms))

3. (a) cutA3 ((x;Ms);Ms0) ; (x; cutA1 (Ms;Ms0))

(b) cutA3 (�y:M; []) ; �y:M

4. (a) cutA4 (M;x:(y;Ms)) ; (y; cutA2 (M;x:Ms)) (y 6= x)

(b) cutA4 (M;x:(x;Ms)) ; cutA3 (M; cutA2 (M;x:Ms))

(c) cutA4 (M;x:�y:M 0) ; �y:cutA4 (M;x:M 0)

5. (a) cutA1 (cut
B
1 (Ms;Ms0);Ms00) ; cutB1 (Ms; cutA1 (Ms0;Ms00))

(b) cutA2 (M;x:cutB1 (Ms;Ms0)) ; cutB1 (cut
A
2 (M;x:Ms); cutA2 (M;x:Ms0))

(c) cutA3 (cut
B
3 (M;Ms);Ms0) ; cutB3 (M; cutA1 (Ms;Ms0))

(d) cutA4 (M;x:cutB3 (M
0;Ms)) ; cutB3 (cut

A
4 (M;x:M 0); cutA2 (M;x:Ms))



Strong normalisation of Herbelin's explicit substitution calculus with substitution propagation 3

Strictly speaking, the rules 1 and 3 are not explicit substitution reduction rules but auxiliary rules.

The last of all these rules, 5(d), is the one mentioned in the introduction as the proper propagation

of an explicit substitution, e.g. inside a \beta-redex". The other CC rules are added to ensure

conuence once that rule is added. We allow rule applications inside terms, i.e. we in fact consider

the contextual closures of all rules, as usual.

We need to consider one further rule, deliberately omitted from group 3:

B cutA�B3
(�x:M; (M 0 ::Ms)) ; cutB3 (cut

A
4 (M

0; x:M );Ms)

which generates a cut4-instance; to simulate ordinary beta-reduction, this may need to propagate

into its body M ; the latter may be a cut3-term, hence the utility of rule 5(d), and so on.

Herbelin [8] showed that a system of rules, essentially ES + B with di�erent terminology,

is complete, conuent and (for typed terms) strongly normalising. Note that the CC-rules are

NOT required for completeness: without them, a strategy that (more or less) ignores cuts whose

arguments are cuts is imposed.

A simpler (but less direct) proof of his SN theorem using the multiset path ordering theorem

is given in [6]; the termination comes from the ordering of all the cut operators as greater than

the non-cut operators, with cutA > cutB for A > B and with cut4 = cut2 > cut3 = cut1 for cut

operators with the same type annotation.

The addition of any of the rules in 5 breaks both of these proofs, because of the switching of

the types.

Note that there are no rules allowing permutation of cut2 or cut4 operators with cut2 or cut4
operators.

Routinely, \Subject Reduction" holds for all these reduction rules; thus, all the results (e.g.

conuence) that we state or prove for untyped terms hold also for the typed terms.

3 Pure Terms

There are two obvious (and in fact equivalent) candidates for the class of terms that we will use

to interpret lambda terms: those free of (ES +CC)-redexes and those free of all instances (other

than B-redexes) of cut: we choose the latter.

De�nition 1 ((ES+ CC)-normality; purity).

1. A term is (ES + CC)-normal i� it is free of all ES + CC-redexes;

2. A term is pure i� it is free of all instances (other than B-redexes) of cut.

By induction, (ES + CC)-normal terms Ms are of the form [] or M :: Ms0. Pure terms are

(ES +CC)-normal, since all (ES +CC)-redexes are instances of cut; but the converse also holds:

Proposition 2. (ES + CC)-normal terms Ms;M are pure.

Proof. The Ms case depends just on the M case. We proceed by induction and case analysis; we

show that if an (ES +CC)-normal term M is an instance of cut, then it is a redex; our inductive

hypothesis is that all smaller (ES + CC)-normal terms are pure. Consider the cases for M an

instance of cut:

1. cut3((x;Ms);Ms0) is a 3(a)-redex;

2. cut3(�x:M
0; []) is a 3(b)-redex;

3. cut3(�x:M
0; (M 00 ::Ms)) is a B-redex;

4. cut3(cut3(M
0;Ms);Ms0) is a 5(c)-redex;

5. cut3(cut4(M
0; x:M 00);Ms) is not allowed, since (by inductive hypothesis) cut4(M

0; x:M 00) is

pure, contrary to its being a (non B-redex) cut-term;

6. cut4(M
0; x:(z;Ms)) is a 4(a) or 4(b)-redex;

7. cut4(M
0; x:�y:M 00) is a 4(c)-redex;

8. cut4(M
0; x:cut3(M

00;Ms)) is a 5(d)-redex;



4 Roy Dyckho�, Christian Urban

9. cut4(M
0; x:cut4(M

00; y:M 000)) is not allowed, for the same reason as in (5) above.

It follows that the (ES + CC)-normal/pure terms M are of the form (y;Ms), �x:M 0 or

cut3(�y:M
0; (M 00 ::Ms)).

De�nition 3 (Implicit substitution; concatenation; generalised application). For pure

termsMs;Ms0;M;M 0, and for the variable x, we de�ne by simultaneous induction on the structure

of Ms (resp. Ms, resp. M , resp. M 0)

1. The concatenation1 Ms@Ms0 of Ms with Ms0;

2. The implicit substitution [M=x]Ms of M for x in Ms;

3. The generalised application fMgMs of M to Ms;

4. The implicit substitution [M=x]M 0 of M for x in M 0.

as follows:

[]@Ms0 =def Ms0

(M 00 ::Ms00)@Ms0 =def (M 00 :: (Ms00@Ms0))

[M=x][] =def []

[M=x](M 00 ::Ms00) =def ([M=x]M 00 :: [M=x]Ms00)

f(y;Ms00)gMs =def (y; (Ms00@Ms))

f�y:M 00g[] =def �y:M 00

f�y:M 00g(M 000 ::Ms00) =def cut3(�y:M
00; (M 000 ::Ms00))

fcut3(�y:M
00; (M 000 ::Ms00))gMs =def cut3(�y:M

00; (M 000 :: (Ms00@Ms)))

[M=x](y;Ms00) =def (y; [M=x]Ms00) (y 6= x)

[M=x](x;Ms00) =def fMg[M=x]Ms00

[M=x](�y:M 00) =def �y:[M=x]M 00

[M=x]cut3(�y:M
00; (M 000 ::Ms00)) =def cut3(�y:[M=x]M 00; ([M=x]M 000 :: [M=x]Ms00)):

Note that the mutual induction is straightforward; �rst, concatenation is well-de�ned (as usual);

second, generalised application has a de�nition depending only on concatenation; �nally, the two

forms of implicit substitution depend on simpler instances of themselves and of each other and on

instances of generalised application.

4 Lambda Calculus

Our exposition of the lambda calculus uses approximately the notation of [10]. Lambda terms N

and lists Ns of lambda terms are de�ned by the grammar

N ::= (x Ns) j (�x:N ) j ((�x:N )NNs)

Ns ::= [] j (N :: Ns)

in which, if we omit the last production for N , we get just the normal terms. Note that, for example,

a term of the form ((�x:N )N 0Ns) is NOT the term list ((�x:N ) :: (N 0 :: Ns)); it is a term. The

structure of this inductive de�nition is intended to make certain parts of the normalisation proof

in [10] easy, but no de�nition of substitution is given in [10]; essentially, the translation to standard

1 This is just the usual concatenation of lists, included here for completeness.



Strong normalisation of Herbelin's explicit substitution calculus with substitution propagation 5

notation is used, then the standard de�nition is used, then one translates back. We remedy this

minor oversight as follows:

We de�ne implicit substitution [N=x]Ns of N for x in Ns (and similarly for substitution in

N 0) as follows, by induction on the structure of Ns (resp. N 0); we need an auxiliary de�nition of a

term fNgNs, by induction on the structure of N (and a subsidiary induction in one case on Ns),

to apply the term N to the list Ns of arguments in the usual way (this is not the construction of

a list, but of a term):

[N=x][] =def []

[N=x](N 0 :: Ns) =def ([N=x]N 0 :: [N=x]Ns)

f(y Ns0)gNs =def (y (Ns0@Ns))

f(�y:N )g[] =def (�y:N )

f(�y:N )g(N 0 :: Ns) =def ((�y:N )N 0Ns)

f((�y:N )N 0Ns)gNs0 =def ((�y:N )N 0(Ns@Ns0))

[N=x](y Ns) =def (y [N=x]Ns) (y 6= x)

[N=x](x Ns) =def fNg[N=x]Ns

[N=x](�y:N 0) =def (�y:[N=x]N 0)

[N=x]((�y:N 0)N 00Ns) =def ((�y:[N=x]N 0)([N=x]N 00[N=x]Ns))

where @ is for the standard function that concatenates two lists.

Termination of this de�nition is as in the previous section. The equivalence between this de�-

nition and the usual de�nition of substitution (with the usual notation) is a tedious exercise.

�-reduction is thus the reduction of a term by careful replacement of a subterm (the �-redex)

of the form ((�x:N )N 0Ns) by the reduct f[N 0=x]NgNs in a single step.

5 Interpretation of Lambda Calculus

We now de�ne (really trivial) bijective interpretations (:)� of �-terms N as the pure terms of the

form M and (:)�� of term-lists Ns as the pure terms of the form Ms:

(x Ns)� =def (x;Ns��)

(�x:N )� =def (�x:N�)

((�x:N )N 0Ns)� =def cut3(�x:N
�; (N 0� :: Ns��))

[]
��

=def []

(N :: Ns)�� =def (N� :: Ns��)

Proposition 4. For �-terms N;N 0 and term lists Ns;Ns0, the following hold:

1. (Ns@Ns0)�� = Ns��@Ns0��;

2. ([N=x]Ns)�� = [N�=x]Ns��;

3. (fNgNs)� = fN�gNs��;

4. ([N=x]N 0)� = [N�=x]N 0�.

Proof. Routine.



6 Roy Dyckho�, Christian Urban

6 Strong Normalisation and Conuence of ES +CC

Proposition 5. The system ES +CC is strongly normalising (SN).

Proof. A lexicographic path order suÆces, completely ignoring all the type information, with the

cut2 = cut4 operators equal, and greater than cut1 = cut3, and with all cut operators greater

than the non-cut operators. We rely throughout on the exposition of the lexicographic path order

given in [1] rather than that in [2]. For an alternative proof using a polynomial interpretation, see

Appendix A.

Proposition 6. The system ES +CC is conuent.

Proof. By Proposition 5, it suÆces to check the local conuence; for details see Appendix B.

De�nition 7. For a term Ms or M , its puri�cation is its (ES + CC)-normal form, written Ms

(resp. M).

Lemma 8. If M ;
�

ES+CC M 0, then M =M 0. (Similarly for Ms.)

Proof. Trivial.

7 Simulation of �-reduction

Proposition 9. Let M;M 0;Ms;Ms0 be pure terms. Then

1. cut1(Ms;Ms0) ;�

ES+CC Ms@Ms0;

2. cut2(M;x:Ms) ;�

ES+CC [M=x]Ms;

3. cut3(M;Ms) ;�

ES+CC fMgMs;

4. cut4(M;x:M 0) ;�

ES+CC [M=x]M 0.

Proof. The �rst part is trivial; the third part is proved by induction; the remaining two parts are

proved by a simultaneous induction on the heights of the LHS terms. For details see Appendix C.

The above may be regarded as a weak normalisation result (for ES + CC), since we may

use it to purify any innermost (non-B)-redex, repeating this operation until all such redexes are

eliminated.

Corollary 10. For pure terms M;M 0 and Ms,

cut3(cut4(M
0; x:M );Ms) ;�

ES+CC f[M 0=x]MgMs:

Theorem 11. If N1 ;� N2 in the �-calculus, then N�
1 reduces to N�

2 by a B-reduction followed

by 0 or more ES + CC reductions.

Proof. Consider �rst the case where N1 is the �-redex, and so of the form ((�x:N )N 0Ns), for

terms N;N 0 and term list Ns. Thus, N2 = f[N 0=x]NgNs. By Corollary 10, the reduct

cut3(cut4(N
0�; x:N�); Ns��)

of the B-redex N�
1 = cut3(�x:N

�; (N 0� :: Ns��)) is (ES +CC)-reducible to f[N 0�=x]N�gNs��. By

Proposition 4, this is just N�
2 . The general case, where the reduction is not at the root position of

N1, follows by induction on the structure of N1.

In other words, the system (ES + CC + B) of rules acting on the untyped terms simulates

�-reduction of the untyped �-calculus; similarly for typed terms and the typed �-calculus.



Strong normalisation of Herbelin's explicit substitution calculus with substitution propagation 7

8 �-reduction

We may now de�ne a rule � on pure terms, typed or untyped, omitting the types in the latter

case:

� cutA�B3
(�x:M;M 0 ::Ms) ;� cut

B
3
(cutA

4
(M 0; x:M );Ms)

Note that, in the untyped case, the RHS of this is, by Corollary 10, just f[M 0=x]MgMs. The

correspondence between pure untyped terms and the terms of the untyped �-calculus routinely

extends to �-reduction.

Thus, a �-reduction is a singleB-reduction followed by puri�cation, i.e. zero or more (ES+CC)-

reductions to normal form.

Proposition 12. The system, on pure typed terms, consisting just of the rule � is SN.

Proof. Use, for example, the proof, in di�erent notation, in [10].

If we had a direct proof of Proposition 12, then we would have shown the strong normalisation

of the simply-typed �-calculus.

De�nition 13. For any term M , we de�ne kM k to be the maximal length of all �-reduction

sequences from M if the latter is �-SN; otherwise we de�ne kM k =1. (Similarly for Ms.)

Corollary 14. For every typed term M , we have kM k <1. (Similarly for Ms.)

Proof. By Proposition 12 and K�onig's Lemma.

Lemma 15. For pure terms M;Ms;M 0;M 00;Ms0, with M ;
�

� M 0 and Ms ;�

� Ms0, we have

1. fMgMs ;�

� fM 0gMs;

2. fMgMs ;�

� fMgMs0;

3. [M=x]Ms ;�

� [M 0=x]Ms;

4. [M=x]Ms ;�

� [M=x]Ms0;

5. [M=x]M 00
;

�

� [M 0=x]M 00;

6. [M 00=x]M ;
�

� [M 00=x]M 0.

Proof. These follow from consideration of the untyped �-calculus: for example, substitution into

a �-redex leaves it as a �-redex.

Lemma 16. For pure terms M;M 0;Ms with M ;� M 0 we have fMgMs ;� fM
0gMs.

Proof. By induction on the de�nition of f:g:. The essential idea is that any �-redex in M is still

a �-redex in fMgMs, even though M may well not be a subterm of fMgMs.

9 Adding B-reduction

We will show that the addition of the B-rule upsets neither conuence nor, provided we stick at

least to (e.g.) typed terms, termination. A key ingredient in both of these proofs is the Projection

Lemma, i.e. that a root B-reduction translates (under puri�cation) to exactly one �-reduction.

Lemma 17. cut3(�x:M; (M 0 ::Ms)) ;� cut3(cut4(M
0; x:M );Ms).

Proof. The LHS = cut3(�x:M; (M 0 ::Ms)), the latter (as a B-redex) being pure; this B-reduces

to cut3(cut4(M
0; x:M);Ms) and thus �-reduces to cut3(cut4(M

0; x:M);Ms). By Lemma 8, this

equals the RHS.

Lemma 18 (Projection Lemma). If M ;B M 0 at the root position, then M ;� M 0.



8 Roy Dyckho�, Christian Urban

Proof. Apart from the names of variables, this is just a restatement of Lemma 17.

Corollary 19. For terms M;M 0;Ms, we have (if the RHS <1)

kcut
3
(�x:M; (M 0 ::Ms))k > kcut

3
(cut

4
(M 0; x:M );Ms)k:

We also need to know that an arbitrary B-reduction translates, after puri�cation, to zero or

more �-reductions.

Proposition 20. The following hold:

1. If Ms ;B Ms0, then Ms ;�

� Ms0;

2. If M ;B M 0, then M ;
�

� M
0.

Proof. By simultaneous inductions on the size of Ms or M , and case analysis:

1. (a) Ms = []: trivial;

(b) Ms = (M ::Ms00): routine use of inductive hypothesis;

(c) Ms = cut1(Ms00;Ms000): similar to the �rst two parts of case 2(c) below.

(d) Ms = cut2(M
00; x:Ms000): similar to the case 2(d) below.

2. (a) M = �x:M 00: routine;

(b) M = (x;Ms00): routine;

(c) M = cut3(M
00;Ms00): there are three cases:

i. the B-reduction is of M 00 to M 000: by inductive hypothesis, M 00
;

�

� M
000, whence, by

Lemma 15 (1), fM 00gMs00 ;�

� fM
000gMs00: Now,

cut3(M
00;Ms00) = cut3(M

00;Ms00) = fM 00gMs00

by Lemma 8 and Proposition 9 (3) respectively; and similarly

cut3(M
000;Ms00) = cut3(M

000;Ms00) = fM 000gMs00

whence M ;
�

� M
0:

ii. the B-reduction is of Ms00 to Ms000: similar, using Lemma 15 (2).

iii. the B-reduction is at the root of M : we use the Projection Lemma.
(d) M = cut4(M

00; x:M 000): there are two cases, dealt with as in (c), using Lemma 15 (5) and

(6).

It is now easy to show that the system ES + CC + B is conuent, using the conuence of

�-reduction in the �-calculus.

Theorem 21. The system ES + CC + B is conuent.

Proof. Suppose thatM ;
�

ES+CC+B M1 andM ;
�

ES+CC+B M2. Then, by Lemma 8 and Proposi-

tion 20, bothM ;
�

� M1 andM ;
�

� M2, whence, by conuence of �-reduction in the �-calculus, for

some (pure) term MÆ we have M1 ;
�

� M
Æ and M2 ;

�

� M
Æ. But then, both M1 ;

�

ES+CC+B MÆ

and also M2 ;
�

ES+CC+B MÆ. (Similarly for Ms.)

10 Strong Normalisation

De�nition 22 (Bounded terms). A term M (or Ms) is bounded i� for every subterm M 0 or

Ms0 thereof, kM 0k <1 (resp. kMs0k <1).

Proposition 23 (Boundedness).

1. Every typed term is bounded;

2. Every (ES +CC +B)-SN term is bounded;

3. For pure terms, �-SN is equivalent to \bounded".



Strong normalisation of Herbelin's explicit substitution calculus with substitution propagation 9

Proof. We consider the three parts in order:

1. Trivial, since every subterm of a typed term is typed and the puri�cation of a typed term is

typed, and (by Proposition 12) every pure typed term is �-SN.

2. Consider a subterm M of an (ES + CC + B)-SN term; it also is (ES + CC + B)-SN and

so is its puri�cation M . But then any in�nite sequence of �-reductions from M can be seen,

by Corollary 10, as a sequence of (ES + CC + B)-reductions, including in�nitely many B-

reductions. (Similarly for subterms Ms.)

3. Pure �-SN terms are bounded, since, for every subtermM of such a term,M is pure and �-SN;

so M (= M ) is �-SN (and similarly for subterms Ms). The converse is even more trivial.

Our aim now is to prove Theorem 31, i.e. the converse of part (2) of Proposition 23.

Lemma 24. For all terms M;M 0;Ms;Ms0:

1. If M ;ES+CC M 0 then kM k = kM 0k;

2. If Ms ;ES+CC Ms0 then kMsk = kMs0k;

3. If M ;B M 0 then kM k � kM 0k;

4. If Ms ;B Ms0 then kMsk � kMs0k.

Proof. The �rst part is trivial, since M = M 0; the second part is similar. The other two parts use

Proposition 20.

De�nition 25 (Cosy occurrence; cosy embedding). An occurrence of a proper subterm in

a term is cosy i� no cut2 or cut4 constructors intervene on the path to the root, apart from a

possible occurrence at the subterm itself. A term is cosily embedded in a term i� it has a cosy

occurrence in the latter term.

For example, in a term of the form cut1(cut2(M;x:Ms); cut2(M;x:Ms0)), the two cut2 subterms

are the only cosily embedded proper subterms; and in a term of the form cut2(M;x:Ms), no proper

subterms are cosily embedded.

Lemma 26. For all terms M;Ms;Ms0:

1. (a) k (M ::Ms)k � kM k;

(b) k (M ::Ms)k � kMsk;

2. k (x;Ms)k = kMsk;

3. k�x:M k = kM k;

4. (a) kcut1(Ms;Ms0)k � kMsk;

(b) kcut1(Ms;Ms0)k � kMs0k;

5. kcut3(M;Ms)k � kM k;

6. kcut3(M;Ms)k � kMsk.

Proof. 1. Because (M ::Ms) = (M ::Ms);

2. Because (x;Ms) = (x;Ms);

3. Because �x:M = �x:M ;

4. Because, by Proposition 9 (1), cut1(Ms;Ms0) = Ms@Ms0;

5. Since cut3(M;Ms) = cut3(M;Ms) and kM k = kM k, we may, without loss of generality,

assume that the terms M and Ms are pure; we now just appeal to Lemma 16.

6. Without loss of generality, for the same reason as in (5), M and Ms may be assumed to be

pure. If Ms = [], then the result is trivial. Otherwise, we argue by induction on the size of M

and case analysis. Consider the possible forms of M :

(a) M = (x;Ms00), whence by rule 3(a) it suÆces to observe that k (x;Ms00@Ms)k = kMs00k+

kMsk;

(b) M = �x:M 0; so cut3(M;Ms) is pure and has Ms as a sub-term, whence kcut3(M;Ms)k �

kMsk;



10 Roy Dyckho�, Christian Urban

(c) M = cut3(M
0;Ms00); so, by rule 5(c), cut3(M;Ms) = cut3(M

0;Ms00@Ms) and, by inductive

hypothesis, kcut3(M
0;Ms00@Ms)k � kMs00@Msk � kMsk.

Corollary 27. If a term M is cosily embedded in M 0, then kM k � kM 0k, and similarly for other

combinations such as M cosily embedded in Ms, etc.

Proof. By the lemma, using induction on the number of constructors between the subterm and

the term.

On the other hand, whenever kM k > 0, we have

kM k 6� kcut
2
(M;x:[])k = 0

and

kM k 6� kcut4(M;x:�y:(y; []))k = 0:

Corollary 28. We have the following:

1. For each of the (ES + CC)-reduction rules L ; R, and for each non-variable subterm S of

R, and instantiation � of the variables in the rule, we have kL� k � kS� k;

2. For the B-reduction rule L ; R, and for each non-variable subterm S of R, and instantiation

� of the variables in the rule, we have kL� k � kS� k, the inequality being strict if either side

is �nite.

Proof. 1. By Lemma 24 (1 or 2), we have kL� k = kR� k. It now suÆces to note that, for each

rule L ; R, each non-variable proper subterm of R is cosily embedded.

2. By Lemma 18, assuming kL� k <1, we have kL� k > kR�k; as before, the only non-variable

proper sub-term S of R is cosily embedded.

This corollary is the crux of the present paper: it gives us information about the (ES+CC+B)-

rules that will be exploited when we show that the rules are decreasing w.r.t. a suitably chosen

ordering. Note that the above corollary tells us just about reductions at the root position; for

reductions at non-root positions, it says nothing.

Corollary 29. Bounded terms are closed under (ES +CC +B)-reduction.

Proof. Let M be bounded and let R be a rule in (ES+CC+B) such that M ;R M 0. Consider a

subterm M 00 of M 0; we must show that kM 00k <1. Comparing the position of M 00 in M 0 to that

of the reduct, we �nd three cases:

1. The reduct occurs as a subterm of M 00; so we can pull M 00 back to a subterm M� of M , with

M�
; M 00. Since M is bounded, kM�k <1. By Lemma 24, kM 00k <1.

2. The reduct has M 00 as a proper subterm, and M 00 is obtained by instantiation of a variable in

the rule R; thus already M 00 is a subterm of M , which is bounded, so kM 00k <1.

3. The reduct hasM 00 as a proper subterm, andM 00 is obtained by instantiation of a non-variable

subterm of the RHS of the rule R; by Corollary 28, kM 00k � kM�k for some term M� which

is in fact a subterm of M , so kM 00k <1.

We now consider the bounded cut terms super�xed not, as before, with types but with, for

each such termM , the natural number kM k (and similarly for termsMs). We again order the cut

operators by cutn > cutm for n > m, use the suÆces (4 = 2 > 3 = 1) as before for ordering cut

operators with the same super�x, and order all cut operators as greater than all non-cut operators.

There are now in�nitely many operators; but for a given bounded term, with only �nitely many cut

sub-terms, we can compute an upper bound for all their super�xes; by Corollary 28, this bound

suÆces for all terms reachable from the term by any of the reduction rules, so we can w.l.o.g.

assume that our signature is �nite, as required for use of the fact that the lexicographic path

ordering generated below is a simpli�cation ordering and thus is well-founded.



Strong normalisation of Herbelin's explicit substitution calculus with substitution propagation 11

From this ordering on this (�nite) signature we generate the lexicographic path ordering

\>LPO" on all terms. As in [2], we can avoid the problem of the LPO techniques not being appli-

cable to higher-order systems by translation into a terminating (but non-conuent) intermediate

system where the bound variables are omitted. However in order not to obscure our argument, we

will not give this translation, but rather apply the LPO techniques directly to our higher-order

system.

Proposition 30. If M 0 is a bounded term and M 0
;EC+CC+B M 00, then M 0 >LPO M 00. (Simi-

larly for Ms.)

Proof. It suÆces to consider only reductions at root position, since >LPO is closed under contextual

closure. In fact, the previous proof (of Proposition 5) for (ES+CC) now works almost unchanged.

We consider the rule B in order to illustrate the method: let

M 0 = cutm3 (�x:M; (M 000 ::Ms)) ;B cutr3(cut
s
4(M

000; x:M );Ms) =M 00

be an instance of rule B. By Corollary 19, we have m > r; similarly m > s by this and by

Corollary 28 (2). Then, since m > r, we just need to compare M 0 with the two main subterms of

M 00. That M 0 >LPO cuts4(M
000; x:M ) follows because m > s and M 000;M are variables properly

occurring in M 0; that M 0 >LPO Ms is trivial, the latter being a variable properly occurring in

M 0. It follows that M 0 >LPO M 00.

Theorem 31. Every bounded term is (ES + CC + B)-SN.

Proof. By the well-foundedness of >LPO and Proposition 30.

Corollary 32. Every typed term is (ES + CC + B)-SN.

Proof. By Proposition 23 (1) and the above theorem.

(This answers Herbelin's question.)

Corollary 33. The calculus of terms Ms;M with the (ES + CC + B)-reduction rules preserves

strong normalisation w.r.t. the calculus of pure terms under �-reduction.

11 Comments

It would be interesting to �nd a direct normalisation proof (in sequent calculus notation) for the

simply-typed �-calculus and compare it with those of [10, 12].

Our cut-reductions 5(c), 5(d) for Herbelin's explicit substitution calculus already appeared, in

di�erent notation, as the rules �22 and �44 in Esp��rito Santo's [7]; this paper inter alia

1. establishes a 1-1 correspondence, concerning both terms and reductions, between the lambda

calculus and his calculus �H of terms (similar to our calculus of pure terms);

2. shows that �H can be extended to a calculus �+H of terms which, in our notation, have no

instances of cut1 and cut2. These two operators are treated as de�ned functions; our category

of terms Ms can thus be replaced by that of term lists. This corresponds to a certain strategy

of reducing cut1 and cut2 terms by terms normal w.r.t. our rules 1 and 2; our rules 5(a) and

5(b) are then superuous. Moreover, cut3 and cut4 terms are, following a reduction step, dealt

with immediately by auxiliary functions, de�ned by equations, rather than by use of explicit

operations.

However, the issue of whether B-reductions can be combined in an arbitrary fashion with (ES +

CC)-reductions is not addressed; this appears to us to be the main issue raised by Herbelin's paper,

with its emphasis on explicit concatenations and explicit substitutions. We gratefully acknowledge

Jos�e Esp��rito Santo's helpful comments illuminating the content of his paper.



12 Roy Dyckho�, Christian Urban

Vestergaard and Wells [14] have considered explicit substitution calculi based on Gentzen's

L-systems, with de Bruijn indices rather than variable names and with \weak correspondences"

with some known explicit substitution calculi.

Herbelin (private commmunication, March 2001) conjectured that our SN result for (ES +

CC+B) also follows from the SN result [9] for the ���-calculus, mentioning however that a similar

conjecture for the strong normalisability of Parigot's ��-calculus turned out to be mistaken. We

have no opinion on this conjecture; in any case, it is good to have a more elementary proof.

An early version of this paper showed that \garbage reduction" rules (as in [2]) were admissible,

as part of a (regrettably) faulty proof of Proposition 20. Such rules can be added as primitive rules

without loss of conuence or termination.

The calculus of Herbelin also appears in the work of Cervesato and Pfenning [4], in the guise

of a \spine calculus"; no theory of explicit substitutions therein appears to have been worked out,

although some implementation of such substitutions is apparently in the Twelf implementation.

We thank Iliano Cervesato for bringing this report to our attention.

There are of course issues in the explicit substitution world that are not addressed by the

above, such as the questions of optimality, of sharing and of conuence on open terms. We make

no claims about superiority of the system ES + CC + B over other explicit substitution calculi;

we remark merely that it has an impeccable proof-theoretic pedigree.

In Appendix D we show that our calculus can simulate the �x-calculus of [3] if we add another

two simple rules (that can be added without losing conuence or termination). Issues arising with

this simulation will be addressed in future work.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

2. R. Bloo and H. Geuvers. Explicit Substitution: On the Edge of Strong Normalisation. Theoretical

Computer Science, 211(1{2):375{395, 1999.
3. R. Bloo and K. H. Rose. Preservation of Strong Normalisation in Named Lambda Calculi with Explicit

Substitution and Garbage Collection. In Proceedings of CSN'95, 1995, pp 62{72.

4. I. Cervesato and F. Pfenning. A Linear Spine Calculus. School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pa., CMU-CS-97-125, 1997.

5. R. Dyckho� and L. Pinto. Proof Search in Constructive Logic. In S. B. Cooper and J. K. Truss, editors,

Proceedings of the Logic Colloquium 1997, volume 258 of London Mathematical Society Lecture Note

Series, pages 53{65. Cambridge University Press, 1997.

6. R. Dyckho� and L. Pinto. Cut-Elimination and a Permutation-Free Sequent Calculus for Intuitionistic

Logic. Studia Logica, 60(1):107{118, 1998.
7. J. C. Esp�irito Santo. Revisiting the Correspondence between Cut Elimination and Normalisation. In

Proceedings of ICALP 2000, volume 1853 of LNCS, pages 600{611. Springer Verlag, 2000.

8. H. Herbelin. A �-calculus Structure Isomorphic to Sequent Calculus Structure. In Proceedings of the

1994 conference on Computer Science Logic, volume 933 of LNCS, pages 67{75. Springer Verlag, 1995.

9. H. Herbelin. Explicit Substitutions and Reducibility. Journal of Logic and Computation, Vol 11 (3),

pages 429{449, 2001.

10. F. Joachimski and R. Matthes. Short Proofs of Normalisation. Archive for Mathematical Logic, to

appear. (Preprint, 1999.)

11. K. H. Rose. Explicit Substitution: Tutorial & Survey. Technical report, BRICS, Department of
Computer Science, University of Aarhus, 1996.

12. F. van Raamsdonk and P. Severi. On Normalisation. Technical report, TR CS-R9545, Centrum voor

Wiskunde en Informatica, Amsterdam, 1996. (incorporated into [13].)
13. F. van Raamsdonk, P. Severi, M. H. S�orensen and H. Xi. Perpetual Reductions in Lambda Calculus.

Information and Computation 149, pages 173{225, 1999.

14. R. Vestergaard and J. Wells. Cut Rules and Explicit Substitutions. Mathematical Structures in
Computer Science, to appear.



Strong normalisation of Herbelin's explicit substitution calculus with substitution propagation 13

A Proof of Proposition 5

We de�ne a function h : (Ms [M ) �! IN as follows:

h([]) = 1

h((M ::Ms)) = h(M ) + h(Ms) + 1

h(cut
1
(Ms;Ms0)) = h(Ms0) + 2 � h(Ms) + 1

h(cut2(M;x:Ms)) = h(Ms) � (3 � h(M ) + 1)

h((x;Ms)) = h(Ms) + 1

h((�x:M )) = h(M ) + 1

h(cut3(M;Ms)) = h(Ms) + 2 � h(M ) + 1

h(cut4(M;x:M 0)) = h(M 0) � (3 � h(M ) + 1)

and observe that for every rule of ES + CC, h(L) > h(R).

B Proof of Proposition 6

Here we show systematically that each critical pair is joinable, considering pairs of rules R1; R2

where the LHS of R1 uni�es with a non-variable subterm of the LHS of R2, in which case we say

that R1 overlaps with R2.

1. Rule 1(a) overlaps with 5(a): thus,

cutA1 (cut
B
1 ([];Ms);Ms0)

reduces by 1(a) to

cutA1 (Ms;Ms0);

we can also reduce it by 5(a) to

cutB1 ([]; cut
A
1 (Ms;Ms0))

which reduces by 1(a) to

cutA1 (Ms;Ms0):

2. Rule 1(a) overlaps with 5(b): thus,

cutA2 (M;x:cutB1 ([];Ms))

reduces by 1(a) to

cutA2 (M;x:Ms);

we can also reduce it by 5(b) to

cutB1 (cut
A
2 (M;x:[]); cutA2 (M;x:Ms))

which reduces by 2(a) to

cutB1 ([]; cut
A
2 (M;x:Ms))

which reduces by 1(a) to

cutA2 (M;x:Ms):



14 Roy Dyckho�, Christian Urban

3. Rule 1(b) overlaps with 5(a): thus,

cutA1 (cut
B
1 ((M ::Ms);Ms0);Ms00)

reduces by 1(b) to

cutA1 ((M :: cutB1 (Ms;Ms0));Ms00)

which reduces by 1(b) to

(M :: cutA1 (cut
B
1 (Ms;Ms0);Ms00))

which reduces by 5(a) to

(M :: cutB
1
(Ms; cutA

1
(Ms0;Ms00)));

we can also reduce it by 5(a) to

cutB1 ((M ::Ms); cutA1 (Ms0;Ms00))

which reduces by 1(b) to

(M :: cutB1 (Ms; cutA1 (Ms0;Ms00))):

4. Rule 1(b) overlaps with 5(b): thus,

cutA2 (M;x:cutB1 ((M
0 ::Ms);Ms0))

reduces by 1(b) to

cutA2 (M;x:(M 0 :: cutB1 (Ms;Ms0)))

which reduces by 2(b) to

(cutA4 (M;x:M 0) :: cutA2 (M;x:cutB1 (Ms;Ms0))

which reduces by 5(b) to

(cutA4 (M;x:M 0) :: cutB1 (cut
A
2 (M;x:Ms); cutA2 (M;x:Ms0)));

we can also reduce it by 5(b) to

cutB1 (cut
A
2 (M;x:(M 0 ::Ms)); cutA2 (M;x:Ms0))

which reduces by 2(b) to

cutB1 ((cut
A
4 (M;x:M 0) :: cutA2 (M;x:Ms)); cutA2 (M;x:Ms0))

which reduces by 1(b) to

(cutA4 (M;x:M 0) :: cutB1 (cut
A
2 (M;x:Ms); cutA2 (M;x:Ms0))):

5. Rules 2(a), 2(b) have no overlaps.
6. Rule 3(a) overlaps with 5(c): thus,

cutA3 (cut
B
3 ((x;Ms);Ms0);Ms00)

reduces by 3(a) to

cutA3 ((x; cut
B
1 (Ms;Ms0));Ms00)

which reduces by 3(a) to

(x; cutA1 (cut
B
1 (Ms;Ms0);Ms00))

which reduces by 5(a) to

(x; cutB1 (Ms; cutA1 (Ms0;Ms00)));

we can also reduce it by 5(c) to

cutB3 ((x;Ms); cutA1 (Ms0;Ms00))

which reduces by 3(a) to

(x; cutB1 (Ms; cutA1 (Ms0;Ms00))):



Strong normalisation of Herbelin's explicit substitution calculus with substitution propagation 15

7. Rule 3(a) overlaps with 5(d). Consider two cases:
(a)

cutA
4
(M;x:cutB

3
((x;Ms);Ms0))

reduces by 3(a) to

cutA
4
(M;x:(x; cutB

1
(Ms;Ms0)))

which reduces by 4(b) to

cutA3 (M; cutA2 (M;x:cutB1 (Ms;Ms0)))

which reduces by 5(b) to

cutA3 (M; cutB1 (cut
A
2 (M;x:Ms); cutA2 (M;x:Ms0)));

we can also reduce it by 5(d) to

cutB3 (cut
A
4 (M;x:(x;Ms)); cutA2 (M;x:Ms0))

which reduces by 4(b) to

cutB3 (cut
A
3 (M; cutA2 (M;x:Ms)); cutA2 (M;x:Ms0))

which reduces by 5(c) to

cutA3 (M; cutB1 (cut
A
2 (M;x:Ms); cutA2 (M;x:Ms0))):

(b) Let y 6= x.

cutA4 (M;x:cutB3 ((y;Ms);Ms0))

reduces by 3(a) to

cutA4 (M;x:(y; cutB1 (Ms;Ms0)))

which reduces by 4(a) to

(y; cutA2 (M;x:cutB1 (Ms;Ms0)))

which reduces by 5(b) to

(y; cutB1 (cut
A
2 (M;x:Ms); cutA2 (M;x:Ms0)));

we can also reduce it by 5(d) to

cutB3 (cut
A
4 (M;x:(y;Ms)); cutA2 (M;x:Ms0))

which reduces by 4(a) to

cutB3 ((y; cut
A
2 (M;x:Ms)); cutA2 (M;x:Ms0))

which reduces by 3(a) to

(y; cutB1 (cut
A
2 (M;x:Ms); cutA2 (M;x:Ms0))):

8. Rule 3(b) overlaps with 5(c): thus,

cutA3 (cut
B
3 (�x:M; []);Ms)

reduces by 3(b) to

cutA3 (�x:M;Ms);

we can also reduce it by 5(c) to

cutB3 (�x:M; cutA1 ([];Ms))

which reduces by 1(a) to

cutB3 (�x:M;Ms):

Note the apparent change of type information; if we are ignoring types, this is no problem;

and if terms are typed, then, in this case, because of the [] argument, A = B.



16 Roy Dyckho�, Christian Urban

9. Rule 3(b) overlaps with 5(d): thus,

cutA
4
(�y:M; x:cutB

3
(�z:M 0; []))

reduces by 3(b) to

cutA4 (�y:M; x:�z:M 0)

which reduces by 4(c) to

�z:cutA
4
(�y:M; x:M 0);

we can also reduce it by 5(d) to

cutB3 (cut
A
4 (�y:M; x:�z:M 0); cutA2 (�y:M; x:[]))

which reduces by 2(a) to

cutB3 (cut
A
4 (�y:M; x:�z:M 0); [])

which reduces by 4(c) to

cutB3 (�z:cut
A
4 (�y:M; x:M 0); [])

which reduces by 3(b) to

�z:cutA4 (�y:M; x:M 0):

10. Rules 4(a), 4(b), 4(c) and 4(d) have no overlaps.

11. Rule 5(a) overlaps with itself. Consider

cutA1 (cut
B
1 (cut

C
1 (Ms;Ms0);Ms00);Ms000)

which reduces by 5(a) at a non-root position to

cutA1 (cut
C
1 (Ms; cutB1 (Ms0;Ms00));Ms000)

which reduces by 5(a) again to

cutC1 (Ms; cutA1 (cut
B
1 (Ms0;Ms00);Ms000))

which reduces by 5(a) again to

cutC1 (Ms; cutB1 (Ms0; cutA1 (Ms00;Ms000))):

Reduction by 5(a) at the root position, however, produces

cutB1 (cut
C
1 (Ms;Ms0); cutA1 (Ms00;Ms000))

which reduces by 5(a) to

cutC1 (Ms; cutB1 (Ms0; cutA1 (Ms00;Ms000))):

12. Rule 5(a) overlaps with 5(b). Consider

cutA2 (M;x:cutB1 (cut
C
1 (Ms;Ms0);Ms00))

which reduces by 5(a) to

cutA2 (M;x:cutC1 (Ms; cutB1 (Ms0;Ms00)))

which reduces by 5(b) to

cutC1 (cut
A
2 (M;x:Ms); cutA2 (M;x:cutB1 (Ms0;Ms00)))



Strong normalisation of Herbelin's explicit substitution calculus with substitution propagation 17

which reduces by 5(b) to

cutC
1
(cutA

2
(M;x:Ms); cutB

1
(cutA

2
(M;x:Ms0); cutA

2
(M;x:Ms00)));

we can also reduce it by 5(b) to

cutB
1
(cutA

2
(M;x:cutC

1
(Ms;Ms0)); cutA

2
(M;x:Ms00))

which reduces by 5(b) to

cutB
1
(cutC

1
(cutA

2
(M;x:Ms); cutA

2
(M;x:Ms0)); cutA

2
(M;x:Ms00))

which reduces by 5(a) to

cutC1 (cut
A
2 (M;x:Ms); cutB1 (cut

A
2 (M;x:Ms0); cutA2 (M;x:Ms00))):

13. Rule 5(b) has no (further) overlaps.
14. Rule 5(c) overlaps with itself. Consider

cutA
3
(cutB

3
(cutC

3
(M;Ms);Ms0);Ms00)

which reduces by 5(c) at a non-root position to

cutA3 (cut
C
3 (M; cutB1 (Ms;Ms0));Ms00)

which reduces by 5(c) to

cutC3 (M; cutA1 (cut
B
1 (Ms;Ms0);Ms00))

which reduces by 5(a) to

cutC3 (M; cutB1 (Ms; cutA1 (Ms0;Ms00))):

But also, it reduces by 5(c) at the root position to

cutB3 (cut
C
3 (M;Ms); cutA1 (Ms0;Ms00))

and again by 5(c) to

cutC3 (M; cutB1 (Ms; cutA1 (Ms0;Ms00))):

15. Rule 5(c) overlaps with 5(d):

cutA4 (M;x:cutB3 (cut
C
3 (M

0;Ms);Ms0))

reduces by 5(c) to

cutA4 (M;x:cutC3 (M
0; cutB1 (Ms;Ms0)))

which reduces by 5(d) to

cutC3 (cut
A
4 (M;x:M 0); cutA2 (M;x:cutB1 (Ms;Ms0)))

which reduces by 5(b) to

cutC3 (cut
A
4 (M;x:M 0); cutB1 (cut

A
2 (M;x:Ms); cutA2 (M;x:Ms0)));

we can also reduce it by 5(d) to

cutB3 (cut
A
4 (M;x:cutC3 (M

0;Ms)); cutA2 (M;x:Ms0))

which reduces by 5(d) to

cutB3 (cut
C
3 (cut

A
4 (M;x:M 0); cutA2 (M;x:Ms)); cutA2 (M;x:Ms0))

which reduces by 5(c) to

cutC3 (cut
A
4 (M;x:M 0); cutB1 (cut

A
2 (M;x:Ms); cutA2 (M;x:Ms0))):

16. Rule 5(d) has no (further) overlaps.



18 Roy Dyckho�, Christian Urban

C Proof of Proposition 9

Note that in each case the term on the RHS is a pure term; by de�nition the functions @, [:=:]:

and f:g: all produce pure terms from pure arguments. The proposition follows from the following

cases formulated as lemmata.

Lemma 34. For pure terms Ms;Ms0,

cut1(Ms;Ms0) ;�

ES+CC Ms@Ms0:

Proof. Routine, by induction on the length of Ms which, being pure, is already known to be a list.

Lemma 35. For pure terms M;Ms,

cut3(M;Ms) ;�

ES+CC fMgMs:

Proof. By induction on the height of the term M and case analysis:

1. When M is of the form (y;Ms0) the LHS is

cut3((y;Ms0);Ms)

which reduces by 3(a) to (y; cut1(Ms0;Ms)), which reduces by Lemma 34 to (y;Ms0@Ms),

which is just f(y;Ms0)gMs.

2. When M is of the form �x:M 0, there are two cases:

(a) When Ms = []: this is easy.

(b) When Ms = (M 00 :: Ms0), the LHS of (3) is cut3(�x:M
0; (M 00 ::Ms0)) which is (by de�ni-

tion) the same term as f�x:M 0gMs without any reduction.

3. When M is of the form cut3(�y:M
0;M 00 ::Ms0), the LHS of (3) is

cut3(cut3(�y:M
0;M 00 ::Ms0);Ms)

which reduces by 5(c) to

cut3(�y:M
0; cut1(M

00 ::Ms0;Ms))

which reduces by 1(b) to

cut3(�y:M
0; (M 00 :: cut1(Ms0;Ms))):

which by Lemma 34 reduces to

cut3(�y:M
0;M 00 :: (Ms0@Ms)):

which is just fMgMs.

Lemma 36. For pure terms M;Ms;M 0,
1. cut2(M;x:Ms) ;�

ES+CC [M=x]Ms;

2. cut4(M;x:M 0) ;�

ES+CC [M=x]M 0.

Proof. By simultaneous induction on the heights of the terms and case analysis. We consider the

cases systematically:

1. (a) When Ms is [], the LHS reduces by 2(a) to [], which is just [M=x][].

(b) When Ms is (M 0 :: Ms0), the LHS reduces by 2(b) to cut4(M;x:M 0) :: cut2(M;x:Ms0).

The �rst part of this reduces, by inductive hypothesis, to [M=x]M 0; the second reduces,

by inductive hypothesis, to [M=x]Ms0; their combination by :: is just [M=x](M 0 ::Ms0),

i.e. [M=x]Ms.



Strong normalisation of Herbelin's explicit substitution calculus with substitution propagation 19

2. (a) When M 0 is of the form (y;Ms0) (for y 6= x), the LHS reduces by 4(a) to

(y; cut2(M;x:Ms0))

which by inductive hypothesis reduces to

(y; [M=x]Ms0)

which is just

[M=x](y;Ms0):

(b) When M 0 is of the form (x;Ms0), the LHS reduces by 4(b) to

cut3(M; cut2(M;x:Ms0))

which by inductive hypothesis reduces to

cut3(M; [M=x]Ms0)

which by Lemma 35 reduces to

fMg[M=x]Ms0

which is just

[M=x](x;Ms0):

(c) When M 0 is of the form �y:M
00

, this is easy.

(d) When M 0 is of the form cut3(�y:M
00; (M 000 ::Ms0)), the LHS of (4) is

cut4(M;x:cut3(�y:M
00; (M 000 ::Ms0)))

which reduces by 5(d) to

cut3(cut4(M;x:�y:M 00); cut2(M;x:(M 000 ::Ms0)))

which reduces by 4(c) and 2(b) to

cut3(�y:cut4(M;x:M 00); (cut4(M;x:M 000) :: cut2(M;x:Ms0)))

which by inductive hypothesis (three times) reduces to

cut3(�y:[M=x]M 00; ([M=x]M 000 :: [M=x]Ms0))

which is just

[M=x]cut3(�y:M
00; (M 000 ::Ms0)):



20 Roy Dyckho�, Christian Urban

D Simulation of Lambda-x

In this section we show that the �x-calculus of Bloo and Rose [3] can be simulated by the reduction

system ES +CC +B, if we add the following reduction rules

cutA1 (Ms; []) ; Ms

cutA
3
(M; []) ; M

These rules are harmless with respect to conuence and strong normalisation.

The terms of �x are given by the following grammar:

N ::= x j (�x:N ) j NN j N hx := N i:

In �x the beta-reduction

� (�x:N )N 0
; � [N 0=x]N (1)

is replaced by the reduction

b (�x:N )N 0
; b N hx := N 0

i (2)

where the reduct contains the constructor for explicit substitutions. The following reduction rules

apply to this term constructor.

x1 xhx := N i ; x1 N

x2 yhx := N i ; x2 y

x3 (�y:N 0)hx := N i ; x3 �y:N 0hx := N i

x4 (N 0N 00)hx := N i ; x4 N 0hx := N iN 00hx := N i

We translate �x-terms into Herbelin's calculus as follows:

(x)� =def (x; [])

(�x:N )� =def �x:N�

(NN 0)� =def cut3(N
�; N 0� :: [])

(N hx := N 0i)� =def cut4(N
0�; x:N�)

The simulation is then as follows:

1. Rule b is mapped onto the reduction sequence

cut3(�x:N
�; N 0� :: []) ; cut3(cut4(N

0�; x:N�); []) ; cut4(N
0�; x:N�)

2. Rule x1 is mapped onto the reduction sequence

cut4(N
�; x:(x; [])) ; cut3(N

�; cut2(N
�; x:[])) ; cut3(N

�; []) ; N�

3. Rule x2 is mapped onto the reduction sequence

cut4(N
�; x:(y; [])) ; (y; cut2(N

�; x:[])) ; (y; [])

4. Rule x3 is mapped onto the reduction sequence

cut4(N
�; x:�y:N 0�) ; �y:cut4(N

�; x:N 0�)

5. Rule x4 is mapped onto the reduction sequence

cut4(N
�; x:cut3(N

0�; N 00� :: [])) ; cut3(cut4(N
�; x:N 0�); cut2(N

�; x:N 00� :: []))

; cut3(cut4(N
�; x:N 0�); cut4(N

�; x:N 00�) :: cut2(N
�; x:[]))

; cut3(cut4(N
�; x:N 0�); cut4(N

�; x:N 00�) :: [])


