Nominal Inversion Principles

Stefan Berghofer and Christian Urban

Technische Universit Miinchen
Institut fur Informatik, Boltzmannstral3e 3, 85748 Garching, Germany

Abstract. When reasoning about inductively defined predicates, such as typing
judgements or reduction relations, proofs are often done by inversion, that is by a
case analysis on the last rule of a derivation. In HOL and other formal frameworks
this case analysis involves solving equational constraints on the arguments of the
inductively defined predicates. This is well-understood when the arguments con-
sist of variables or injective term-constructors. However, when alpha-equivalence
classes are involved, that is when term-constructors are not injective, these equa-
tional constraints give rise to annoying variable renamings. In this paper, we show
that more convenient inversion principles can be derived where one does not have
to deal with variable renamings. An interesting observation is that our result relies
on the fact that inductive predicates must satisfy the variable convention compati-
bility condition, which was introduced to justify the admissibility of Barendregt's
variable convention in rule inductions.

1 Introduction

Inductively defined predicates play an important role in formal methods; they are de-
fined by a set of introduction rules and come equipped with rule induction and inversion
principles. A typical example of an inductive predicate is beta-reduction defined by the
four rules

by ST,
App(Lam xs;) s, — 3 S1[X:=%] Appst—pgAppst (1)
Si —3 S bs Si —8 S by
Appts — g Appts Lam xs; —3 Lam Xs;
where_[_.:=_] stands for capture-avoiding substitution. Another is the typing predicate

for simply-typed lambda-terms defined by the rules

valid I (x,T)eFt 'ty :Ti =Ty TNbt: Ty
IFVarx:T THFAPpLty: T, @)

(X, T1)ulHt:Ty :

IFlamxt:T, 5Ty
where the typing context$' are lists of (variable name,type)-pairs,stands for list
membership and for list-cons. The premisealid I" in the first typing rule is another

inductive predicate which states that the typing context must not contain repeated oc-
currences of a variable name. This can be defined as follows:

validI' x#1TI
valid [] v valid ((x, T)::I)

2

U2 (3

2 Stefan Berghofer and Christian Urban

where[] stands for the empty typing context aréft I" states that the variable name
does not occur id".

The rule induction and inversion principles are the main thrust behind these defi-
nitions: they provide the infrastructure for convenient reasoning about inductive pred-
icates. This is illustrated by the proof of the following lemma establishing that beta-
reduction preserves typing.

Lemma 1 (Type Preservation).If I'-u:U and u—g u’ thenI" - u’: U.

Type preservation can be proved by a rule induction o u : U. This gives rise to
three subgoals:

(i) Varx—gu A...=>TFU:T
(||) Appt1t2—>5UI/\...:>F|_UIZT2
(i) Lamxt—pgu A...=TFU:T; =T

where we omitted some of the side-assumptions. The proof then proceeds by a case
analysis, calledhversion of the assumptions about- 3.

In general, inversion is a reasoning principle that applies to any instance of an induc-
tive predicate occurring in the assumptions; it relies on the observation that this instance
must have been derived by at least one of the rules by which the inductive predicate is
defined. In informal reasoning one therefore matches the assumption with the conclu-
sion of every rule and tests whether the assumption and conclusion match. We will refer
to this kind of informal reasoning asversion by matchingnd describe it next.

In the cas(i), the assumptiofVar x — 5 u’ matches with no conclusion in (1).
Therefore this is an impossible case, which implies that the foalu’: T holds triv-
ially.

In the casdii), the matching ofApp t t. — 3 u’ with the conclusions in (1) suc-
ceeds in case df;, b, andbs, and therefore three cases need to be considered. Let us
first analyse the case corresponding to the rule

SI —3 S b
2
Appst—zAppst

In this case we know for son® thatu’ = App s t» (sincet; matches withs;, and
t with t5). By induction we can infer thaf" s, : T, —» T, andI" F t, : T; hold.
Consequently]" F u’: Ts holds.

Continuing with our informal reasoning, the case of beta-reductionApp(Lam
X.S1) S, — 5 Si1[X:=%;], goes as follows: For some temsn, u’is equal tos, [x:=t,] and
t; equal toLam xs;. The latter equation gives us thatk Lam xs; : T, — T, and
I'F 1ty : T1 hold. To complete the proof we need the substitutivity lemma:

Lemma 2 (Type Substitutivity).
If (x, U)nI'kt: TandI'Fu:U thenl"+tx=u]:T.

whose proof we omit. For this lemma to be useful, we have to invert the typing judge-
mentI' + Lam xs; : Ty — Ts. The informal inversion by matching gives us the de-
sired result: this judgement matches with the conclusion of thetguéad we obtain

(x, T1):: '+ s : To. So we can conclude in this case by using Lemma 2 (similarly in
all remaining cases).

Nominal Inversion Principles 3

The point of these calculations is to show that the inversion by matching is very
natural and convenient. It is also very typical in programming language research: similar
proofs are described for System.Fn the POPLmark challenge (see Appendix of [2]).
The contribution of this paper is to make this informal reasoning formal. The problem
we have to solve for this arises from the fact that the examples above contain lambda-
terms, where the term constructiceimis notinjective By this we mean the property
that in general oneannotinfer from the equation

Lam xt = Lam X.t’

that
x=x" and t=t’

hold. This is in contrast to the injective term constructdas and Appwhere we have
the implications
Varx=Varx’ = x=x'
Appts=Appts = t=t'As=¢

Why the lack of injectivity leads to problems with formal inversion principles is
explained in the next section. Section 3 characterises the form of rules in inductive
definitions, Section 4 recalls some notions from the nominal logic work [7, 9] and Sec-
tion 5 describes the condition for variable-convention compatibility and gives the proof
for our main result. Examples are described in Section 6 and Section 7 concludes and
mentions related work.

2 Formal Inversion Principles

Unfortunately, thdormal reasoning in systems such as HOL, Coq and LEGO is subtly
different from the informal inversion by matching illustrated in the Introduction: instead
of matching two instances of a relation, the formal inversion principles in these systems
require equality constraints to be solved.

Consider the inversion principles given in Fig. 1, which are formally derived by
Isabelle/HOL for beta-reduction and typing. Both inversion principles can be employed
to prove a propositio® from the assumption; — g u, and A - u : U, respectively.

Their general structure is as follows: each premise of the inversion rule corresponds
to a rule of the inductive predicate. These premises are implications whose right-hand
side is the propositioR, and whose left-hand side are conjunctions (note also in each
case the outermost universal quantification ranging over the entire implication). The
elements of these conjunctions can be divided into two parts: the first part consists of
equality constraints expressing the equality between the arguments of the predicate to
be inverted and the arguments of each conclusion in the inductive definition; the second
part consists of the premises of the corresponding rule.

Returning to our running example of proving the type-preservation lemma, let us
analyse how the formally derived inversion principles given in Fig. 1 behave. The case
(i) in Lemma 1 required us to prove

Varx—gu A...=>TFu:T

4 Stefan Berghofer and Christian Urban

VXS sp. Uy = App(Lam xs;) S A Uz = Si[X=S] = P
Vsisst.ui=AppstAu =AppstAs —s S =P
Vsist.ui=Appts A =Appts Ass —g S =P
Vsis X Uy =Lamxsi Al =Lamxs; Asg —g S = P

U —pg U =P (4)

VIXT. A=T'Au=VarxAU=TAvaldI'A(x, T)e ' =P
thT1T2t2.A:F/\U:Appt1t2/\U:Tg/\F'_hZT1—)T2/\F|‘t2:T1:>P
VXTi I'tTo. A=I'Au=LamxtAU=T1 5> ToAX,T1)u:l'Ft:To=>P

AFu:U=P (%)

Fig. 1. Inversion principles derived by Isabelle/HOL for the inductive predicates beta-reduction
and typing.

If we use inversion principle for— 3 (i.e. (4)) and inveriar x — g u’, we obtain the
following four subgoals:

VX's, 5. Varx=App(LamX.s)) s AU =g X' =]A...=TFU:T
Vs s t.Varx=AppsStAU =AppsStAS —sSA...=>TFHU:T
Vs s t.Varx=Appts AU =Appts ASs —sSSA...=>TFU:T
Vs s x. Varx=Lamx.ss Au'=LamX. s As —gSA... =>THU:T

The left-hand sides of these subgoals all redudeateebecause the term constructors
are in conflict ¥/ar can never be equal tApp). Therefore we can quickly, like in the
informal reasoning, discharge all subgoals.

In case(ii) where we inverApp t t; — g u’, we obtain the following four subgoals:

VxS 5. Apptita = App(Lam xs) S AU =g [x=S]A... == TFU:T
Vs S LAPPLt =APPS tAU =ApPStAS — S A... =TFHU:T
Vsi st Apptto =Appts AU =Appts AS — S A...=>TFHu:T
Vsi s X Apptt; =Lamxs Au'=Lamxs; As; —g S A ... =>TFu:T

The fourth subgoal can again be discharged because of the conflicting equality between
AppandLam The reasoning in the second and third is very similar with the informal
inversion by matching, because tAppterm constructor is injective and therefore we
can infer
Apptts =Appst = ti=s Aty =t, and
Apptta =Appts = ti=tAt,=5

which are the same equations we would have got by the informal inversion by matching.
The first subgoal (corresponding#g) is more complicated: although we obtain by
injectivity of Appthe equations; = Lam xs; andt, = s,, we will encounter problems
with inverting the typing judgement F Lam xs; : Ty — T,. That is, we will not be
able to infer thatx, T1)::I" F s, : T» holds. This is becaudeamis not injective and
we cannot reason as in (6).
We encounter the same problem with the reasoning in @&seThere we have to
invert the reductiorLam xt — 3 u’ and obtain by using the first inversion principle
from (4) the following four subgoals:

(6)

Nominal Inversion Principles 5

Vx'sy 5. Lamxt = App(Lam X.s)) ;s Au = [Xi=s| = TTFU :T; = Ts
Vs S t.Lamxt=AppStAU =AppStAS — S =TFU:T; =T,
Vs t.Lamxt=Appts AU =ApptsAS —gS=TFU: T, > T
Vs s x' Lamxt=LamxX.s AU =LamX.sAs — S =>TFu: Ty =T,

Again the first three cases reduceRalse However in the fourth case we end up with
solving the equation
Lam xt = Lam X.s; (7)

where the variables’ ands; are universally quantified (that is we cannot choose them).
SinceLamis not injective, the only way to solve this equation is to unfold the definition
of alpha-equivalence, which in the Nominal Datatype Package gives us the cases

(i) x=xX'At=s or
(i) X#XAt=(xXX)esi AXF# S

where(x x') is a permutative renaming &fandx’, andx # s, stands fox not occurring
freely ins;, see [7]. While the first case is easy to deal with (the induction hypothesis
is immediately applicable), the second leads to the following proof state:

XEXAXH#ESIAS —A... =>TFlLamX.s: Ty = T
with the induction hypothesis
Vs (XX)esp —5S = (X, T1):I'FS': Ty

Here the formal reasoning starts to hurt, as it is much harder than the informal inversion
by matching. As one can see, the induction hypothesis is not directly applicable: we
knows, — 3 s, but we need thagx x’)ss; reduces to some term. Also the induction
hypothesis gives us a typing-judgement involving the variapibeit we need one fot'.

The most direct way to complete this case requires the following side lemmas:

Lemma 3.
(i) If 53— sy then(x x)es; —5 (X X')es;.
(i) If x # s, and s — g S then x# s,.

where, interestingly, the second is a property specific to beta-reduction.

Clearly, invertingLam xt — 4 u’ in this way is not very convenient and the same
difficulties arise if we try to inverf” - Lam xs, : T; — T, using (5) as needed in the
App-case above. In contrast, inverting inductive predicates based on the locally name-
less approach to binders (see [3]) is much simpler, because there all term constructors
are injective—evetam We show in this paper that we can obtain stronger inversion
principles (than given in Fig. 1), where they are stronger in the sense that we can avoid
the renaming of the binder, as long as the binder is sufficiently fresh. In this way we
can follow quite closely the informal reasoning of inversion by matching an assumption
with all rules.

These strong inversion principles will depend on the inductive predicates to sat-
isfy thevariable convention compatibility conditipehortvc-condition The reason for
this condition is that the informal reasoning (i.e. inversion by matching) can lead to
faulty reasoning when alpha-equivalence classes are involved. Consider the following

6 Stefan Berghofer and Christian Urban

inductive definition of a two-place predicate (both arguments are alpha-equated lambda-
terms)
tt'

Var x < Var x Appt ty <= Appt ts Lam xt < t'

(8)

Now choose two distinct variables, sapandy with x # y. A simple calculation shows
thatLam xVar x — Var xcan be derived using the rules above. Therefore we can use it
as an assumption. Since we are working with alpha-equated lambda terms, we have that
Lam xVar x = Lam yVar y and therefore alsham yVar y — Var x must hold. Next

we apply the inversion principle naively to the latter instance of the relation, i.e. we
invert by matching this instance with the conclusions of the rules shown in (8). Only
the third rule matches, yielding the faéar y — Var x. Next we invert this instance of

the relation: the first rule matches, enabling us to infer xhaty holds. This, however,
contradicts the assumption thatindy are distinct. The vc-condition will protect us

from this kind of faulty reasoning.

3 Inductive predicates

An inductive predicate, saf, is defined by a finite set of rules

Blr Bnr
Rts Rts, "

(9)

where in the premises ttig are HOL-formulae possibly containifgjand where in the
conclusion thds; are the arguments of the predic&eThets; are HOL-terms, which

for the purposes of this paper we can assume to be either variables or constructed by
term constructors. Again for the purposes of this paper HOL-formulae will be the ones
given by the grammar

BZZ:PtS|Bl/\BQ|Bl\/BQ|Bl—>BQ|_|B|VX.BX|E|X.BX

whereP stands for atomic predicates atwlare the arguments d?. In (9) we have
the usual assumption that the premises can contain the preBigatgositive position
only (see [1]). However, th8; can contain other predicates, these are usually called
side-conditions. For example our typing rulehas the side-condition concernirg
andvalid as premise.

In what follows it is convenient to have the notatidpsg, where thexs contain alll
the variables of, andB|yg, whereysincludes the free variables & (in B some vari-
ables might be bound because of the universal and existential quantifiers). The meaning
of arule in (9) is then the implication

Vxs. Bi[xs] = R tgxs]

where eaclxs; includes all free variables in,. That means every instantiation of the
free variables irr; will result in an instance of this rule. With the rules given in (9)
comes the following inversion principle

Nominal Inversion Principles 7

VXS . SS=1si[XS] A By[xs] = P rulery
5 (10)
V'XS,. SS= tS,[XS,] A Bp[xs,] = P ruler,,
R ss= P

where thets; correspond to the arguments in the conclusion of each rule ar} tive

the premises (not also that tkg do not include any of the free variablesssandP).

The inversion principles given for— 3 and the typing rues in Fig. 1 are instances of
(10). We refer to this inversion principle as ttveak inversion principleAs we have
shown in Section 2: when applying the weak inversions to cases involving non-injective
term constructors, we need to analyse cases involving annoying variable renamings. We
will show later that a strong inversion principle can be derived from the weak one and
using the strong one we can avoid the renamings.

4 Nominal Logic Work

Before we proceed, we introduce some necessary notions from the nominal logic work
[7,9]. We assume that there are countably infinitely many names, which can be used as
binders. We base our description parmutation actionsnd on the notion afupport

The support of an object will, for the purposes of this paper, coincides with the set of
free names of that object. For details and a proper definition of support see [8]. A name
ais freshw.r.t. an object, say, provided that it is not free ity we write this asa # t.

Note that ift has finitely many free variables, then there exists a fresh variabletw.r.t.

We will also use the auxiliary notatioa # ts, in which ts stands for a collection of
objectsty,. .. t,, to meana # t,...,a # t,,. We further generalise this notation to a
collection of names, namebs # ts, which means; #ts,...,a, # ts.

Permutations are finite lists of swappings (i.e., pairs of variables). We write such
permutations aga; b1)(az be) - - - (a,, by,); the empty list]] stands for the identity per-
mutation, list append (i.er; @ 75) for the composition of two permutations and list
reversal (i.ex—"') for the inverse of a permutation. We define the permutation action
over the structure of types in HOL. The point of the permutation action is to push permu-
tations inside the structure of every object, renaming names on the way. A permutation
acting on names is therefore defined as follows:

l-a=a
a (ifrnsec=Db
@br-c=4b ifrec—a (11)
7 » C otherwise
The permutation action on lists, pairs and booleans is given by
me =1
7o (XIXS) =7 e X ¢ XS
7T'(X,y):(7T'X,7T°y) (12)

e« True= True
7 « False= False

8 Stefan Berghofer and Christian Urban

Notice the last two lines imply the fact that for every HOL-form&ahe equalityr -
B = B holds. This is because HOL is a classical logic and every formula is either true
or false. For alpha-equated lambda-terms we have

e Varx= Var (r « X)
TeAPP Lty = App(m « ty) (7« ta) (13)
7« Lam xt = Lam (7w « X).(7 +)
We can easily prove that the permutation actions in (11), (12) and (13) satisfy the fol-
lowing three properties:

M [-O=0
(i) (m @mo)e(L)=meme (o) (14)
(lll) If T R Ty then7r1 . (-) =T e (-)
where in the last clause equality between two permutations, thatdsn,, is defined
by the property that as; - a = w2 « a holds for all names. In the next section we
need the following lemma about freshness and the permutation actions in (11), (12) and
(13):

Proposition 1. If a# (_) and b# (_) then(ab)-(_) = ().
The notion ofequivariancds derived from the permutation actions:

Definition 1 (Equivariance [7]). A HOL-term t, respectively a HOL-formula B, with
free variables amongst xs éuivariantprovided for allr, we haver « t[xg = t[mxg
andr « B[Xx§ = B[w+xg.

From the definition of their permutation action, pairs, nil and list-cons are equivariant.
For HOL-formulae we have:

7+ (AABy=w<«AAT+B
7T-(AV)=m+AVTB
(A—>B):7T'A—)7roB
(oA =T A
(VXP) VX.meP(n71lex)
c(AXxPX)=3x 1P (77! ex)

Therefore for all the structures we consider in this paper we can move permutations
inside the structures until they reach variables, therefore all structures we consider in
paper will be equivariant.

For proving our main result in the next section it is convenient to refine our notation
tgxg andBixq for indicating the free variables &f andB. The reason is that some of
these variables stand for names and those names are potentibihding positions
By binding position we mean thein Lam xt. In what follows the notatiotsasxs
and Blasxg will be used to indicate that the variables in binding position of tthe
are included inas and the other variables of this are either inasor in xs (similarly
for HOL-formulae). We extend this notation also to rules: by writifeigxg we mean
rules of the form

B
B

(15)

Blasxg
Ridasxg "2

Nominal Inversion Principles 9

However, unlike in the notation for HOL-terms and HOL-formulae, we meayjasxg

that theasstandexactlyfor the variables occurring somewhere jrin binding position

and thexs stand for the rest of variables. To see how this notation works out in our
examples, reconsider the definitions for the relations given in (1) and (2). Using our
notation for these rules, we have

b [x;s1,S:] ti[—; %, T]
b2 [—;s1,,1] to[—;0 "t 10, T, To]
b3 [_7517827t] t3 [X;F7t7T17T2]

[

b4[X;S1,S2]

where -’ stands for no variable in binding position. An inductive definition for alpha-
equivalence between lambda terms includes the two rules:

=1t a X;éy tlz(Xy)'tg X#t2a
Lam xt; = Lam xt, ! Lam xt; = Lam yit, 2

There our notation would b [x;t; ,ta] andas [X,y;t;,ta].

5 Strengthening of the Inversion Principle

In this section, we show how the “weak” inversion rules in (10) can be used to derive
stronger inversion rules in which the equality constraints are formulated in such a way
that they can be solved without having to rename variables.

We have seen in the example abbub t’ from the Introduction that inversion prin-
ciples involving alpha-equivalence classes require some care. In order to rule out the
problematic case (and similar ones), we need to impose a condition on the rules of an
inductive definition. It is interesting that the condition we impose is the same as the one
introduced in [8] for justifying the admissibility of Barendregt's variable convention in
rule inductions.

A rule is said to bevariable convention compatibl®r shortvc-compatible pro-
vided the following two properties are satisfied:

Definition 2 (Variable Convention Compatibility). A rule rfasxg with conclusion
R tdasxg and premise Basxq is vc-compatibleprovided that:

¢ all HOL-terms and HOL-formulae occurring in r are equivariant, and
o the premise Basxg implies that as# tslasxd holds and that the as are distinct.

Note that if ruler does not contain any variable in binding position, then the second
condition is vacuously true. The first condition ensures that the relRtisequivariant.

The equivariance property will allow us to push permutations inside HOL-terms and
HOL-formulae until they reach free variables.

10 Stefan Berghofer and Christian Urban

If every introduction rule in an inductive definition satisfies these conditions, then
the inversion principle can be strengthened. The strengthened version looks as follows

Vxs . (bs # ssA distinct(bs;) = ss=ts;[bs;;xs] A By[bs;;xs]) =P ruler;

VXs,. (bs, # ssA distinct(bs,) = ss=ts,[bs,;xs,] A B,[bs,;xs,]) = P ruler,
Rss= P

(16)
where for every rule ,. .. r, we have a case to analyse. In our notation the rules have
the formr, [bs;;xs],. . . ,r ,[bS:;Xs,] where thebs; are the variables in binding position.
Note that in contrast to (10) the variables are no longer universally quantified, mean-
ing that we are free to choose the narhgsvhen we want to invoke the strong inversion
principle. The only constraints we have is that the preconditisng ssA distinctbs;)
need to be satisfied. This will be the case if bseare sufficiently fresh.

We now prove the main result of this paper: if the rules of an inductive definition
are vc-compatible, then the strong inversion principle in (16) holds.

Theorem 1. For an inductive definition of the predicat®, involving vc-compatible
rules only, a strong inversion principle exists deriving the implication R>S8.

Proof. We need to establisR ss=- P using the implications indicated in (16). To do
so we will use the weak inversion rule from (10). For each ryjas;xs;] of the form

Blas;;xs]
R ts[as;;xs]

we have to analyse one case of the form
Vas xs. ss=ts;[as;xs] A B;[as;xs] = P
To showP in these cases we have available the fact from (16), namely
Vxs. (bs # ssA distinctbs)) = ss= ts;[bs;;xs] A B;[bs;;xs]) = P an
We first assume that

ss= ts;[as;xs] (18)
Bi[as:xs] (19)

hold. Sincer;[as;;xs;] is assumed to be vc-compatible, we further have that
(a) as # ts;[as;xs)] and (b) distinctas;) (20)

hold. The proof then proceeds by choosing for every naineas; a fresh name such
that for all thecs; the following hold €s; is the collection of all those):

(a)cs #ss (b)cs#as (c¢)cs #bs (d) distinctcs) (21)

Nominal Inversion Principles 11

Such a sequenaes; always exists: the first three properties can be obtained since the
termsss as; andbs; stand for finitely supported objects—so a free variable always
exists; the last can be obtained by choosingdiome after another avoiding the ones
that have already been chosen. We now build the permutation

7€ (b, cy)... (b c1) (@n Cn). .. (&1 C1)

The point ofr is that when applied to thes; we getr « as; = bs;. This follows from
the properties in (20.b), (21.b-d) and the fact that we can asslistiactbs;) holds
(see below). We next instantiate in (17) te with 7 « Xs; giving us

(bs; # ssA distinct(bs,) = ss=ts;[bs;;7 « Xs] A B;[bs;;7 « X5]) = P
So in order to show, it suffices to prove
ss= ts;[bs;;m « Xs] A B;[bs;;m « XS] (22)
under the assumptions
(a) bs;#ss and () distinctbs) (23)

From (23.a) and (18) we obtalns; # ts;[as;;xs;]. Using this, (20.a) and Lemma 1,
we have thatr - ts;[as;;xs;] = ts;[as;;xs]. Since the rule is equivariant we have that
7« tS;[as;xs] = ts;[bs;w « xs] and thus also the first conjunct of (22). The reasoning
for the other conjunct is as follows: using (19) and the fact Bias a boolean we have
thatr « B;[as;;xs] holds. Again by equivariance of the rule, we can move the permu-
tation inside to obtaiiB;[bs;;7 » xs;]—the second conjunct of (22). This concludes the
proof. O

Let us next describe how the stronger inversion principles simplify the formal reasoning
in the type preservation lemma.

6 Examples

To use the strong inversion rules, we first have to make sure that the beta-reduction
and typing relation are equivariant. For this we only have to observe that all constants
(that is term constructors and functions) in the rules-e$g, typing andvalid are
equivariant. This follows either from the definition of the permutation action or is by

a simple induction over the predicates (in our implementation Isabelle will infer this
automatically). To show that the second condition in Definition 2 is satisfied we have to
show that the binders are fresh w.r.t. the conclusions of the rule they appear in. That is
a simple calculation for the rules

X, T)ul'Ft: T, ; S —3S
I“I—Lamxt:T1—>T23 Lamxsl—>5Lamxsz4

12 Stefan Berghofer and Christian Urban

Vs st (Y# (U, Uz) = up = App(Lamys) s AUz = Si[y:=S] AY# S) = P
VsiSt.ui =AppStAU=AppStAS — S =P

Vs s t.up =Appts Auz =Appts Asy —3 S, =P

Vs S (X# (U, Uz) = up =Lamxs; Auy =Lamxs; A sy —p S) = P

U —pg U =P (24)

VIXT.A=I'Au=VarxAU=TAvalidI'A(x, T)e = P
Vt1T1T2t2.A:F/\U:Appﬁtg/\U:Tz/\Fl_tlZT1 —)Tg/\F"tg:T1:>P
VTiLtTo. (X# (A, u,U)=> A=TAu=LamxtAU=T; > ToA X, T1):I'Ft:T2)=>P

AFu:U=P

(25)

Fig. 2. Strong inversion principles derived by the Nominal Datatype Package for the inductive
predicates for beta reduction and typing.

In the first case we have to show tha# (I, Lam xt, T; — T2) holds under the
assumption thafx, T;)::I" F t : T,. Since we can show by a routine induction that
typing judgements only includealid contexts, we have thaglid ((x, T1)::I") holds.

From this we can infer that# I". We also know that # Lam xt (sincex is abstracted)

and thatx # T, — T» (since types in the simply-typed lambda-calculus do not contain
any variables). We can discharge the conditions in the other rule by similar arguments.
However the condition will fail for the rule

b 26
App(Lam xs;) s, — 3 S1 [X=%;] ! (26)

because we cannot determine whethe# s,. However we can show that this beta-
reduction rule is equivalent to the following more restricted rule

X# S
App(Lam xs;) S, — 3 S1[X:=S;]

bl (27)

This is because we can choosg such thaty # (s, s;) and alpha-renam@pp (Lam
X.51) S to App (Lam y(y X)»s1) S;. Then apply the restricted rule to this term in order
to obtain the reduct(y X)«s,)[y:=s:]. By a structural induction oves;, we can show
that this term is equal tg, [x:=s;] as desired. The point of this “manoeuvre” is that we
can show that the restricted rule for beta-reduction does satisfy the vc-condition.

The result of these calculations is that there are strengthened inversion rules for
beta-reduction and the typing-relation. They are given in Fig. 2. Using them for the type
preservation lemma, the second and third case are the same as with the weak inversion
rule (4). In the first and fourth case, however, the user does not need to show the claim
for an arbitrary variable, but for a sufficiently freshly chosen one (it has to be fresh
w.r.t. (Ui, Uz)). In the strong inversion for the typing rule we have that the cases for
variables and applications are the same as with the weak inversion rule (5). In the case
of lambda abstractions, the user can choosgesa thatx # (A, u, U). These choices
will hugely simplify the formal reasoning. To give an impression of this fact we show
next three lemmas in Isabelle/HOL proving special instances of inversion principles.

Nominal Inversion Principles 13

lemmaTy-Lam-inversion
assumegy: I' - Lam x.t: T and fc: x# I
shows3T; T2. T=T; =+ T2 A (X,Tl)Z:F Ft: T,
usingty fcby (cases ruletypingstrong-cases(auto simp addalpha)

lemmaBeta-Lam-inversion
assumesed: Lam x.t— g sand fc: x#s
shows3t. s=Lamx.t At —z t’
using red fcby (cases ruleBetastrong-cases(auto simp addalpha)

lemma Beta-App-inversion
assumesed: App(Lam x.§ s— 4 r and fc: x#(s;r)
shows(3t’.r = App(Lam x.t) sAt —sg t') V
(3s’.r=App(Lamx.) sS'As—rz s) V (r = t{x:=9|)
usingred fc
by (cases ruleBetastrong-cases(auto destBeta-Lam-inversion simp addlpha)

These lemmas are needed frequently in proofs about structural operational semantics.
As seen in Section 2, it would have been quite painful to derive them using the weak
inversion principles. We use tt@pharule in the proofs above in order to rewrite the
trivial alpha-equivalenceam xt = Lam xstot = s.

The Isar-proof of the complete type preservation lemma is given in Fig. 3. Lines 6
and 7 show the variable case. Lines 9-21 contain the steps for the case where a beta-
reduction occurs (the other cases are automatic in Line 22). We first chose a fresh name
X (Line 10); invertApp t to — 3 u’in Line 12 using the fresk. In the only interesting
case, we have thdt - Lam xs; : Ty — T, holds (Line 15), which we can invert to
(X, T1):: '+ s : To. To this we can apply the Lemma 2 (Line 20). In the lambda-case
(Lines 24-31), we inverLam xt — 3 u’. We know thatx is fresh foru’ by the strong
induction (Line 5). We can apply the induction hypothesis in Line 28 and use the typing
rule to conclude (Lines 30 and 31).

7 Conclusion and Related Work

As long as one is dealing with injective term constructors, the weak (or standard) inver-
sion rules provided by Isabelle/HOL work similarly to the informal inversion by match-
ing an assumption over the conclusions of inference rules. However, non-injective term
constructors, such asimin the lambda-calculus, give rise to annoying variable renam-
ings, and formal reasoning is quite different from and much more inconvenient than
the informal inversion by matching. This was observed in [3], because in their locally
nameless representation of binders, all term constructors are injective.

We have shown in this paper that if a binder is fresh with respect to the conclu-
sion of the rule where the binder appears and the inductive predicate satisfies the vc-
condition, then one can avoid the renamings. As a result the formal inversion principles
are again as convenient the informal reasoning of inversion by matching—though the
strong inversion principles only apply to vc-compatible inductive relations. In (8) we
have shown that the informal inversion by matching can lead to faulty reasoning when
the vc-condition is not satisfied. In our implementation this kind of faulty reasoning is

23

14 Stefan Berghofer and Christian Urban

lemmatype-preservation
assumedy: I'u: U andred: u— 3 U’
showsI'+u': U
usingty red
proof (nominal-induct avoidingu’ rule: typing strong-inducj
case(ty-Var ' x T)
from (Var x — s u’y showI' -u’: T by (case$ (simp-all
next
case(ty-AppI't; T1 Ta t2)
obtain x::namewhere fc: x # (I', App t t2, u’) by (rule exists-fresh-var
from (App ti to —» 5 u" showI" -u’: T, usingfc
proof (cases ruleBetastrong-casesvhere x=x and xa=x])
case(Beta s si)
then haveegst; =Lam x.s t =S U’ = s1[x:=s,] using fc by (simp-all)
from «(I'+1t, : Ty — T2 haveI' - Lam x.s : T1 — T2 using eqgsby simp
then have(x,T1)::I" F s : T2 usingfc
by (cases ruletypingstrong-cases(auto simp addalpha)
moreover
from <"ty : Ty haveI' s, : Ty using egsby simp
ultimately have I' F s, [x:=s;] : T2 by (rule type-substitutivity
then showI" - u’: T» using eqsby simp
ged (auto intra ty-App
next
case(ty-Lamx T I"'tT2)
from (Lam x.t—s5 U X # u"
obtain s, wheret-red: t — 5 s andeg u’ = Lam x.s
by (cases ruleBetastrong-cases(auto simp addalpha)
haveih:t —g s, = (X, T1)::I'F % : Ty by fact
with t-red have (x,T1):: ' F s : T2 by simp
then havel' F Lam x.s : T1 — T» by (rule typingty-Lam)
with eqshow I - u’: T; — T2 by simp
ged

Fig. 3. An Isar-proof of the type preservation lemma in Isabelle/HOL.

prevented because the strong inversion principles are derived only when the user has
verified the second part of the vc-condition (see Def. 2); the first part of that condi-
tion is verified automatically by observing that equivariant inductive predicates must be
composed of equivariant components only.

What was surprising to us is that the strong inversion principles depend on the vc-
condition that we introduced in previous work [8]. There, this condition was used to
make sure that the variable convention in proofs by rule induction does not lead to
faulty lemmas. An disadvantage of our approach is that in case of beta-reduction we
have to use rulé] shown in (27) and so far we have no automatic method to derive
from it the usual rulé; shown in (26).

The most closely related work to the one presented here is our own [8], where we
study strong induction principles. Here we were concerned with inversion principles,
which in our setting with non-injective term constructors aot a degenerated form

Nominal Inversion Principles 15

of induction (as is usually the case). In contrast with that work [8], we also deal here
with the case where rules include quantifiers. In the context of type theory, inversion
principles have been studied by Cornes and Terrasse for the Coq proof assistant [4]
and by McBride for the LEGO system [5]. McBride’s implementation in LEGO uses
an algorithm for solving equality constraints based on unification. The derivation of
inversion principles for inductive sets in Isabelle’s object logic HOL and ZF was first
described by Paulson [6].

References

1. P. Aczel. An Introduction to Inductive Definitions. In J. Barwise, ediktendbook of Math-
ematical Logi¢ pages 739-782. Elsevier, 1977.

2. B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell, D. Vytini-
otis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized Metatheory for the Masses:
The poPLMARK Challenge. In T. Melham and J. Hurd, editof$ieorem Proving in Higher
Order Logics: TPHOLs 20Q5LNCS. Springer-Verlag, 2005. Available electronically at
http://www.cis.upenn.ede/plclub/wiki-static/poplmark.pdf.

3. B. E. Aydemir, A. Chargéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering formal
metatheory. In G. C. Necula and P. Wadler, editBreceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 200fages 3—15. ACM, 2008.

4. C.Cornes and D. Terrasse. Automating Inversion of Inductive Predicates in Coq. In S. Berardi
and M. Coppo, editorslypes for Proofs and Programs, International Workshop TYPES'95,
Torino, Italy, June 5-8, 1995, Selected Papemslume 1158 ofLecture Notes in Computer
Sciencepages 85-104. Springer, 1996.

5. C. McBride. Inverting Inductively Defined Relations in LEGO. In E. Ginez and C. Paulin-
Mohring, editors,Types for Proofs and Programs, International Workshop TYPES'96, Aus-
sois, France, December 15-19, 1996, Selected Papehsme 1512 of_ecture Notes in Com-
puter Sciencepages 236—253. Springer, 1998.

6. L. C. Paulson. A fixedpoint approach to (co)inductive and (co)datatype definitions. In
G. Plotkin, C. Stirling, and M. Tofte, editor®roof, Language, and Interaction: Essays in
Honor of Robin Milner pages 187-211. MIT Press, 2000.

7. A. M. Pitts. Nominal Logic, A First Order Theory of Names and Bindingformation and
Computation186:165-193, 2003.

8. C.Urban, S. Berghofer, and M. Norrish. Barendregt's Variable Convention in Rule Inductions.
In F. Pfenning, editor21st International Conference on Automated Deduction (CADE-21)
volume 4603 of_ecture Notes in Atrtificial Intelligenc@ages 35-50. Springer-Verlag, 2007.

9. C. Urban and C. Tasson. Nominal Techniques in Isabelle/HOLPr¢rt. of the 20th Inter-
national Conference on Automated Deduction (CADB)ume 3632 oLNCS pages 38-53,
2005.

