
Nominal Inversion Principles

Stefan Berghofer and Christian Urban

Technische Universität München
Institut für Informatik, Boltzmannstraße 3, 85748 Garching, Germany

Abstract. When reasoning about inductively defined predicates, such as typing
judgements or reduction relations, proofs are often done by inversion, that is by a
case analysis on the last rule of a derivation. In HOL and other formal frameworks
this case analysis involves solving equational constraints on the arguments of the
inductively defined predicates. This is well-understood when the arguments con-
sist of variables or injective term-constructors. However, when alpha-equivalence
classes are involved, that is when term-constructors are not injective, these equa-
tional constraints give rise to annoying variable renamings. In this paper, we show
that more convenient inversion principles can be derived where one does not have
to deal with variable renamings. An interesting observation is that our result relies
on the fact that inductive predicates must satisfy the variable convention compati-
bility condition, which was introduced to justify the admissibility of Barendregt’s
variable convention in rule inductions.

1 Introduction

Inductively defined predicates play an important role in formal methods; they are de-
fined by a set of introduction rules and come equipped with rule induction and inversion
principles. A typical example of an inductive predicate is beta-reduction defined by the
four rules

App(Lam x:s1) s2 �!� s1[x:=s2]
b1

s1 �!� s2
App s1 t �!� App s2 t

b2

s1 �!� s2
App t s1 �!� App t s2

b3
s1 �!� s2

Lam x:s1 �!� Lam x:s2
b4

(1)

where [:=] stands for capture-avoiding substitution. Another is the typing predicate
for simply-typed lambda-terms defined by the rules

valid � (x; T) 2 �

� ` Var x : T
t1

� ` t1 : T1 ! T2 � ` t2 : T1

� ` App t1 t2 : T2

t2

(x; T1)::� ` t : T2

� ` Lam x:t : T1 ! T2

t3

(2)

where the typing contexts� are lists of (variable name,type)-pairs,2 stands for list
membership and:: for list-cons. The premisevalid � in the first typing rule is another
inductive predicate which states that the typing context must not contain repeated oc-
currences of a variable name. This can be defined as follows:

valid []
v1

valid � x # �

valid ((x; T)::�)
v2 (3)

2 Stefan Berghofer and Christian Urban

where[] stands for the empty typing context andx # � states that the variable namex
does not occur in� .

The rule induction and inversion principles are the main thrust behind these defi-
nitions: they provide the infrastructure for convenient reasoning about inductive pred-
icates. This is illustrated by the proof of the following lemma establishing that beta-
reduction preserves typing.

Lemma 1 (Type Preservation).If � ` u : U and u�!� u0 then � ` u0 : U:

Type preservation can be proved by a rule induction on� ` u : U. This gives rise to
three subgoals:

(i) Var x�!� u0 ^ : : :) � ` u0 : T
(ii) App t1 t2 �!� u0 ^ : : :) � ` u0 : T2

(iii) Lam x:t �!� u0 ^ : : :) � ` u0 : T1 ! T2

where we omitted some of the side-assumptions. The proof then proceeds by a case
analysis, calledinversion, of the assumptions about�!� .

In general, inversion is a reasoning principle that applies to any instance of an induc-
tive predicate occurring in the assumptions; it relies on the observation that this instance
must have been derived by at least one of the rules by which the inductive predicate is
defined. In informal reasoning one therefore matches the assumption with the conclu-
sion of every rule and tests whether the assumption and conclusion match. We will refer
to this kind of informal reasoning asinversion by matchingand describe it next.

In the case(i), the assumptionVar x�!� u0 matches with no conclusion in (1).
Therefore this is an impossible case, which implies that the goal� ` u0 : T holds triv-
ially.

In the case(ii) , the matching ofApp t1 t2 �!� u0 with the conclusions in (1) suc-
ceeds in case ofb1, b2 andb3, and therefore three cases need to be considered. Let us
first analyse the case corresponding to the rule

s1 �!� s2
App s1 t �!� App s2 t

b2

In this case we know for somes2 that u0 = App s2 t2 (sincet1 matches withs1, and
t with t2). By induction we can infer that� ` s2 : T1 ! T2 and� ` t2 : T1 hold.
Consequently,� ` u0 : T2 holds.

Continuing with our informal reasoning, the case of beta-reduction, i.e.App (Lam
x:s1) s2 �!� s1[x:=s2], goes as follows: For some terms1, u0 is equal tos1[x:=t2] and
t1 equal toLam x:s1. The latter equation gives us that� ` Lam x:s1 : T1 ! T2 and
� ` t2 : T1 hold. To complete the proof we need the substitutivity lemma:

Lemma 2 (Type Substitutivity).
If (x; U)::� ` t : T and � ` u : U then � ` t[x:=u] : T:

whose proof we omit. For this lemma to be useful, we have to invert the typing judge-
ment� ` Lam x:s1 : T1 ! T2. The informal inversion by matching gives us the de-
sired result: this judgement matches with the conclusion of the rulet3 and we obtain
(x; T1)::� ` s1 : T2. So we can conclude in this case by using Lemma 2 (similarly in
all remaining cases).

Nominal Inversion Principles 3

The point of these calculations is to show that the inversion by matching is very
natural and convenient. It is also very typical in programming language research: similar
proofs are described for System F<: in the POPLmark challenge (see Appendix of [2]).
The contribution of this paper is to make this informal reasoning formal. The problem
we have to solve for this arises from the fact that the examples above contain lambda-
terms, where the term constructorLam is not injective. By this we mean the property
that in general onecannotinfer from the equation

Lam x:t = Lam x0:t 0

that
x = x0 and t = t 0

hold. This is in contrast to the injective term constructorsVar andAppwhere we have
the implications

Var x= Var x0) x = x0

App t s= App t0 s0) t = t 0^ s= s0

Why the lack of injectivity leads to problems with formal inversion principles is
explained in the next section. Section 3 characterises the form of rules in inductive
definitions, Section 4 recalls some notions from the nominal logic work [7, 9] and Sec-
tion 5 describes the condition for variable-convention compatibility and gives the proof
for our main result. Examples are described in Section 6 and Section 7 concludes and
mentions related work.

2 Formal Inversion Principles

Unfortunately, theformal reasoning in systems such as HOL, Coq and LEGO is subtly
different from the informal inversion by matching illustrated in the Introduction: instead
of matching two instances of a relation, the formal inversion principles in these systems
require equality constraints to be solved.

Consider the inversion principles given in Fig. 1, which are formally derived by
Isabelle/HOL for beta-reduction and typing. Both inversion principles can be employed
to prove a propositionP from the assumptionu1 �!� u2 and� ` u : U, respectively.
Their general structure is as follows: each premise of the inversion rule corresponds
to a rule of the inductive predicate. These premises are implications whose right-hand
side is the propositionP, and whose left-hand side are conjunctions (note also in each
case the outermost universal quantification ranging over the entire implication). The
elements of these conjunctions can be divided into two parts: the first part consists of
equality constraints expressing the equality between the arguments of the predicate to
be inverted and the arguments of each conclusion in the inductive definition; the second
part consists of the premises of the corresponding rule.

Returning to our running example of proving the type-preservation lemma, let us
analyse how the formally derived inversion principles given in Fig. 1 behave. The case
(i) in Lemma 1 required us to prove

Var x�!� u0 ^ : : :) � ` u0 : T

4 Stefan Berghofer and Christian Urban

8 x s2 s1: u1 = App(Lam x:s1) s2 ^ u2 = s1[x:=s2]) P
8 s1 s2 t: u1 = App s1 t ^ u2 = App s2 t ^ s1 �!� s2) P
8 s1 s2 t: u1 = App t s1 ^ u2 = App t s2 ^ s1 �!� s2) P
8 s1 s2 x: u1 = Lam x:s1 ^ u2 = Lam x:s2 ^ s1 �!� s2) P

u1 �!� u2) P (4)

8� x T: � = � ^ u = Var x^ U = T ^ valid � ^ (x; T) 2 �) P
8 t1 T1 T2 t2:� = � ^ u = App t1 t2 ^ U = T2 ^ � ` t1 : T1 ! T2 ^ � ` t2 : T1) P
8 x T1 � t T2: � = � ^ u = Lam x:t ^ U = T1 ! T2 ^ (x; T1)::� ` t : T2) P

� ` u : U) P (5)

Fig. 1. Inversion principles derived by Isabelle/HOL for the inductive predicates beta-reduction
and typing.

If we use inversion principle for�!� (i.e. (4)) and invertVar x�!� u0, we obtain the
following four subgoals:

8 x0 s2 s1: Var x= App(Lam x0:s1) s2 ^ u0= s1[x0:=s2] ^ : : :) � ` u0 : T
8 s1 s2 t: Var x= App s1 t ^ u0= App s2 t ^ s1 �!� s2 ^ : : :) � ` u0 : T
8 s1 s2 t: Var x= App t s1 ^ u0= App t s2 ^ s1 �!� s2 ^ : : :) � ` u0 : T
8 s1 s2 x0: Var x= Lam x0:s1 ^ u0= Lam x0:s2 ^ s1 �!� s2 ^ : : :) � ` u0 : T

The left-hand sides of these subgoals all reduce toFalsebecause the term constructors
are in conflict (Var can never be equal toApp). Therefore we can quickly, like in the
informal reasoning, discharge all subgoals.

In case(ii) where we invertApp t1 t2 �!� u0, we obtain the following four subgoals:

8 x s2 s1: App t1 t2 = App(Lam x:s1) s2 ^ u0= s1[x:=s2] ^ : : :) � ` u0 : T
8 s1 s2 t: App t1 t2 = App s1 t ^ u0= App s2 t ^ s1 �!� s2 ^ : : :) � ` u0 : T
8 s1 s2 t: App t1 t2 = App t s1 ^ u0= App t s2 ^ s1 �!� s2 ^ : : :) � ` u0 : T
8 s1 s2 x: App t1 t2 = Lam x:s1 ^ u0= Lam x:s2 ^ s1 �!� s2 ^ : : :) � ` u0 : T

The fourth subgoal can again be discharged because of the conflicting equality between
AppandLam. The reasoning in the second and third is very similar with the informal
inversion by matching, because theApp-term constructor is injective and therefore we
can infer

App t1 t2 = App s1 t) t1 = s1 ^ t2 = t; and
App t1 t2 = App t s1) t1 = t ^ t2 = s1

(6)

which are the same equations we would have got by the informal inversion by matching.
The first subgoal (corresponding tob1) is more complicated: although we obtain by

injectivity of Appthe equationst1 = Lam x:s1 andt2 = s2, we will encounter problems
with inverting the typing judgement� ` Lam x:s1 : T1 ! T2. That is, we will not be
able to infer that(x; T1)::� ` s1 : T2 holds. This is becauseLam is not injective and
we cannot reason as in (6).

We encounter the same problem with the reasoning in case(iii) . There we have to
invert the reductionLam x:t �!� u0 and obtain by using the first inversion principle
from (4) the following four subgoals:

Nominal Inversion Principles 5

8 x0 s2 s1: Lam x:t = App(Lam x0:s1) s2 ^ u0= s1[x0:=s2]) � ` u0 : T1 ! T2

8 s1 s2 t: Lam x:t = App s1 t ^ u0= App s2 t ^ s1 �!� s2) � ` u0 : T1 ! T2

8 s1 s2 t: Lam x:t = App t s1 ^ u0= App t s2 ^ s1 �!� s2) � ` u0 : T1 ! T2

8 s1 s2 x0: Lam x:t = Lam x0:s1 ^ u0= Lam x0:s2 ^ s1 �!� s2) � ` u0 : T1 ! T2

Again the first three cases reduce toFalse. However in the fourth case we end up with
solving the equation

Lam x:t = Lam x0:s1 (7)

where the variablesx0ands1 are universally quantified (that is we cannot choose them).
SinceLamis not injective, the only way to solve this equation is to unfold the definition
of alpha-equivalence, which in the Nominal Datatype Package gives us the cases

(i) x = x0^ t = s1 or
(ii) x 6= x0^ t = (x x0)�s1 ^ x # s1

where(x x0) is a permutative renaming ofx andx0, andx# s1 stands forx not occurring
freely in s1, see [7]. While the first case is easy to deal with (the induction hypothesis
is immediately applicable), the second leads to the following proof state:

x 6= x0^ x # s1 ^ s1 �!� s2 ^ : : :) � ` Lam x0:s2 : T1 ! T2

with the induction hypothesis

8 s0: (x x0)�s1 �!� s0) (x; T1)::� ` s0 : T2

Here the formal reasoning starts to hurt, as it is much harder than the informal inversion
by matching. As one can see, the induction hypothesis is not directly applicable: we
know s1 �!� s2 but we need that(x x0)�s1 reduces to some term. Also the induction
hypothesis gives us a typing-judgement involving the variablex, but we need one forx0.
The most direct way to complete this case requires the following side lemmas:

Lemma 3.
(i) If s1 �!� s2 then(x x0)�s1 �!� (x x0)�s2.

(ii) If x # s1 and s1 �!� s2 then x# s2.

where, interestingly, the second is a property specific to beta-reduction.
Clearly, invertingLam x:t �!� u0 in this way is not very convenient and the same

difficulties arise if we try to invert� ` Lam x:s1 : T1 ! T2 using (5) as needed in the
App-case above. In contrast, inverting inductive predicates based on the locally name-
less approach to binders (see [3]) is much simpler, because there all term constructors
are injective—evenLam. We show in this paper that we can obtain stronger inversion
principles (than given in Fig. 1), where they are stronger in the sense that we can avoid
the renaming of the binder, as long as the binder is sufficiently fresh. In this way we
can follow quite closely the informal reasoning of inversion by matching an assumption
with all rules.

These strong inversion principles will depend on the inductive predicates to sat-
isfy thevariable convention compatibility condition, shortvc-condition. The reason for
this condition is that the informal reasoning (i.e. inversion by matching) can lead to
faulty reasoning when alpha-equivalence classes are involved. Consider the following

6 Stefan Berghofer and Christian Urban

inductive definition of a two-place predicate (both arguments are alpha-equated lambda-
terms)

Var x ,! Var x App t1 t2 ,! App t1 t2

t ,! t 0

Lam x:t ,! t 0
(8)

Now choose two distinct variables, sayx andy with x 6= y. A simple calculation shows
thatLam x:Var x ,! Var xcan be derived using the rules above. Therefore we can use it
as an assumption. Since we are working with alpha-equated lambda terms, we have that
Lam x:Var x = Lam y:Var y and therefore alsoLam y:Var y ,! Var x must hold. Next
we apply the inversion principle naively to the latter instance of the relation, i.e. we
invert by matching this instance with the conclusions of the rules shown in (8). Only
the third rule matches, yielding the factVar y ,! Var x. Next we invert this instance of
the relation: the first rule matches, enabling us to infer thatx = y holds. This, however,
contradicts the assumption thatx andy are distinct. The vc-condition will protect us
from this kind of faulty reasoning.

3 Inductive predicates

An inductive predicate, sayR, is defined by a finite set of rulesri

B1

R ts1
r1 : : :

Bn
R tsn

rn (9)

where in the premises theBi are HOL-formulae possibly containingRand where in the
conclusion thetsi are the arguments of the predicateR. Thetsi are HOL-terms, which
for the purposes of this paper we can assume to be either variables or constructed by
term constructors. Again for the purposes of this paper HOL-formulae will be the ones
given by the grammar

B ::= P tsj B1 ^ B2 j B1 _ B2 j B1 �! B2 j : B j 8 x: B x j 9 x: B x

whereP stands for atomic predicates andts are the arguments ofP. In (9) we have
the usual assumption that the premises can contain the predicateR in positive position
only (see [1]). However, theBi can contain other predicates, these are usually called
side-conditions. For example our typing rulet1 has the side-condition concerning2
andvalid as premise.

In what follows it is convenient to have the notationst[xs], where thexscontain all
the variables oft, andB[ys], whereys includes the free variables ofB (in B some vari-
ables might be bound because of the universal and existential quantifiers). The meaning
of a rule in (9) is then the implication

8 xsi: Bi[xsi]) R ts[xsi]

where eachxsi includes all free variables inri. That means every instantiation of the
free variables inri will result in an instance of this rule. With the rules given in (9)
comes the following inversion principle

Nominal Inversion Principles 7

8 xs1: ss= ts1[xs1] ^ B1[xs1]) P rule r1
...

8 xsn: ss= tsn[xsn] ^ Bn[xsn]) P rule rn
R ss) P

(10)

where thetsi correspond to the arguments in the conclusion of each rule and theBi to
the premises (not also that thexsi do not include any of the free variables inssandP).
The inversion principles given for�!� and the typing rues in Fig. 1 are instances of
(10). We refer to this inversion principle as theweak inversion principle. As we have
shown in Section 2: when applying the weak inversions to cases involving non-injective
term constructors, we need to analyse cases involving annoying variable renamings. We
will show later that a strong inversion principle can be derived from the weak one and
using the strong one we can avoid the renamings.

4 Nominal Logic Work

Before we proceed, we introduce some necessary notions from the nominal logic work
[7, 9]. We assume that there are countably infinitely many names, which can be used as
binders. We base our description onpermutation actionsand on the notion ofsupport.
The support of an object will, for the purposes of this paper, coincides with the set of
free names of that object. For details and a proper definition of support see [8]. A name
a is freshw.r.t. an object, sayt, provided that it is not free int; we write this asa # t.
Note that ift has finitely many free variables, then there exists a fresh variable w.r.t.t.
We will also use the auxiliary notationa # ts, in which ts stands for a collection of
objectst1;: : : ;tn, to meana # t1,. . . , a # tn. We further generalise this notation to a
collection of names, namelyas# ts, which meansa1 # ts,. . . ,am # ts.

Permutations are finite lists of swappings (i.e., pairs of variables). We write such
permutations as(a1 b1)(a2 b2) � � � (an bn); the empty list[] stands for the identity per-
mutation, list append (i.e.�1 @ �2) for the composition of two permutations and list
reversal (i.e.��1) for the inverse of a permutation. We define the permutation action
over the structure of types in HOL. The point of the permutation action is to push permu-
tations inside the structure of every object, renaming names on the way. A permutation
acting on names is therefore defined as follows:

[] � a = a

(a; b)::� � c =

8<
:

a if � � c = b
b if � � c = a
� � c otherwise

(11)

The permutation action on lists, pairs and booleans is given by

� � [] = []
� � (x::xs) = � � x::� � xs
� � (x; y) = (� � x; � � y)
� � True= True
� � False= False

(12)

8 Stefan Berghofer and Christian Urban

Notice the last two lines imply the fact that for every HOL-formulaB the equality� �

B = B holds. This is because HOL is a classical logic and every formula is either true
or false. For alpha-equated lambda-terms we have

� � Var x= Var (� � x)
� � App t1 t2 = App(� � t1) (� � t2)
� � Lam x:t = Lam(� � x):(� � t)

(13)

We can easily prove that the permutation actions in (11), (12) and (13) satisfy the fol-
lowing three properties:

(i) [] � () = ()
(ii) (�1 @ �2) � () = �1 � �2 � ()

(iii) If �1 � �2 then �1 � () = �2 � ():
(14)

where in the last clause equality between two permutations, that is�1 � �2, is defined
by the property that as�1 � a = �2 � a holds for all namesa. In the next section we
need the following lemma about freshness and the permutation actions in (11), (12) and
(13):

Proposition 1. If a # () and b# () then (a b)�() = ():

The notion ofequivarianceis derived from the permutation actions:

Definition 1 (Equivariance [7]). A HOL-term t, respectively a HOL-formula B, with
free variables amongst xs isequivariantprovided for all�, we have� � t[xs] = t[��xs]
and� � B[xs] = B[��xs].

From the definition of their permutation action, pairs, nil and list-cons are equivariant.
For HOL-formulae we have:

� � (A^ B) = � � A^ � � B
� � (A_ B) = � � A_ � � B

� � (A�! B) = � � A�! � � B
� � (: A) = : � � A

� � (8 x: P x) = 8 x: � � P (��1
� x)

� � (9 x: P x) = 9 x: � � P (��1
� x)

(15)

Therefore for all the structures we consider in this paper we can move permutations
inside the structures until they reach variables, therefore all structures we consider in
paper will be equivariant.

For proving our main result in the next section it is convenient to refine our notation
ts[xs] andB[xs] for indicating the free variables ofts andB. The reason is that some of
these variables stand for names and those names are potentially inbinding positions.
By binding position we mean thex in Lam x:t. In what follows the notationts[as;xs]
and B[as;xs] will be used to indicate that the variables in binding position of thets
are included inas and the other variables of thets are either inas or in xs (similarly
for HOL-formulae). We extend this notation also to rules: by writingr[as;xs] we mean
rules of the form

B[as;xs]
R ts[as;xs] ri[as;xs]

Nominal Inversion Principles 9

However, unlike in the notation for HOL-terms and HOL-formulae, we mean inri[as;xs]
that theasstandexactlyfor the variables occurring somewhere inri in binding position
and thexs stand for the rest of variables. To see how this notation works out in our
examples, reconsider the definitions for the relations given in (1) and (2). Using our
notation for these rules, we have

b1[x;s1;s2]
b2[�;s1;s2;t]
b3[�;s1;s2;t]
b4[x;s1;s2]

t1[�;� ;x;T]
t2[�;� ;t1;t2;T1;T2]
t3[x;� ;t;T1;T2]

where ‘�’ stands for no variable in binding position. An inductive definition for alpha-
equivalence between lambda terms includes the two rules:

t1 = t2
Lam x:t1 = Lam x:t2

a1
x 6= y t1 = (x y)�t2 x # t2

Lam x:t1 = Lam y:t2
a2

There our notation would bea1[x;t1;t2] anda2[x;y;t1;t2].

5 Strengthening of the Inversion Principle

In this section, we show how the “weak” inversion rules in (10) can be used to derive
stronger inversion rules in which the equality constraints are formulated in such a way
that they can be solved without having to rename variables.

We have seen in the example aboutt ,! t 0 from the Introduction that inversion prin-
ciples involving alpha-equivalence classes require some care. In order to rule out the
problematic case (and similar ones), we need to impose a condition on the rules of an
inductive definition. It is interesting that the condition we impose is the same as the one
introduced in [8] for justifying the admissibility of Barendregt’s variable convention in
rule inductions.

A rule is said to bevariable convention compatible, or shortvc-compatible, pro-
vided the following two properties are satisfied:

Definition 2 (Variable Convention Compatibility). A rule r[as;xs] with conclusion
R ts[as;xs] and premise B[as;xs] is vc-compatibleprovided that:

� all HOL-terms and HOL-formulae occurring in r are equivariant, and
� the premise B[as;xs] implies that as# ts[as;xs] holds and that the as are distinct.

Note that if ruler does not contain any variable in binding position, then the second
condition is vacuously true. The first condition ensures that the relationR is equivariant.
The equivariance property will allow us to push permutations inside HOL-terms and
HOL-formulae until they reach free variables.

10 Stefan Berghofer and Christian Urban

If every introduction rule in an inductive definition satisfies these conditions, then
the inversion principle can be strengthened. The strengthened version looks as follows

8 xs1: (bs1 # ss^ distinct(bs1)) ss= ts1[bs1;xs1] ^ B1[bs1;xs1])) P rule r1
...

8 xsn: (bsn # ss^ distinct(bsn)) ss= tsn[bsn;xsn] ^ Bn[bsn;xsn])) P rule rn
R ss) P

(16)
where for every ruler1;: : : ;rn we have a case to analyse. In our notation the rules have
the formr1[bs1;xs1];: : : ;rn[bsn;xsn] where thebsi are the variables in binding position.
Note that in contrast to (10) the variablesbsi are no longer universally quantified, mean-
ing that we are free to choose the namesbsi when we want to invoke the strong inversion
principle. The only constraints we have is that the preconditionsbsi # ss^ distinct(bsi)
need to be satisfied. This will be the case if thebsi are sufficiently fresh.

We now prove the main result of this paper: if the rules of an inductive definition
are vc-compatible, then the strong inversion principle in (16) holds.

Theorem 1. For an inductive definition of the predicateR, involving vc-compatible
rules only, a strong inversion principle exists deriving the implication R ss) P.

Proof. We need to establishR ss) P using the implications indicated in (16). To do
so we will use the weak inversion rule from (10). For each ruleri[asi;xsi] of the form

B[asi;xsi]

R tsi[asi;xsi]

we have to analyse one case of the form

8asi xsi: ss= tsi[asi;xsi] ^ Bi[asi;xsi]) P

To showP in these cases we have available the fact from (16), namely

8 xsi: (bsi # ss^ distinct(bsi)) ss= tsi[bsi;xsi] ^ Bi[bsi;xsi])) P (17)

We first assume that

ss= tsi[asi;xsi] (18)

Bi[asi;xsi] (19)

hold. Sinceri[asi;xsi] is assumed to be vc-compatible, we further have that

(a) asi # tsi[asi;xsi] and (b) distinct(asi) (20)

hold. The proof then proceeds by choosing for every namea in asi a fresh namec such
that for all thecsi the following hold (csi is the collection of all thosec):

(a) csi # ss (b) csi 6= asi (c) csi 6= bsi (d) distinct(csi) (21)

Nominal Inversion Principles 11

Such a sequencecsi always exists: the first three properties can be obtained since the
termsss, asi and bsi stand for finitely supported objects—so a free variable always
exists; the last can be obtained by choosing thec one after another avoiding the ones
that have already been chosen. We now build the permutation

�
def
= (bn cn): : : (b1 c1) (an cn): : : (a1 c1)

The point of� is that when applied to theasi we get� � asi = bsi. This follows from
the properties in (20.b), (21.b-d) and the fact that we can assumedistinct(bsi) holds
(see below). We next instantiate in (17) thexsi with � � xsi giving us

(bsi # ss^ distinct(bsi)) ss= tsi[bsi;� � xsi] ^ Bi[bsi;� � xsi])) P

So in order to showP, it suffices to prove

ss= tsi[bsi;� � xsi] ^ Bi[bsi;� � xsi] (22)

under the assumptions

(a) bsi # ss and (b) distinct(bsi) (23)

From (23.a) and (18) we obtainbsi # tsi[asi;xsi]. Using this, (20.a) and Lemma 1,
we have that� � tsi[asi;xsi] = tsi[asi;xsi]. Since the rule is equivariant we have that
� � tsi[asi;xsi] = tsi[bsi;� � xsi] and thus also the first conjunct of (22). The reasoning
for the other conjunct is as follows: using (19) and the fact thatBi is a boolean we have
that� � Bi[asi;xsi] holds. Again by equivariance of the rule, we can move the permu-
tation inside to obtainBi[bsi;� � xsi]—the second conjunct of (22). This concludes the
proof. ut

Let us next describe how the stronger inversion principles simplify the formal reasoning
in the type preservation lemma.

6 Examples

To use the strong inversion rules, we first have to make sure that the beta-reduction
and typing relation are equivariant. For this we only have to observe that all constants
(that is term constructors and functions) in the rules of�!� , typing andvalid are
equivariant. This follows either from the definition of the permutation action or is by
a simple induction over the predicates (in our implementation Isabelle will infer this
automatically). To show that the second condition in Definition 2 is satisfied we have to
show that the binders are fresh w.r.t. the conclusions of the rule they appear in. That is
a simple calculation for the rules

(x; T1)::� ` t : T2

� ` Lam x:t : T1 ! T2

t3
s1 �!� s2

Lam x:s1 �!� Lam x:s2
b4

12 Stefan Berghofer and Christian Urban

8 s2 s1: (y # (u1; u2)) u1 = App(Lam y:s1) s2 ^ u2 = s1[y:=s2] ^ y # s2)) P
8 s1 s2 t: u1 = App s1 t ^ u2 = App s2 t ^ s1 �!� s2) P
8 s1 s2 t: u1 = App t s1 ^ u2 = App t s2 ^ s1 �!� s2) P
8 s1 s2: (x # (u1; u2)) u1 = Lam x:s1 ^ u2 = Lam x:s2 ^ s1 �!� s2)) P

u1 �!� u2) P (24)

8� x T: � = � ^ u = Var x^ U = T ^ valid � ^ (x; T) 2 �) P
8 t1 T1 T2 t2: � = � ^ u = App t1 t2 ^ U = T2 ^ � ` t1 : T1 ! T2 ^ � ` t2 : T1) P
8T1 � t T2: (x # (�; u; U)) � = � ^ u = Lam x:t ^ U = T1 ! T2 ^ (x; T1)::� ` t : T2)) P

� ` u : U) P
(25)

Fig. 2. Strong inversion principles derived by the Nominal Datatype Package for the inductive
predicates for beta reduction and typing.

In the first case we have to show thatx # (� ; Lam x:t; T1 ! T2) holds under the
assumption that(x; T1)::� ` t : T2. Since we can show by a routine induction that
typing judgements only includevalid contexts, we have thatvalid ((x; T1)::�) holds.
From this we can infer thatx# � . We also know thatx# Lam x:t (sincex is abstracted)
and thatx # T1 ! T2 (since types in the simply-typed lambda-calculus do not contain
any variables). We can discharge the conditions in the other rule by similar arguments.
However the condition will fail for the rule

App(Lam x:s1) s2 �!� s1[x:=s2]
b1 (26)

because we cannot determine whetherx # s2. However we can show that this beta-
reduction rule is equivalent to the following more restricted rule

x # s2
App(Lam x:s1) s2 �!� s1[x:=s2]

b0

1 (27)

This is because we can choose ay such thaty # (s1; s2) and alpha-renameApp (Lam
x:s1) s2 to App(Lam y:(y x)�s1) s2. Then apply the restricted rule to this term in order
to obtain the reduct((y x)�s1)[y:=s2]. By a structural induction overs1, we can show
that this term is equal tos1[x:=s2] as desired. The point of this “manoeuvre” is that we
can show that the restricted rule for beta-reduction does satisfy the vc-condition.

The result of these calculations is that there are strengthened inversion rules for
beta-reduction and the typing-relation. They are given in Fig. 2. Using them for the type
preservation lemma, the second and third case are the same as with the weak inversion
rule (4). In the first and fourth case, however, the user does not need to show the claim
for an arbitrary variablex0, but for a sufficiently freshly chosen one (it has to be fresh
w.r.t. (u1; u2)). In the strong inversion for the typing rule we have that the cases for
variables and applications are the same as with the weak inversion rule (5). In the case
of lambda abstractions, the user can choose ax so thatx # (�; u; U). These choices
will hugely simplify the formal reasoning. To give an impression of this fact we show
next three lemmas in Isabelle/HOL proving special instances of inversion principles.

Nominal Inversion Principles 13

lemmaTy-Lam-inversion:
assumesty: � ` Lam x.t: T and fc: x#�

shows9T1 T2: T = T1 ! T2 ^ (x;T1)::� ` t : T2

using ty fcby (cases rule: typing:strong-cases) (auto simp add: alpha)

lemmaBeta-Lam-inversion:
assumesred: Lam x.t�!� s and fc: x#s
shows9 t 0: s= Lam x.t0^ t �!� t 0

using red fcby (cases rule: Beta:strong-cases) (auto simp add: alpha)

lemmaBeta-App-inversion:
assumesred: App(Lam x.t) s�!� r and fc: x#(s;r)
shows(9 t 0: r = App(Lam x.t0) s^ t �!� t 0) _

(9 s0: r = App(Lam x.t) s0
^ s�!� s0) _ (r = t[x:=s])

using red fc
by (cases rule: Beta:strong-cases) (auto dest: Beta-Lam-inversion simp add: alpha)

These lemmas are needed frequently in proofs about structural operational semantics.
As seen in Section 2, it would have been quite painful to derive them using the weak
inversion principles. We use thealpha-rule in the proofs above in order to rewrite the
trivial alpha-equivalenceLam x:t = Lam x:s to t = s.

The Isar-proof of the complete type preservation lemma is given in Fig. 3. Lines 6
and 7 show the variable case. Lines 9-21 contain the steps for the case where a beta-
reduction occurs (the other cases are automatic in Line 22). We first chose a fresh name
x (Line 10); invertApp t1 t2 �!� u0 in Line 12 using the freshx. In the only interesting
case, we have that� ` Lam x:s1 : T1 ! T2 holds (Line 15), which we can invert to
(x; T1)::� ` s1 : T2. To this we can apply the Lemma 2 (Line 20). In the lambda-case
(Lines 24-31), we invertLam x:t �!� u0. We know thatx is fresh foru0 by the strong
induction (Line 5). We can apply the induction hypothesis in Line 28 and use the typing
rule to conclude (Lines 30 and 31).

7 Conclusion and Related Work

As long as one is dealing with injective term constructors, the weak (or standard) inver-
sion rules provided by Isabelle/HOL work similarly to the informal inversion by match-
ing an assumption over the conclusions of inference rules. However, non-injective term
constructors, such asLamin the lambda-calculus, give rise to annoying variable renam-
ings, and formal reasoning is quite different from and much more inconvenient than
the informal inversion by matching. This was observed in [3], because in their locally
nameless representation of binders, all term constructors are injective.

We have shown in this paper that if a binder is fresh with respect to the conclu-
sion of the rule where the binder appears and the inductive predicate satisfies the vc-
condition, then one can avoid the renamings. As a result the formal inversion principles
are again as convenient the informal reasoning of inversion by matching—though the
strong inversion principles only apply to vc-compatible inductive relations. In (8) we
have shown that the informal inversion by matching can lead to faulty reasoning when
the vc-condition is not satisfied. In our implementation this kind of faulty reasoning is

14 Stefan Berghofer and Christian Urban

lemma type-preservation:1

assumesty: � ` u : U and red: u�!� u0
2

shows� ` u0 : U3

using ty red4

proof (nominal-induct avoiding: u0 rule: typing:strong-induct)5

case(ty-Var� x T)6

from hVar x�!� u0
i show� ` u0 : T by (cases) (simp-all)7

next8

case(ty-App� t1 T1 T2 t2)9

obtain x::namewhere fc: x # (� ; App t1 t2; u0) by (rule exists-fresh-var)10

from hApp t1 t2 �!� u0
i show� ` u0 : T2 using fc11

proof (cases rule: Beta:strong-cases[wherex=x and xa=x])12

case(Beta s2 s1)13

then haveeqs: t1 = Lam x.s1 t2 = s2 u0 = s1[x:=s2] using fc by (simp-all)14

from h� ` t1 : T1 ! T2
i have� ` Lam x.s1 : T1 ! T2 usingeqsby simp15

then have(x;T1)::� ` s1 : T2 using fc16

by (cases rule: typing:strong-cases) (auto simp add: alpha)17

moreover18

from h� ` t2 : T1
i have� ` s2 : T1 usingeqsby simp19

ultimately have � ` s1[x:=s2] : T2 by (rule type-substitutivity)20

then show� ` u0 : T2 usingeqsby simp21

qed (auto intro: ty-App)22

next23

case(ty-Lam x T1 � t T2)24

from hLam x.t�!� u0
i hx # u0

i25

obtain s2 where t-red: t �!� s2 and eq: u0 = Lam x.s226

by (cases rule: Beta:strong-cases) (auto simp add: alpha)27

have ih: t �!� s2 =) (x;T1)::� ` s2 : T2 by fact28

with t-red have(x;T1)::� ` s2 : T2 by simp29

then have� ` Lam x.s2 : T1 ! T2 by (rule typing:ty-Lam)30

with eqshow� ` u0 : T1 ! T2 by simp31

qed32

Fig. 3.An Isar-proof of the type preservation lemma in Isabelle/HOL.

prevented because the strong inversion principles are derived only when the user has
verified the second part of the vc-condition (see Def. 2); the first part of that condi-
tion is verified automatically by observing that equivariant inductive predicates must be
composed of equivariant components only.

What was surprising to us is that the strong inversion principles depend on the vc-
condition that we introduced in previous work [8]. There, this condition was used to
make sure that the variable convention in proofs by rule induction does not lead to
faulty lemmas. An disadvantage of our approach is that in case of beta-reduction we
have to use ruleb0

1
shown in (27) and so far we have no automatic method to derive

from it the usual ruleb1 shown in (26).
The most closely related work to the one presented here is our own [8], where we

study strong induction principles. Here we were concerned with inversion principles,
which in our setting with non-injective term constructors arenot a degenerated form

Nominal Inversion Principles 15

of induction (as is usually the case). In contrast with that work [8], we also deal here
with the case where rules include quantifiers. In the context of type theory, inversion
principles have been studied by Cornes and Terrasse for the Coq proof assistant [4]
and by McBride for the LEGO system [5]. McBride’s implementation in LEGO uses
an algorithm for solving equality constraints based on unification. The derivation of
inversion principles for inductive sets in Isabelle’s object logic HOL and ZF was first
described by Paulson [6].

References

1. P. Aczel. An Introduction to Inductive Definitions. In J. Barwise, editor,Handbook of Math-
ematical Logic, pages 739–782. Elsevier, 1977.

2. B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell, D. Vytini-
otis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized Metatheory for the Masses:
The POPLMARK Challenge. In T. Melham and J. Hurd, editors,Theorem Proving in Higher
Order Logics: TPHOLs 2005, LNCS. Springer-Verlag, 2005. Available electronically at
http://www.cis.upenn.edu/�plclub/wiki-static/poplmark.pdf.

3. B. E. Aydemir, A. Chargúeraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering formal
metatheory. In G. C. Necula and P. Wadler, editors,Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008, pages 3–15. ACM, 2008.

4. C. Cornes and D. Terrasse. Automating Inversion of Inductive Predicates in Coq. In S. Berardi
and M. Coppo, editors,Types for Proofs and Programs, International Workshop TYPES’95,
Torino, Italy, June 5-8, 1995, Selected Papers, volume 1158 ofLecture Notes in Computer
Science, pages 85–104. Springer, 1996.

5. C. McBride. Inverting Inductively Defined Relations in LEGO. In E. Giménez and C. Paulin-
Mohring, editors,Types for Proofs and Programs, International Workshop TYPES’96, Aus-
sois, France, December 15-19, 1996, Selected Papers, volume 1512 ofLecture Notes in Com-
puter Science, pages 236–253. Springer, 1998.

6. L. C. Paulson. A fixedpoint approach to (co)inductive and (co)datatype definitions. In
G. Plotkin, C. Stirling, and M. Tofte, editors,Proof, Language, and Interaction: Essays in
Honor of Robin Milner, pages 187–211. MIT Press, 2000.

7. A. M. Pitts. Nominal Logic, A First Order Theory of Names and Binding.Information and
Computation, 186:165–193, 2003.

8. C. Urban, S. Berghofer, and M. Norrish. Barendregt’s Variable Convention in Rule Inductions.
In F. Pfenning, editor,21st International Conference on Automated Deduction (CADE-21),
volume 4603 ofLecture Notes in Artificial Intelligence, pages 35–50. Springer-Verlag, 2007.

9. C. Urban and C. Tasson. Nominal Techniques in Isabelle/HOL. InProc. of the 20th Inter-
national Conference on Automated Deduction (CADE), volume 3632 ofLNCS, pages 38–53,
2005.

