
Nominal Verification of Algorithm W

Christian Urban and Tobias Nipkow

March 18, 2008

Abstract

The Milner-Damas typing algorithmW is one of the classic algorithms in Com-
puter Science. In this paper we describe a formalised soundness and completeness
proof for this algorithm. Our formalisation is based on names for both term and
type variables, and is carried out in Isabelle/HOL using the Nominal Datatype
Package. It turns out that in our formalisation we have to deal with a number of
issues that are often overlooked in informal presentations ofW.

“Alpha-conversion always bites you when you least expect it.”

A remark made by Xavier Leroy when discussing with us the infor-
mal proof aboutW in his PhD-thesis [7].

1 Introduction

Milner’s polymorphic type system for ML [8] is probably the most influential pro-
gramming language type system. The second author learned about it from a paper by
Clément, Despeyroux, Despeyroux, and Kahn [2]. He was immediately taken by their
view that type inference can be viewed as Prolog execution, in particular because the
Isabelle system, which he had started to work on, was based on a similar paradigm
as the Typol language developed by Kahn and his coworkers [1]. Milner himself had
provided the explicit type inference algorithmW and proved its correctness. Complete-
ness was later shown by Damas and Milner [4]. Neither soundness nor completeness
of W are trivial because of the presence of the Let-construct (which is not expanded
during type inference). Two machine-checked proofs for soundness and completeness
were implemented previously [5, 9]. Both of these proofs code type and term vari-
ables using de Bruijn indices. This leads to slick proofs which however require strange
lemmas about arithmetic on de Bruijn terms, not present in typical proofs done with
“pencil-and-paper” (for example [7, 13]).

Here we will describe a formalisation for soundness and completeness ofW using
the Nominal Datatype Package developed by Berghofer and the first author [14, 16].
This package is based on ideas pioneered by Pitts et al [11, 12] and aims to provide
all necessary infrastructure for reasoning conveniently about languages with bound
variables. For this it provides mechanisms to deal with named binders and allows one

1

to define datatypes modulo�-equivalence. For example, when defining the lambda-
calculus with the terms

a | t1 t2 | �a:t

one defines term-constructors for variables, applications and lambdas and indicates
in case of lambdas thata is bound int. The Nominal Datatype Package constructs
then a (nominal) datatype representing�-equivalence classes of those terms. Unlike
constructions involving de Bruijn indices, however, the�-equivalence classes in the
Nominal Datatype Package involve names. This is similar to the convention in “pencil-
and-paper” proofs where one states that one identifies terms that differ only in the
names of bound variables, but works with terms in a “naı̈ve” way. However, dealing
with �-equivalence classes has some subtle consequences: some functions cannot be
defined anymore and�-equivalence classes do not immediately come equipped with
a structural induction principle. Therefore the Nominal Datatype Package provides
a recursion combinator that ensures functions respect�-equivalence classes and also
provides two principles for performing proofs by structural induction over them. The
first induction principle looks as follows:

@a: P paq
@ t1 t2: P t1 ^ P t2 ÝÑ P pt1 t2q
@a t: P tÝÑ P p�a:tq

P t

where a propertyP holds for all (�-equated) lambda-termst provided the property
holds for variables, applications and lambdas. In the latter two cases one can as usual
assume the property holds for the immediate subterms. However this principle is quite
inconvenient in practice, since it requires to prove the lambda-case for all binders,
which often means one has to rename binders and establish auxiliary lemmas concern-
ing such renamings. In informal reasoning this renaming is nearly always avoided
by employing the variable convention for bound variables. Therefore the Nominal
Datatype Package generates automatically the following stronger induction principle
for �-equated lambda-terms

@a C: P C paq
@ t1 t2 C: p@C: P C t1q ^ p@C: P C t2q ÝÑ P C pt1 t2q
@a t C: a# C^ p@C: P C tq ÝÑ P C p�a:tq

P C t

where one only needs to prove the lambda-case for all fresh binders (w.r.t. some suit-
ably chosen contextC). With the stronger induction principle we can relatively easily
formalise informal proofs employing the variable convention (for more details see [15,
16]). The reason is that the variable convention usually states which free variables the
binder has to avoid. We can achieve the same with the stronger induction principle by
instantiationC with what is informally avoided.

2

2 Terms, Types and Substitutions

2.1 Terms and Types

Our termsrepresent�-terms enriched with Let-expressions:

trm� Var var | App trm trm | Lam var: trm | Let var be trm in trm

wherevar is some infinite type ofterm variables. This definition looks like an or-
dinary recursive datatype, but its definition in Isabelle includes the keywordnomi-
nal datatype. This means thattrm is really a type of equivalence classes of terms mod-
ulo �-conversion. The definition also includes the information that the term-variable
var in Lam var: trm binds all free occurrencesvar in trm, and similarly forLet var be
trm in trm1 that all occurrences ofvar are bound intrm1. Thus we really work with�-
equivalence classes, as we have for example the equationLam a: Var a� Lam b: Var b,
which does not hold had we defined terms as an ordinary datatype.

However,typesdo not contain any binders and therefore are defined as an ordinary
datatypety

ty� TVar tvar | tyÑty

based on some infinite typetvar of type variables.
Type schemesare universally quantified types. This quantification is again mod-

elled via a nominal datatype, namely

tyS� Ty ty | @ tvar:tyS

where in the latter clause a type variable is bound in a type scheme. With this definition
we fix the order of the binders, and also allow type schemes with multiple occurrences
of the same bound type variable, for example@X:@X:Ty pTVar Xq. This will require
some care in the proofs we shall give later on. Ideally one would like to quantify over a
whole set of variables in one go, as in@ tX1: : :Xnu: ty, however this is not yet supported
in either the nominal or any other approach to datatypes with binders. We are not the
first to chose the representation using a fixed order for binders: it has been used in the
description ofW given by Gunter [6] and also by Damas in parts of his thesis (see [3,
Page 66]).

Our naming conventions for term variables, terms, type variables, types and types-
schemes are

a : var, t : trm, X : tvar, T : ty, S : tyS.

We use the following list notation:x::xs is the list with headx and tailxs, xs@ ys is the
concatenation of two lists, andx P xsmeans thatx occurs in the listxs. List inclusion
is defined by

xs� ysdef
� @ x: x P xsÝÑ x P ys

and two lists of type variables are consideredequivalentprovided

xs� ysdef
� xs� ys^ ys� xs.

3

2.2 Substitutions

We model substitutions as lists, namelySubst� ptvar� tyq list, and reserve variables�,
� and� for them. Because lists are finite, one can always find a new type variable that
does not occur in a substitution. We will use for this concept the notion of freshness,
writtenX # , from the nominal logic work [11, 16]. When modelling substitutions as
functions, one has to require finiteness of their domain (the type variables not mapped
to themselves) explicitly, which complicates matters. Since their is no free lunch, we
have to define a number of concepts that would come for free with substitutions as
functions.

� Application to a type

�pTVar Xq � lookup� X

�pT1ÑT2q � �pT1qÑ�pT2q

is defined in terms of the auxiliary functionlookup:

lookuprs X � TVar X

lookupppY; Tq::�q X � pif X � Y then T else lookup� Xq

� Application to a type scheme:

�pTy Tq � Ty�pTq
�p@X:Sq � @X:�pSq providedX # �

� Substitution composition:

�1 � rs � �1

�1 � ppX; Tq::�2q � pX; �1pTqq::�1 � �2

� Extensional equivalence:

�1 � �2
def
� @X: �1pTVar Xq � �2pTVar Xq

� Domain of a substitution:

domrs � rs

domppX; Tq::�q � X::dom�

The only technically interesting point here is the application of a substitution to a type
scheme. For a start, this definition is not by ordinary structural recursion since it op-
erates on equivalence classes. Luckily the nominal datatype infrastructure provides a
mechanism whereby one can specify the recursion equations as above and Isabelle gen-
erates verification conditions that imply that the definition is independent of the choice
of representatives of the equivalence class. This is the case ifX does not occur freely
in �. Note, however, that substitution application over type schemes isnot a partial
function, since type schemes are�-equivalence classes and one can always rename the
X away from�. We can easily show that substitution composition is associative, that is
�1�p�2��3q � p�1��2q��3, and that�1 � �2p q � �1p�2p qq holds for types and type
schemes. The substitution of a single type variable is defined as a special case:

p qrX :� T s
def
� rpX;T qsp q

4

2.3 Free Type Variables

Free type variables,ftv, of types and type-schemes are defined as usual

ftv pTVar Xq � rXs ftv pTy Tq � ftv T
ftv pT1ÑT2q � ftv T1 @ ftv T2 ftv p@X:Sq � ftv S� rXs

except thatftv returns a list, which may contain duplicates (in the last clause the differ-
ence stands for removing all elements of the second list from the first). The reason for
lists rather than sets is the following: The typing of Let-expressions (seex3) requires
to turn a type into a type scheme by quantifying over some free variables (seex2.4). If
the free variables are given as a list, this is just recursion over the list. If they are given
as a finite set, one faces the problem that recursion over a set is only well-defined if the
order of elements does not matter [10]. But the order of quantifiers does matter in our
representation of type schemes! Hence one would need to order the set artificially, for
example via HOL’s choice operator, which we prefer to avoid.

We shall also make use of the notion of free type variables for pairs and lists,
defined by the clauses

ftv px; yq � ftv x@ ftv y ftvrs � rs ftv px::xsq � ftv x@ ftv xs:

For term and type variables we defineftv adef
� rs andftv Xdef

� rXs. The free type variables
for substitutions are therefore the free type variables in their domain and co-domain.

2.4 Generalisation of Types and Unbinding of Type Schemes

Types can be turned into type schemes by generalising over a list of type variables.
This is formalised by the functiongendefined by

gen Trs � Ty T
gen TpX::Xsq � @X:gen T Xs

In the definitions and proofs that follow, we will also need an unbinding operation
that for a type scheme, sayS, provides a typeT and a list of type variablesXssuch that
S� gen T Xs. Since type schemes are�-equated, we cannot expect this operation being
a function from type schemes to lists of type variables and types: the reason is that
such a function calculates with binders in a way that does not preserve�-equivalence
classes. Indeed, the Nominal Datatype Package does not allow us to define

unbindpTy Tq� rs �T
unbindp@X:Sq� X::punbind Sq

as it would lead to an inconsistency (because@X:Ty pTVar Xq can unbind to both
rXs � pTVar Xq and rYs � pTVar Yq). However, we can define the unbinding operation
of a type scheme as a three-place relation inductively defined by the rules

Ty T ãÑ rs �T

S ãÑ Xs�T

@X:S ãÑ pX::Xsq �T

5

One can easily establish the following three properties for the unbinding relations.

Lemma 1.
piq DXs T: S ãÑ Xs�T
piiq gen T XsãÑ Xs�T
piiiq If S ãÑ Xs�T then S� gen T Xs:

Proof. The first is by induction on the type schemeS, the second is by induction onXs
and last is by induction overS ãÑ Xs�T.

The property from Lemma1piq demonstrates that the unbinding relation is “total” if
the last two parameters are viewed as results.

2.5 Instances of a Type Scheme

Types can be obtained as instances of type schemes by instantiating the bound vari-
ables. This we define inductively as follows

T Ty T

X # T 1 T S

TrX:�T 1s @X:S

whereX # T 1 stands forX not occurring inT 1. The main reason for this slightly
non-standard definition is that for we can easily show that it is preserved under
substitutions, namely:

Lemma 2. If T S then�pTq �pSq:

Proof. By induction on ; the only interesting case is the second rule. Since we added
the side-conditionX # T 1 in this rule, the Nominal Datatype Package provides us with
a strengthened induction principle for that has the variable convention already built
in [15]. As a result we can assume in this case that not onlyX# T 1 (which comes from
the rule) but also thatX # � (which comes from the variable convention). We need
to show that�pTrX:�T 1sq �p@X:Sq holds. By the freshness assumptions we have
that the left-hand side is equal to�pTqrX:��pT 1qs and the right-hand side is equal to
@X:�pSq. Moreover we have thatX # �pT 1q. Consequently we can apply the rule and
are done.

A more standard definition forT being an instance of a types scheme@ tX1::Xnu:T 1

involves a substitution� whose domain istX1::Xnu and which makes�pT 1q equal toT.
This translates in our setting to the following definition:

T
1 Sdef

� DXs T1 �: S ãÑ Xs�T 1^ dom� � Xs^ �pT 1q � T.

However, it is much harder to show Lemma2 for the 1-relation: for a start there is
no convenient induction principle; also we have to analyse how�pSq unbinds, which
means we have to rename the binders appropriately. Nevertheless, it is relatively
straightforward to show that both relations are equivalent.

Lemma 3. T S if and only if T
1 S.

6

To prove this lemma, we shall first establish the two facts:

Lemma 4.
piq If T S then T @X:S:
piiq If S ãÑ Xs�T then T S:

Proof. For the first part, we choose a fresh type variableY such thatY # pS; T; Xq.
From the assumption and Lemma2 we obtainTrX:�TVar Ys SrX:�TVar Ys. Using
the factY # TVar X, we can deriveTrX:�TVar YsrY:�TVar Xs @Y:SrX:�TVar Ys
using the rule. Because of how we have chosenY, the left-hand side is equal toT
and the right-hand side is (alpha-)equal to@X:S. Usingpiq we can show by a routine
induction overS ãÑ Xs�T the second part of the lemma.

Proof of Lemma3. The left-to-right direction is by induction on and quite routine.
For the other direction we have to show that�pT 1q Sholds. We first use Lemma4piiq
to infer T 1

 S from S ãÑ Xs�T 1. Appealing to Lemma2, we can thus infer that�pT 1q
 �pSq holds. By a routine induction overS ãÑ Xs�T 1, we can show that@XPXs: X
S, which in turn implies that�pSq � S sincedom� � Xs. Consequently we can
conclude with�pT 1q S.

2.6 Subsumption Relation for Type-Schemes

A type schemeS1 is subsumed by another type schemeS2 provided that

S1 Î S2
def
� @T: T S1 ÝÑ T S2.

Damas shows in [3] (slightly adapted to our setting) that:

Lemma 5. If S1 ãÑ Xs1 �T1 andS2 ãÑ Xs2 �T2 then

S1 Î S2 if and only if D �: dom� � Xs2 ^ T1 � �pT2q ^ p@XPXs1: X # S2q:

Proof. The left-to-right directions is as follows: from the first assumption we knowT1

 S1 by Lemma4piiq and thusT1 S2. From this we obtain a� such thatdom� � Xs2
andT1 � �pT2q holds. The property@XPXs1: X # S2 follows from the observation
that all free type variables ofS2 are also free inT1. The other direction follows from
the fact that ifS2 ãÑ Xs2 �T2 anddom� � Xs2 then�pT2q S2.

From Lemma5 we can derive the following two properties of subsumption which will
be useful later on.

Lemma 6.
piq If S1 Î S2 then ftv S2 � ftv S1:
piiq If Xs1 � Xs2 then gen T Xs1 Î gen T Xs2:

7

Proof. For the first part we obtain by Lemma1piq Xs1, T1, Xs2 andT2 such thatS1
ãÑ Xs1 �T1 andS2 ãÑ Xs2 �T2. We have further thatp�q ftv S1 � ftv T1 � Xs1 andT1

 S1. From Lemma5 we can infer that@XPXs1: X # S2, which in turn implies that
p��q Xs1 X ftv S2 � H. Using the assumption andT1 S1 we obtainT1 S2. By
induction on we can show thatftv S1 � ftv T1. Usingp��q we can infer thatftv S2 �
ftv T1 � Xs1 and hence conclude appealing top�q.

For the second part we have thatgen T Xs1 ãÑ Xs1 �T andgen T Xs2 ãÑ Xs2 �T
using Lemma1piiq. By assumption it holds that@XPXs1: X # gen T Xs2. Taking the
identity substitution, written", which maps everyX P Xs2 to TVar X, thendom"� Xs2
andT � "pTq. Consequently we can conclude using Lemma5.

3 Typing

3.1 Typing Contexts

Typing contexts are lists of (term variable, type scheme)-pairs, i.e.Ctxt� pvar � tySq
list. A typing context� is valid when it includes only a single association for every
term variable in�. We can define the notion of validity by the two rules:

valid rs

valid � a# �

valid ppa; Sq::�q

where we attach in the second rule the side-condition thata must be fresh for�, which
in case of our typing contexts is equivalent tox not occurring in�. The application of
a substitution� to a typing context is defined as usual by

�prsq � rs �ppa; Sq::�q � pa; �pSqq::�p�q.

The subsumption relation is extended to typing contexts as follows:

rsÎ rs

S1 Î S2 �1 Î �2

pa; S1q::�1 Î pa; S2q::�2

3.2 Typing Rules

Now we have all the notions in order to define the typing judgment� $ t : T :

valid � pa; Sq P � T S

� $ Var a : T

� $ t1 : T1ÑT2 � $ t2 : T1

� $ App t1 t2 : T2

a# � pa; Ty T1q::� $ t : T2

� $ Lam a: t : T1ÑT2

a# � � $ t1 : T1 pa; close� T1q::� $ t2 : T2

� $ Let a be t1 in t2 : T2

8

The complexity of this system comes fromclose� T1 in the Let-rule, which stands for
theclosureof T1 w.r.t. �. This means that all free type variables inT1 are universally
quantified, except for those that are also free in�

close� T def
� gen Tpftv T� ftv �q.

The first formulation of the above set of rules that we are familiar with appeared
in the Mini-ML paper [2] where it was proved equivalent to the system by Damas and
Milner. The Mini-ML rules are derived from the Damas-Milner rules by incorporating
the quantifier rules into the other rules (viacloseand), thus making the system
syntax-directed.

The above system is much more faithful to standard presentations in the literature
than the two previous formalisations based on de Bruijn indices [5, 9]. In fact, it is
nearly identical to standard presentations. One exception is that we explicitly require
that a pairpa; q can only be added to the context� if a does not occur in it already.
In the literature this corresponds roughly to those formalisations where the authors
assume that thea is implicitly renamed beforehand.

We have that the typing relation is preserved under substitutions and that it is mono-
tone under the subsumption relation:

Lemma 7. If � $ t : T then �p�q $ t : �pTq :

Lemma 8. If �1 $ t : T and �1 Î �2 then �2 $ t : T :

Proof of Lemma7. For this lemma we derive a strong induction principle [15] for the
typing relation that allows us in the Let-case to assume the bound type variables, that
is ftv T1 � ftv�, avoid�. Then the variable case is as follows: We know that validity is
preserved under substitution, which implies thatvalid p�p�qq holds;px; Sq P � implies
px; �pSqq P �p�q; and by Lemma2 we can infer�pTq �pSq. In the Let-case we
have that@XPftv T1 � ftv �: X # �, which implies that�pclose� Tq � closep�p�qq
p�pTqq. Consequently all cases can be established by straightforward application of the
inference rules.

Proof of Lemma8. We show first that�1Î �2 impliesclose�1 TÎ close�2 T: Using
Lemma6piq we show by induction thatftv �1 � ftv �2 holds; thusftv T� ftv �2 � ftv
T � ftv�1. By Lemma6piiq we obtainclose�1 TÎ close�2 T. Lemma8 is now by a
routine induction on�1 $ t : T using in the variable case the fact that ifpx; S1q P �1
and�1 Î �2 then there exists anS2 such thatS1 Î S2 andpx; S2q P �2.

The completeness proof inx5 needs the following lemma:

Lemma 9. closep�p�qq p�pTqqÎ �pclose� Tq.

Proof. The proof is by a fiddly alpha-renaming for the type scheme on the right-hand
side to move the substitution� under the binders. Then we appeal to Lemma5.

9

4 Algorithm W

4.1 The Rules

At this point we depart from the standard formalisation: instead of definingW as a
recursive functionWp�;tq � p�;Tqwhich can possibly fail, we defineW as an inductive
relationpV;�;tq ÞÑ pV 1;�;Tqwhere the listsV andV 1 contain the type variables that have
been used so far by the algorithm. With this we rigorously treat the process of issuing
new type variables and also avoid the vagueness present in some presentations ofW,
which state that a fresh variable is created, but omitting the information what it should
be fresh for. Again, we are not the first one that thread through the algorithm a list of
type variables that need to be avoided: for example Gunter [6] gives such rules, but
does not give a soundness nor completeness proof for these rules; Leroy [7] gives both
proofs but includes in the algorithm an infinite set of available type variables.

Our rules forW are as follows:

pa; Sq P � freshen V S T

pV;�;Var aq ÞÑ pV @ ftv T;rs;Tq

pV;�;t1q ÞÑ pV1;�1;T1q pV1;�1p�q;t2q ÞÑ pV2;�2;T2q
mgu�3 p�2pT1qq pT2ÑTVar Xq X # V2

pV;�;App t1 t2q ÞÑ pX::V2;�3 � �2 � �1;�3pTVar Xqq

pX::V;pa; Ty pTVar Xqq::�;tq ÞÑ pV 1;�1;T1q
a# � X # p�; Vq

pV;�;Lam a: tq ÞÑ pV 1;�1;�1pTVar XqÑT1q

pV;�;t1q ÞÑ pV1;�1;T1q a# �

pV1;pa; closep�1p�qq T1q::�1p�q;t2q ÞÑ pV2;�2;T2q

pV;�;Let a be t1 in t2q ÞÑ pV2;�2 � �1;T2q

In the variable rule, in order to obtain the most general instance of a type schema, also
known as itsgeneric instance, all its bound variables are instantiated byfreshvariables.
This is formalised as a predicatefreshen V S TwhereV stands for the type variables
to be avoided andT is the generic instance ofS. Note thatftv T contains the newly
introduced type variables. The definition offreshenis inductive: type schemes are
simply unpacked:

freshen VpTy Tq T

Quantifiers are instantiated by new variables:

freshen V S T Y# pV; X; S; Tq X # V

freshen Vp@X:Sq pTrX:�TVar Ysq

We show thatfreshenis “total” if V andSare viewed as input, and that it produces an
instance forS.

10

Lemma 10.
piq DT: freshen V S T.
piiq If freshen V S T then T S:

Proof. The first property is by induction onSand involving�-renamings; the second
is by induction onfreshen V S T.

4.2 Unification

We treat unification as a black box and merely specify its behaviour via a predicate
mgu� T1 T2 which expresses that� is amost general unifierof T1 andT2. We shall
rely on the following four properties ofmgu:

Proposition 1.
piq If mgu� T1 T2 then �pT1q � �pT2q:
piiq If mgu� T1 T2 and � 1pT1q � � 1pT2q then D �: � 1� � � �:
piiiq If mgu� T1 T2 then ftv� � ftv pT1; T2q:
pivq If �pT1q � �pT2q then D � 1: mgu� 1 T1 T2:

5 Soundness and Completeness Proofs

The soundness and completeness statements forW are as follows:

Theorem 1(Soundness). If pV;�;tq ÞÑ pV 1;�;Tq and valid� then �p�q $ t : T :

Theorem 2(Completeness). If rs $ t : T thenDV � T 1: prs;rs;tq ÞÑ pV;�;T 1q ^ pD �:
T � �pT 1qq:

The proof of the first theorem is by a strong induction overpV;�;tq ÞÑ pV 1;�;Tq using
Lemma7. This induction is relatively straightforward and therefore we omit the details.

The proof of the completeness theorem is more interesting: it is by induction on
the structure oft. However, the statement needs to be strengthened in order to succeed
with the induction. The strengthened statement is:

Theorem 3. If �p�q $ t : T 1 andftv � � V then there exist�, T, � andV 1 such that

piq pV;�;tq ÞÑ pV 1;�;Tq
piiq T 1� �pTq
piiiq � 1� � � � inside V.

where we use the notion of two substitutions beingequal over a list of type variables.
This notion is defined as

�1 � �2 inside Xsdef
� @XPXs: �1pTVar Xq � �2pTVar Xq

This relation is reflexive, symmetric and transitive in the arguments�1 and�2. We can
also show that:

11

Lemma 11.
piq If �1 � �2 inside Xsandftv � Xs then�1p q � �2p q where stands for

types, type schemes, typing contexts and substitutions.
piiq If X # Xs then� � pX; Tq::� inside Xs:
piiiq If �1 � �2 inside Xs and ftv� � Xs and Xs1� Xs then�1 � � � �2 � �

inside Xs1:

Proof. The first property holds for types, type schemes, typing contexts and substitu-
tions. In each case the property is shown by structural induction. The second property
is by a simple calculation. The last is by induction on� usingpiq.

Next we show that the list of used variables increases in every “recursive call” in the
algorithm and that the list of used variables indeed contains all used variables.

Lemma 12.
piq If pV;�;tq ÞÑ pV 1;�;Tq then V� V 1:

piiq If pV;�;tq ÞÑ pV 1;�;Tq and ftv� � V then ftvp�; �; Tq � V 1:

Proof. Both are by induction on the rules ofW.

Now we have everything in place to establish the completeness ofW.

Proof of Theorem3: The proof is by strong structural induction overt avoiding� and
generalising overV, � andT.

Variable-Case: By assumption we have�p�q $ Var x : T 1 . From this we obtain anS
such thatT 1

 Sandpiq px; Sq P �p�q. Frompiq we obtain anS1 such thatpiiq px; S1q
P � andS� �pS1q. By Lemma10piq we have anT such thatpiiiq freshen V S1 T. From
this andpiiq we can derivepV;�;Var xq ÞÑ pV @ ftv T;rs;Tq. Usingpiiiq andT 1

 �pS1q
we obtain a� such thatT 1� �pTq and� � � � rs inside V, which concludes this case.

Lambda-Case: By the variable convention we have built into the induction principle
for the typing relation, we knowx # �, from which we can infer that alsox # �p�q
holds. By assumption we have�p�q $ Lam x: t : T 1 . Taking the last two facts together
we obtain anT1 andT2 such that

piq px; Ty T1q::�p�q $ t : T2 and piiq T 1� T1ÑT2:

We now choose a new type-variableX such thatX # p�; �; �p�q; Vq holds. By as-
sumption we haveftv � � V, which impliesftv ppx; Ty pTVar Xqq::�q � X::V. We also
have that

piiiq px; Ty T1q::�p�q � ppX; T1q::�qppx; Ty pTVar Xqq::�q

because by conditionX # � it holds thatppX; T1q::�qp�q � �p�qrX:�T1s and by con-
dition X # �p�q that�p�qrX:�T1s � �p�q. Factpiiiq allows us to apply the induction
hypothesis obtaining a�, T1, � andV 1 such that

pivq pX::V;px; Ty pTVar Xqq::�;tq ÞÑ pV 1;�;Tq
pvq T2 � �pTq
pviq pX; T1q::� � � � � inside X::V :

12

We can conclude the Lambda-Case with

pV;�;Lam x: tq ÞÑ pV 1;�;�pTVar XqÑTq:

which follows fromx# � andX # p�; Vq. By the calculation

T 1 � T1ÑT2 by piiq
� T1Ñ�pTq by pvq
� � � �pTVar XqÑ�pTq by pviq

we have thatT 1� �p�pTVar XqÑTq. Finally we have that� � � � � inside Vbecause

� � pX; T1q::� inside V by X # V and Lemma11piiq
� � � � inside V by pviq

Application-Case: By assumption we have�p�q $ App t1 t2 : T 1 , from which we
obtain aT 11 such that

piq �p�q $ t1 : T 11ÑT 1 and piiq �p�q $ t2 : T 11

holds. Usingpiq and the assumptionftv � � V, the induction hypothesis gives us a�,
T, � andV 1 such that

piiiq pV;�;t1q ÞÑ pV 1;�;Tq pivq T 11ÑT 1� �pTq pvq � � � � � inside V:

From ftv � � V andpvq we know that�p�q � �p�p�qq holds. Using Lemma12piiq
andpiiiq we can inferftv p�; �; Tq � V 1 which meansftv p�p�qq � V 1 holds. In the
induction hypothesis fort2 we can set� to �p�q and� to �. By usingpiiq this gives us
a� 1, T 111, � 1 andV 11 such that

pviq pV 1;�p�q;t2q ÞÑ pV 11;� 1;T 111q
pviiq T 11� � 1pT 111q
pviiiq � � � 1 � � 1 inside V1 :

We now choose a new type-variableX such thatX# pV 11; T 111; � 1pTqq holds. By calcu-
lation we can show that the typeppX; T 1q::� 1qp� 1pTqq is equal toppX; T 1q::� 1qpT 111ÑTVar Xq.

Let-Case:By the variable convention again, we knowx# �, from which we can infer
that alsox# �p�q holds. By assumption we have�p�q $ Let x be t1 in t2 : T 1 . Taking
the last two facts together we obtain aT 11 such that

piq �p�q $ t1 : T 11 piiq px; closep�p�qq T 11q::�p�q $ t2 : T 1

hold. By assumptionp�q ftv � � V and induction hypothesis fort1, we obtain a�, T1,
� andV 1 such that

piiiq pV;�;t1q ÞÑ pV 1;�;T1q pivq T 11� �pT1q pvq � � � � � inside V:

By the assumption (*) andpvq we have�p�q � �p�p�qq. Using Lemma9 andpivq we
can hence infer that

px; closep�p�qq T 11q::�p�qÎ �ppx; closep�p�qq T1q::�p�qq :

13

Consequently we can use Lemma8 andpiiq to infer

pviq �ppx; closep�p�qq T1q::�p�qq $ t2 : T 1

We can now use the induction hypothesis fort2 where we instantiate� with �, and�
with px; closep�p�qq T1q::�p�q. Since frompiiiq, p�q and Lemma12piiq we havep��q
ftv p�; �; T1q � V 1 and henceftv p�p�qq � V 1, we can show thatftv ppx; closep�p�qq
T1q::�p�qq � V 1. This allows us to use the induction hypothesis fort2 to obtain a� 1,
T2, � 1 andV 11 such that

pviiq pV 1;px; closep�p�qq T1q::�p�q;t2q ÞÑ pV 11;� 1;T2q
pviiiq T 1� � 1pT2q
pixq � � � 1 � � 1 inside V1 :

Usingpviiiq we can conclude provided we can further show that

pV;�;Let x be t1 in t2q ÞÑ pV 11;� 1 � �;T2q and � � � 1 � � 1 � � inside V

hold. The first follows frompiiiq, pviiq and the variable conventionx# �. The second
follows usingV � V 1 (from piiiq) and the calculation:

� � � � � inside V by pvq
� � 1 � � 1 � � inside V by pixq, p��q and Lem.11piiiq

This concludes the proof.

6 Conclusion

While the typing algorithmW is a classic algorithm implemented numerous times,
there are surprisingly few careful descriptions of soundness and completeness proofs
that can be readily used in a formalisation. For example in [13] a version ofW is
presented that leaves the choice of fresh variables implicit and only states our Theo-
rems1 and2; [6] gives a rigorous description for how to chose fresh variables, but
only presents the details for soundness and completeness where this choice is left im-
plicit. Two slick machine-checked proofs for soundness and completeness were imple-
mented previously [5, 9]. But both of these proofs code type and term variables using
de Bruijn indices. As a result they were not easily adaptable to our setting, since they
were streamlined for the representation of type schemes based on de Bruijn indices.
For example, many proofs in [9] are by induction over the structure of type schemes,
which we could not follow with our representation involving iterated binders. Most of
the inspiration for our formalised proofs we have drawn from the treatment of sound-
ness and completeness given by Leroy [7]. He encodes type schemes by quantifying
over a whole set of variables in one go, and it took surprisingly a lot of work to adapt
his proofs to our representation where we can only bind a single type variable in each
quantification-step.

Although the Nominal Datatype Package provides a convenient reasoning infras-
tructure for�-equivalence classes, it did not provide as much help for this formalisation

14

as one might hope. One reason is that the package is not yet up to the task of repre-
senting general binding structures, and thus it is not yet possible to implement type
schemes with a set of quantified type variables. Another reason is that the algorithmW
contains many subtle “low level” operations involving type variables. This necessitates
many�-renamings that had to be formalised explicitly without much help from the
nominal infrastructure. However, we do not think that this can be avoided in any rep-
resentation technique for binders (bar de Bruijn indices) that has been put forward in
various theorem provers. Our formalisation is part of the Nominal Datatype Package,
which can be downloaded at:

http://isabelle.in.tum.de/nominal/

References

[1] D. Clément, J. Despeyroux, T. Despeyroux, L. Hascoet, and G. Kahn. Natural
semantics on the computer. InK. Fuchi and M. Nivat, editors, proceedings of
the France-Japan AI and CS Symposium, ICOT, Japan, pages 49–89, 1986. Also
Technical Memorandum PL-86-6 Information Processing Society of Japan and
Rapport de recherche #0416, INRIA.

[2] D. Clément, J. Despeyroux, T. Despeyroux, and G. Kahn. A simple applicative
language: Mini-ML. InProc. ACM Conf. Lisp and Functional Programming,
pages 13–27, 1986.

[3] L. Damas.Type Assignment in Programming Languages. PhD thesis, University
of Edinburgh, 1984.

[4] L. Damas and R. Milner. Principal type schemes for functional programs. In
Proc. 9th ACM Symp. Principles of Programming Languages, pages 207–212,
1982.

[5] C. Dubois and V. Ḿenissier-Morain. Certification of a type inference tool for ML:
Damas-Milner within Coq.J. Automated Reasoning, 23:319–346, 1999.

[6] C. A. Gunter.Semantics of Programming Languages. MIT Press, 1992.

[7] X. Leroy. Polymorphic Typing of an Algorithmic Language. PhD thesis, Univer-
sity Paris 7, 1992. INRIA Research Report, No 1778.

[8] R. Milner. A theory of type polymorphism in programming.J. Comp. Sys. Sci.,
17:348–375, 1978.

[9] W. Naraschewski and T. Nipkow. Type inference verified: Algorithm W in Is-
abelle/HOL.J. Automated Reasoning, 23:299–318, 1999.

[10] T. Nipkow and L. C. Paulson. Proof pearl: Defining functions over finite sets.
In J. Hurd, editor,Theorem Proving in Higher Order Logics (TPHOLs 2005),
volume 3603 ofLect. Notes in Comp. Sci., pages 385–396. Springer-Verlag, 2005.

15

[11] A. M. Pitts. Nominal logic, A first order theory of names and binding.Information
and Computation, 186:165–193, 2003.

[12] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound
names modulo renaming. InProc. of the 5th International Conference on Mathe-
matics of Program Construction (MPC), volume 1837 ofLNCS, pages 230–255,
2000.

[13] M. Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis,
Edinburgh University, 1988.

[14] C. Urban and S. Berghofer. A Recursion Combinator for Nominal Datatypes
Implemented in Isabelle/HOL. InProc. of the 3rd International Joint Conference
on Automated Reasoning (IJCAR), volume 4130 ofLNAI, pages 498–512, 2006.

[15] C. Urban, S. Berghofer, and M. Norrish. Barendregt’s Variable Convention in
Rule Inductions. InProc. of the 21th International Conference on Automated
Deduction (CADE), volume 4603 ofLNAI, pages 35–50, 2007.

[16] C. Urban and C. Tasson. Nominal Techniques in Isabelle/HOL. InProc. of the
20th International Conference on Automated Deduction (CADE), volume 3632
of LNCS, pages 38–53, 2005.

16

	Introduction
	Terms, Types and Substitutions
	Terms and Types
	Substitutions
	Free Type Variables
	Generalisation of Types and Unbinding of Type Schemes
	Instances of a Type Scheme
	Subsumption Relation for Type-Schemes

	Typing
	Typing Contexts
	Typing Rules

	Algorithm W
	The Rules
	Unification

	Soundness and Completeness Proofs
	Conclusion

