Nominal Verification of Algorithm W

Christian Urban and Tobias Nipkow

March 18, 2008

Abstract

The Milner-Damas typing algorithiV is one of the classic algorithms in Com-
puter Science. In this paper we describe a formalised soundness and completeness
proof for this algorithm. Our formalisation is based on names for both term and
type variables, and is carried out in Isabelle/HOL using the Nominal Datatype
Package. It turns out that in our formalisation we have to deal with a number of
issues that are often overlooked in informal presentatioNs. of

“Alpha-conversion always bites you when you least expect it

A remark made by Xavier Leroy when discussing with us the infor-
mal proof aboutV in his PhD-thesisT].

1 Introduction

Milner's polymorphic type system for ML{] is probably the most influential pro-
gramming language type system. The second author learned about it from a paper by
Clément, Despeyroux, Despeyroux, and Ka#in He was immediately taken by their
view that type inference can be viewed as Prolog execution, in particular because the
Isabelle system, which he had started to work on, was based on a similar paradigm
as the Typol language developed by Kahn and his coworkérdVilner himself had
provided the explicit type inference algoritiviand proved its correctness. Complete-
ness was later shown by Damas and Milnrgr Neither soundness nor completeness
of W are trivial because of the presence of the Let-construct (which is not expanded
during type inference). Two machine-checked proofs for soundness and completeness
were implemented previoushp,[9]. Both of these proofs code type and term vari-
ables using de Bruijn indices. This leads to slick proofs which however require strange
lemmas about arithmetic on de Bruijn terms, not present in typical proofs done with
“pencil-and-paper” (for example’[ 13]).

Here we will describe a formalisation for soundness and completen&¥sising
the Nominal Datatype Package developed by Berghofer and the first alithdro].
This package is based on ideas pioneered by Pitts dtlallp] and aims to provide
all necessary infrastructure for reasoning conveniently about languages with bound
variables. For this it provides mechanisms to deal with named binders and allows one



to define datatypes module-equivalence. For example, when defining the lambda-
calculus with the terms
a | ity | Aat

one defines term-constructors for variables, applications and lambdas and indicates
in case of lambdas that is bound int. The Nominal Datatype Package constructs
then a (nominal) datatype representiagequivalence classes of those terms. Unlike
constructions involving de Bruijn indices, however, thequivalence classes in the
Nominal Datatype Package involve names. This is similar to the convention in “pencil-
and-paper” proofs where one states that one identifies terms that differ only in the
names of bound variables, but works with terms in aiveaway. However, dealing

with a-equivalence classes has some subtle consequences: some functions cannot be
defined anymore and-equivalence classes do not immediately come equipped with

a structural induction principle. Therefore the Nominal Datatype Package provides
a recursion combinator that ensures functions respesrjuivalence classes and also
provides two principles for performing proofs by structural induction over them. The
first induction principle looks as follows:

Va. P(a)
th tg. Ptl AN Ptz —>P(t1 tg)
Yat Pt— P (Aat)

Pt

where a propertyP holds for all ¢-equated) lambda-terntsprovided the property

holds for variables, applications and lambdas. In the latter two cases one can as usual
assume the property holds for the immediate subterms. However this principle is quite
inconvenient in practice, since it requires to prove the lambda-case for all binders,
which often means one has to rename binders and establish auxiliary lemmas concern-
ing such renamings. In informal reasoning this renaming is nearly always avoided
by employing the variable convention for bound variables. Therefore the Nominal
Datatype Package generates automatically the following stronger induction principle
for a-equated lambda-terms

vaC.PC(a)
VatC.a# C A (YC.PCt— P C()at)

PCt

where one only needs to prove the lambda-case for all fresh binders (w.r.t. some suit-
ably chosen context). With the stronger induction principle we can relatively easily
formalise informal proofs employing the variable convention (for more detailslége [
16]). The reason is that the variable convention usually states which free variables the
binder has to avoid. We can achieve the same with the stronger induction principle by
instantiationC with what is informally avoided.



2 Terms, Types and Substitutions

2.1 Terms and Types
Ourtermsrepreseni-terms enriched with Let-expressions:
trm = Var var | App trmtrm | Lam var trm | Letvar be trmin trm

wherevar is some infinite type oferm variables This definition looks like an or-
dinary recursive datatype, but its definition in Isabelle includes the keywonai-
nal_datatype. This means thdtm is really a type of equivalence classes of terms mod-
ulo «-conversion. The definition also includes the information that the term-variable
var in Lam var. trm binds all free occurrencer in trm, and similarly forLet var be
trm in trm’ that all occurrences ofar are bound irtrm’. Thus we really work withx-
equivalence classes, as we have for example the equatiora Var a= Lam h Var b,
which does not hold had we defined terms as an ordinary datatype.

However,typesdo not contain any binders and therefore are defined as an ordinary
datatypety

ty = TVar tvar | ty—ty

based on some infinite tygear of type variables
Type schemeare universally quantified types. This quantification is again mod-
elled via a nominal datatype, namely

tyS=Tyty | Ytvar.tyS

where in the latter clause a type variable is bound in a type scheme. With this definition
we fix the order of the binders, and also allow type schemes with multiple occurrences
of the same bound type variable, for exampl&.V X.Ty (TVar X). This will require
some care in the proofs we shall give later on. Ideally one would like to quantify over a
whole set of variables in one go, asiiX;. . .X,,}. ty, however this is not yet supported
in either the nominal or any other approach to datatypes with binders. We are not the
first to chose the representation using a fixed order for binders: it has been used in the
description ofW given by Gunter§] and also by Damas in parts of his thesis (s&e [
Page 66]).

Our naming conventions for term variables, terms, type variables, types and types-
schemes are

a:var, t:trm, X:tvar, T:ty, S:tyS

We use the following list notatiorx::xsis the list with head and tailxs xs@ ysis the
concatenation of two lists, ande xsmeans thak occurs in the lisks List inclusion
is defined by

XSC ySd=erX. XEXS—> XEYS
and two lists of type variables are consideegglivalentprovided

def
xs~ ys= XSC yS A ySC Xs



2.2 Substitutions

We model substitutions as lists, nam8iybst= (tvar x ty) list, and reserve variablés

o andé for them. Because lists are finite, one can always find a new type variable that
does not occur in a substitution. We will use for this concept the notion of freshness,
written X # _, from the nominal logic work11, 16]. When modelling substitutions as
functions, one has to require finiteness of their domain (the type variables not mapped
to themselves) explicitly, which complicates matters. Since their is no free lunch, we
have to define a number of concepts that would come for free with substitutions as
functions.

e Application to a type
A(TVar X) = lookup8 X
O(T1—>Ts) = 6(T1)—0(T2)
is defined in terms of the auxiliary functidaokup
lookup[] X = TVar X
lookup((Y, T)::8) X = (if X =Y then T else lookuf X)

e Application to a type scheme:
O(Ty T) = Ty6(T)
A(V X.S) =V X.6(S) providedX # 6

e Substitution composition:
Orol]=6:
91 o) ((X, T)az) = (X, 91(T))2291 o 92

o Extensional equivalence:

01 ~ 6, LY X, 0, (TVar X) = 6,(TVar X)

e Domain of a substitution:
dom([] = ]
dom((X, T)::0) = X::dom#

The only technically interesting point here is the application of a substitution to a type
scheme. For a start, this definition is not by ordinary structural recursion since it op-
erates on equivalence classes. Luckily the nominal datatype infrastructure provides a
mechanism whereby one can specify the recursion equations as above and Isabelle gen-
erates verification conditions that imply that the definition is independent of the choice
of representatives of the equivalence class. This is the casdadks not occur freely

in 6. Note, however, that substitution application over type schemastia partial
function, since type schemes areequivalence classes and one can always rename the
X away fromf. We can easily show that substitution composition is associative, that is
f10(02003) = (01005)083, and that; o 65(_) = 61(#5(_)) holds for types and type
schemes. The substitution of a single type variable is defined as a special case:

(D[X = T E (X, D)](-)



2.3 Free Type Variables

Free type variabledtv, of types and type-schemes are defined as usual

ftv (TVar X) = [X] ftvy(Ty T) =ftvT
ftv (T1 —>T2) = ftv T1 Q@ ftv Tg ftv (V XS) = ftv S— [X]

except thaftv returns a list, which may contain duplicates (in the last clause the differ-
ence stands for removing all elements of the second list from the first). The reason for
lists rather than sets is the following: The typing of Let-expressions§3eequires
to turn a type into a type scheme by quantifying over some free variable$gkelf
the free variables are given as a list, this is just recursion over the list. If they are given
as a finite set, one faces the problem that recursion over a set is only well-defined if the
order of elements does not matt&0]. But the order of quantifiers does matter in our
representation of type schemes! Hence one would need to order the set artificially, for
example via HOL's choice operator, which we prefer to avoid.

We shall also make use of the notion of free type variables for pairs and lists,
defined by the clauses

ftv (x, y) =ftvx@ftvy  ftv[] =] ftv (x::xs) = ftv X @ ftv xs

For term and type variables we defitea®’ [] andftv X% [X]. The free type variables
for substitutions are therefore the free type variables in their domain and co-domain.

2.4 Generalisation of Types and Unbinding of Type Schemes

Types can be turned into type schemes by generalising over a list of type variables.
This is formalised by the functiogendefined by

genT[]=TyT
gen T(X::Xs) =¥ X.gen T Xs

In the definitions and proofs that follow, we will also need an unbinding operation
that for a type scheme, s&yprovides a typd and a list of type variabledssuch that
S=gen T XsSince type schemes akeequated, we cannot expect this operation being

a function from type schemes to lists of type variables and types: the reason is that
such a function calculates with binders in a way that does not preaeeggiivalence
classes. Indeed, the Nominal Datatype Package does not allow us to define

unbind(Ty T)=[]-T
unbind (¥ X.S)= X::(unbind S

as it would lead to an inconsistency (becaiyse. Ty (TVar X) can unbind to both
[X]- (TVar X) and[Y]-(TVar Y)). However, we can define the unbinding operation
of a type scheme as a three-place relation inductively defined by the rules

S Xs T
VT[T VXS (X:aX9) - T




One can easily establish the following three properties for the unbinding relations.

Lemma 1.
(1) IXST.S—Xs-T
(#13) genT Xs— Xs-T
(7i1) If S— Xs-T then S=genT Xs
Proof. The first is by induction on the type schei®ehe second is by induction ofs
and last is by induction ove® — Xs- T. O

The property from Lemma(i) demonstrates that the unbinding relation is “total” if
the last two parameters are viewed as results.

2.5 Instances of a Type Scheme

Types can be obtained as instances of type schemes by instantiating the bound vari-
ables. This we define inductively as follows

X#T' T<S
T<TyT  TX=T]<VXS

where X # T’ stands forX not occurring inT’. The main reason for this slightly
non-standard definition is that fex we can easily show that it is preserved under
substitutions, namely:

Lemma2. If T < S thend(T) < 8(S).

Proof. By induction on<; the only interesting case is the second rule. Since we added
the side-conditiorX # T'in this rule, the Nominal Datatype Package provides us with
a strengthened induction principle ferthat has the variable convention already built
in[15]. As a result we can assume in this case that not ¥rfy T’ (which comes from

the rule) but also thaX # 6 (which comes from the variable convention). We need
to show that?) (T[X:=T']) < §(¥ X.S) holds. By the freshness assumptions we have
that the left-hand side is equal #§T)[X:=6(T’)] and the right-hand side is equal to

¥ X.6(S). Moreover we have that # 6(T’). Consequently we can apply the rule and
are done. O

A more standard definition foF being an instance of a types schewgX;.. X, }.T'
involves a substitutiod whose domain i$X; ..X,,} and which make8(T’) equal toT.
This translates in our setting to the following definition:

T<'SE3IXsT0. S Xs: T' A domf ~ Xs A (T =T.
However, it is much harder to show Lemrdor the <’-relation: for a start there is
no convenient induction principle; also we have to analyse &8y unbinds, which
means we have to rename the binders appropriately. Nevertheless, it is relatively
straightforward to show that both relations are equivalent.

Lemma3. T < Sifand only if T <’S.



To prove this lemma, we shall first establish the two facts:

Lemma 4.
(i) IfT<Sthen Tx VXS
(i) 1f S—>Xs-Tthen T< S

Proof. For the first part, we choose a fresh type variablguch thaty # (S T, X).
From the assumption and LemrBave obtainT[X:=TVar Y] < §X:=TVar Y]. Using
the factY # TVar X we can derivel [X:=TVar Y][Y:=TVar X] < Y Y.§X:=TVar Y]
using the rule. Because of how we have chosethe left-hand side is equal 6
and the right-hand side is (alpha-)equalt¥.S. Using (i) we can show by a routine
induction overS — Xs- T the second part of the lemma. O

Proof of Lemma&8. The left-to-right direction is by induction or and quite routine.
For the other direction we have to show tH&T ) < Sholds. We first use Lemnv(ii)
to inferT' < Sfrom S— Xs-T'. Appealing to Lemm&, we can thus infer that(T")
< 6(9) holds. By a routine induction ove$ <— Xs-T’, we can show that XeXs X
# S which in turn implies that(S) = Ssincedom# ~ Xs Consequently we can
conclude with(T’) < S O

2.6 Subsumption Relation for Type-Schemes
A type schemes, is subsumed by another type scheBerovided that

S <SS EVT.T<s —T<5S,.

Damas shows in3] (slightly adapted to our setting) that:
Lemmab. If § — Xs - T; andS, — Xs; - To then

S < S ifandonlyif36. domf ~ X, A Ty =0(T3) A (VXeXs. X # S).

Proof. The left-to-right directions is as follows: from the first assumption we kiigw
< S by Lemmad(iz) and thusTy < S,. From this we obtain 8 such thatlomd ~ Xs;
andT; = #(T») holds. The property XeXs,. X # S, follows from the observation
that all free type variables &, are also free iiT;. The other direction follows from
the fact that ifS, — Xs; - T, anddom# ~ Xs, thend(T,) < S;. O

From Lemmab we can derive the following two properties of subsumption which will
be useful later on.

Lemma 6.
(i) S <S then ftvScftvs.
(ii) If Xs; € Xs; then gen T Xs< gen T Xs.



Proof. For the first part we obtain by Lemnid:) Xs, T1, Xs and T, such thatS,
— Xs, - T; andS; — Xs, - Ty. We have further that+) ftv § =~ ftv T; — X5, andT;
< S§. From Lemmab we can infer that’ XeXs,. X # S, which in turn implies that
(xx) X5 n ftv § = ¢F. Using the assumption ariy < S; we obtainT; < S,. By
induction on< we can show thdtv S  ftv T;. Using(##) we can infer thaftv S, <
ftv T, — Xs and hence conclude appealingt9.

For the second part we have tlggn T X$ — Xs - T andgen T Xg — Xs,-T
using Lemmal(ii). By assumption it holds thatXeXs,. X # gen T Xs. Taking the
identity substitution, writtem, which maps ever¥X € Xs, to TVar X thendome ~ Xs,
andT = ¢(T). Consequently we can conclude using LenBna O

3 Typing
3.1 Typing Contexts

Typing contexts are lists of (term variable, type scheme)-pairsChe.= (var x tyS
list. A typing contextl’ is valid when it includes only a single association for every
term variable irl". We can define the notion of validity by the two rules:

validTI’ a#’l
valid [] valid ((a, §):T")

where we attach in the second rule the side-conditionahatist be fresh fof", which
in case of our typing contexts is equivalenttaot occurring inl". The application of
a substitutiorf to a typing context is defined as usual by

o) =0  0((a9:T) =(a 6(5)::0(I).
The subsumption relation is extended to typing contexts as follows:

S <SS ' <T'y
[1<1] (8 5):I'1 < (8, S):ly

3.2 Typing Rules
Now we have all the notions in order to define the typing judgmiémt t: T :
validT’ (8,9 el T<S
I'—Vara: T
'kt :T1—>Ty F'—t:Ty
I'Apptty: T
a#T @TyT):I'+t:Ts
I'Lamat: T;—T,
a#T L't :Ty (a,closel’ Ty):T' H1t3: To
I'—Letabetinty: Ty




The complexity of this system comes fratosel” T, in the Let-rule, which stands for
theclosureof T; w.r.t. I'. This means that all free type variablesTip are universally
quantified, except for those that are also fre€' in

closel' T OI='3fgen TfvT —ftvD).

The first formulation of the above set of rules that we are familiar with appeared
in the Mini-ML paper P] where it was proved equivalent to the system by Damas and
Milner. The Mini-ML rules are derived from the Damas-Milner rules by incorporating
the quantifier rules into the other rules (\tbse and <), thus making the system
syntax-directed.

The above system is much more faithful to standard presentations in the literature
than the two previous formalisations based on de Bruijn indibe8][ In fact, it is
nearly identical to standard presentations. One exception is that we explicitly require
that a pair(a, —) can only be added to the contdxif a does not occur in it already.

In the literature this corresponds roughly to those formalisations where the authors
assume that thais implicitly renamed beforehand.

We have that the typing relation is preserved under substitutions and that it is mono-
tone under the subsumption relation:

Lemma7.If T'Ht:T then &) —1t:6(T).
Lemma8.If T\ —t: T andI’y T, then ', —t:T.

Proof of Lemm&. For this lemma we derive a strong induction principlé][for the

typing relation that allows us in the Let-case to assume the bound type variables, that
isftv T; — ftv I, avoidd. Then the variable case is as follows: We know that validity is
preserved under substitution, which implies thalid (6(I")) holds;(x, S) € I implies

(x, 8(9) € 6(T'); and by Lemma2 we can inferd(T) < 6(S). In the Let-case we

have thatv Xeftv T; — ftv I'. X # 6, which implies tha#(closeI’ T) = close(4(I"))

(6(T)). Consequently all cases can be established by straightforward application of the
inference rules. O

Proof of Lemma. We show firstthal'y < I's impliesclosel’; T < closel’s T: Using
Lemma6(i) we show by induction thdtv I'; € ftv [’ holds; thudtv T — ftv [y € ftv
T — ftvTy. By Lemma6(ii) we obtainclosel’; T < closel's T. Lemma8is now by a
routine induction onl'y - t: T using in the variable case the fact thatif S;) € T'y
andI'y < I's then there exists a® such tha§, < S, and(x, S;) € I's. O

The completeness proof b needs the following lemma:
Lemma 9. close(d(I")) (8(T)) < 6(closel’ T).

Proof. The proof is by a fiddly alpha-renaming for the type scheme on the right-hand
side to move the substitutighunder the binders. Then we appeal to Lenna [



4  Algorithm W
4.1 The Rules

At this point we depart from the standard formalisation: instead of defiwnas a
recursive functioW(T',t) = (A,T) which can possibly fail, we defin& as an inductive
relation(V,I';t) — (V',0,T) where the list& andV' contain the type variables that have
been used so far by the algorithm. With this we rigorously treat the process of issuing
new type variables and also avoid the vagueness present in some presentatibns of
which state that a fresh variable is created, but omitting the information what it should
be fresh for. Again, we are not the first one that thread through the algorithm a list of
type variables that need to be avoided: for example Guelegiyes such rules, but
does not give a soundness nor completeness proof for these rules; Tegoxef both
proofs but includes in the algorithm an infinite set of available type variables.

Our rules folW are as follows:

(a9 el freshenVST
(V,I'\Var a) — (V @ ftv T,[],T)

(V,Ity) = (V1,61,T1) (V1,01(D) t2) = (V2,02,T2)
mgu¢93 (92(T1)) (T2—>TVar X) X # VQ
(V,F,App 1] tg) — (XIZV2,93 ofyo0 91,93(TVar )())

(X::V,(a, Ty (TVar X))=:T,t) — (V/,0,,T1)
a# T X+# (T, V)
(V.I',Lam a t) — (V',01,0,(TVar X)—T;)

(V,Ith) = (V1,61,T1) a#’l
(V1,(a, close(6, (")) T1)=601 (1) t2) = (V2,02,T2)
(V,F,Let abetin tz) — (VQ,HQ o 91,T2)

In the variable rule, in order to obtain the most general instance of a type schema, also
known as itggeneric instancgall its bound variables are instantiatedftgshvariables.

This is formalised as a predicateshen V S TwhereV stands for the type variables

to be avoided and is the generic instance & Note thatftv T contains the newly
introduced type variables. The definition fséshenis inductive: type schemes are
simply unpacked:

freshenV(Ty T) T
Quantifiers are instantiated by new variables:

freshenVST Y (V, X, ST) X#V
freshen V(Y X.S) (T[X:=TVarY])

We show thafreshenis “total” if V andSare viewed as input, and that it produces an
instance folS

10



Lemma 10.
(¢) 3T.freshenVST.
(#3) If freshenV ST then k¥ S

Proof. The first property is by induction o8 and involvinga-renamings; the second
is by induction orfreshenV ST O

4.2 Unification

We treat unification as a black box and merely specify its behaviour via a predicate
mguéd T, T, which expresses thétis amost general unifieof T; andT,. We shall
rely on the following four properties ahgu

Proposition 1.

(1) 1fmgud T, T2 thené(T,) =6(Ts3).
(#3) I mguéd T, Ty and §/(T,) =0'(T5) then3§.0' =~ d o 6.
#t) 1f mgud Ty T, then ftvd < ftv (Tq, T2).

(ii1
(i'U If 9(T1) = G(Tg) then34’. mguH’Tl T2.

N

5 Soundness and Completeness Proofs

The soundness and completeness statement¥ foe as follows:
Theorem 1(Soundness)If (V,[,;t) — (V/,6,T) and validl" then 6(T") —t:T.

Theorem 2(Completeness)if [[-t:T thendV T’ ([],[],t) — (V.6,T) A (34.
T=46(T).

The proof of the first theorem is by a strong induction oé/.t) — (V',6,T) using
Lemma?7. This induction is relatively straightforward and therefore we omit the details.

The proof of the completeness theorem is more interesting: it is by induction on
the structure of. However, the statement needs to be strengthened in order to succeed
with the induction. The strengthened statement is:

Theorem 3. If ¢(T") —t: T’ andftvl’ €V then there exisA, T, § andV’ such that

(@) (VI,H) = (V56,T)
(i) T'=4(T)
(#it) o'~ o8B inside V
where we use the notion of two substitutions bedogial over a list of type variables
This notion is defined as

6, ~ 8, inside X2y XeXs 61 (TVar X) = 62 (TVar X)

This relation is reflexive, symmetric and transitive in the arguménendd,. We can
also show that:

11



Lemma 11.
(1) If 6; ~ 65 inside Xsandftv _ € Xsthen#, (_) = #>(_) where_ stands for
types, type schemes, typing contexts and substitutions.
(i7) If X # Xs thenf ~ (X, T)::0 inside Xs
(#i1) If 61 ~ 0y inside Xs and ft¥ € Xs and X8< Xs thenf, o 8 ~ 65 0 6
inside X<

Proof. The first property holds for types, type schemes, typing contexts and substitu-
tions. In each case the property is shown by structural induction. The second property
is by a simple calculation. The last is by inductionéusing(z). O

Next we show that the list of used variables increases in every “recursive call” in the
algorithm and that the list of used variables indeed contains all used variables.

Lemma 12.
(i) If (V,[,t) — (V',0,T) then VS V'.
() I (V,I't) —» (V',6,T) and ftv' € V then ftv(l', 4, T) € V"

Proof. Both are by induction on the rules @f. O
Now we have everything in place to establish the completeneas of

Proof of Theoren3: The proof is by strong structural induction oweavoidingI™ and
generalising oveY, o andT.

Variable-Case: By assumption we have (') - Var x: T’. From this we obtain a8
such thafT’ < Sand(i) (x, S) € o(T'). From () we obtain ar§’ such that(ii) (x, S
e I'andS= ¢(S/). By Lemmal0(i) we have aiT such tha{iii) freshen V ST. From
this and(i7) we can derivgV,I',Var x) — (V @ ftv T,[],T). Using(¢ii) andT’ < ¢(S)
we obtain & such thaff ' = §(T) ando =~ § o [] inside V, which concludes this case.

Lambda-Case: By the variable convention we have built into the induction principle
for the typing relation, we know # T, from which we can infer that also# o(T")
holds. By assumption we hawe(I') - Lam x t : T'. Taking the last two facts together
we obtain anr; andT; such that

(1) (X, TyT)e(T)H1:Ty and (i) T'=T;>Ts.

We now choose a new type-variabtesuch thatX # (o, T, o(T'), V) holds. By as-
sumption we havétv I < V, which impliesftv ((x, Ty (TVar X))::T") < X::V. We also
have that

(7i1) (X, Ty Ty ) (D) = ((X, T1):o)((x, Ty (TVar X))::I")

because by conditiod # ¢ it holds that((X, T;)::0)(T") = o(T")[X:=T;] and by con-
dition X # ¢(T') thato (T')[X:=T;] = &(T"). Fact(iii) allows us to apply the induction
hypothesis obtaining & T, § andV’such that

(iw) (X=V,(x, Ty (TVar X))::T,t) — (V/,0,T)
(v) To=4(T)
(vi) (X, Ty):o ~ § o6 inside X:V .

12



We can conclude the Lambda-Case with
(V,I',Lam x t) — (V',6,0(TVar X)—T).

which follows fromx # I andX # (T, V). By the calculation

= Ti—4(T) by (v)
— Sof(TVarX)—3(T) by (vi)

we have thal’ = 6(#(TVar X)—T). Finally we have that ~ ¢ o 6 inside Vbecause

(X, Ty)::0  inside V by X # V and Lemmal 1(i7)
Jof inside V by (vi)

ag

~
~
~
~

Application-Case: By assumption we haver(I') - App t t2 : T’, from which we
obtain aT”’ such that

(@) o) -t :T"->T' and (i) o(T) -ty : T"

holds. Using(i) and the assumptioftv ' < V, the induction hypothesis gives uga
T, 6 andV’such that

(ii) (V,OL) > (VIOT) (i) T">T'=6(T)  (v) o ~ 608 inside V.

Fromftv T" € V and(v) we know thats(T') = 4(6#(T")) holds. Using Lemmad.2(i3)
and (iii) we can inferftv (6, T, T) < V/ which meandtv (4(T")) < V' holds. In the
induction hypothesis far, we can sef’ to §(T") ando to §. By using(i7) this gives us
af’, T §"andV’ such that
(vi) (V/0(I),12) — (V"0 T")

(vii) T"=35(T")

(viii) & ~dé'00’inside V' .
We now choose a new type-variaidesuch thaX # (V"' T’ 6'(T)) holds. By calcu-
lation we can show that the typeX, T”)::6")(8'(T)) is equal ta (X, T")::8")(T""—TVar X).

Let-Case: By the variable convention again, we knaw# I", from which we can infer
that alsax # o (T") holds. By assumption we hawe(T') - Letxbet int, : T'. Taking
the last two facts together we obtaiff & such that

(@) o)t :T" (71) (X, close(a(T)) T):o(T) -1t : T/

hold. By assumptiofy+) ftv I’ € V and induction hypothesis far, we obtain &, T4,
0 andV’ such that

(i) (V.T0) > (VA T) (i) T"=6(T1)  (v)o~do8inside V.

By the assumption (*) anf) we haves (I') = 6(6(T")). Using Lemmad and (iv) we
can hence infer that

(x, close(o(T')) T")::0(T) < §((x, close(§(T")) Ty)::6(T)) .
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Consequently we can use Lem@®and (i) to infer
(vi) 8((x, close(8(T)) T1)=:0(T)) —ta : T/

We can now use the induction hypothesistfowhere we instantiate with §, andTl’
with (x, close(8(T")) T,)::6(T"). Since from(iii), (*) and Lemmal2(ii) we have(s)
ftv (8, T, T1) < V' and hencédtv (§(T")) < V’, we can show thdtv ((x, close(4(T"))
T1):0(T")) € V'. This allows us to use the induction hypothesistfoto obtain af’,
T,, §"andV’” such that

(vid) (V',(x, close(6(T')) T1):=:0(T),t2) — (V0" T2)
(vidt) T'=3(Tsy)
(iz) d~ 4§’ ob'inside V.
Using (viiz) we can conclude provided we can further show that

(V,[,Letxbetinty) — (V",8'06,T2) and o= d'08'cdinsideV

hold. The first follows frontiiz), (vii) and the variable conventiotit I'. The second
follows usingV < V’ (from (ii¢)) and the calculation:

o ~ d0of inside V by (v)
~ 6’08’08 insideV by (iz), (#+) and Lem.11(iii)
This concludes the proof. O

6 Conclusion

While the typing algorithm\W is a classic algorithm implemented numerous times,
there are surprisingly few careful descriptions of soundness and completeness proofs
that can be readily used in a formalisation. For examplelB} & version ofW is
presented that leaves the choice of fresh variables implicit and only states our Theo-
rems1 and?2; [6] gives a rigorous description for how to chose fresh variables, but
only presents the details for soundness and completeness where this choice is left im-
plicit. Two slick machine-checked proofs for soundness and completeness were imple-
mented previouslyd, 9]. But both of these proofs code type and term variables using
de Bruijn indices. As a result they were not easily adaptable to our setting, since they
were streamlined for the representation of type schemes based on de Bruijn indices.
For example, many proofs if®] are by induction over the structure of type schemes,
which we could not follow with our representation involving iterated binders. Most of
the inspiration for our formalised proofs we have drawn from the treatment of sound-
ness and completeness given by Ler@ly He encodes type schemes by quantifying
over a whole set of variables in one go, and it took surprisingly a lot of work to adapt
his proofs to our representation where we can only bind a single type variable in each
quantification-step.

Although the Nominal Datatype Package provides a convenient reasoning infras-
tructure fora-equivalence classes, it did not provide as much help for this formalisation
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as one might hope. One reason is that the package is not yet up to the task of repre-
senting general binding structures, and thus it is not yet possible to implement type
schemes with a set of quantified type variables. Another reason is that the algafithm
contains many subtle “low level” operations involving type variables. This necessitates
many a-renamings that had to be formalised explicitly without much help from the
nominal infrastructure. However, we do not think that this can be avoided in any rep-
resentation technique for binders (bar de Bruijn indices) that has been put forward in
various theorem provers. Our formalisation is part of the Nominal Datatype Package,
which can be downloaded at:

http://isabelle.in.tum.de/nominal/
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