Strong Normalisation of Cut-Elimination
in Classical Logic

C. Urban G.M. Bierman

University of Cambridge Computer Laboratory
{cu200,gmb}@cl.cam.ac.uk

Abstract. In this paper a strongly normalising cut-elimination proce-
dure is presented for classical logic. The procedure adapts the stan-
dard cut transformations, see for example [12]. In particular our cut-
elimination procedure requires no special annotations on formulae. We
design a term calculus for a variant of Kleene’s sequent calculus G3
via the Curry-Howard correspondence and the cut-elimination steps are
given as rewrite rules. In the strong normalisation proof we adapt the
symmetric reducibility candidates developed by Barbanera and Berardi.

1 Introduction

Gentzen has shown in his seminal paper [10] that all cuts can be eliminated from
proofs in LK and LJ. Since then many Hauptsdtze (cut-elimination theorems)
have appeared for various sequent calculus formulations. Most of them, including
Gentzen’s original, provide a cut-elimination procedure which is weakly normal-
ising, i.e., they employ a particular reduction strategy (for example an inner-most
reduction strategy or the elimination of the cut with the highest rank). Besides
these weakly normalising methods a few strongly normalising cut-elimination
procedures have been developed; for example in [4-7,13, 14]. However, all those
methods impose some form of restriction on the reduction rules to ensure strong
normalisation. A common restriction is to not allow a cut-rule to pass over
another cut-rule (exceptions are [6,13]). However this limits, in the intuitionis-
tic case, the correspondence between cut-elimination and beta-reduction [8, 14].
Therefore in this paper we develop a strongly normalising cut-elimination pro-
cedure adapting the standard cut-elimination steps for logical cuts and allowing
commuting cuts to pass over other cuts. (A cut-rule is said to be a logical cut
when both cut-formulae are introduced by axioms or logical inference rules; oth-
erwise the cut is said to be a commuting cut.) Our method is closely related
to the cut-elimination procedure developed for LK [6,15]. However we do not
need their colour annotations.

The problem of non-termination of cut-elimination occurs in both intuitionis-
tic logic and classical logic. One example of a non-terminating reduction sequence
in intuitionistic logic is given in [20]; for classical logic [6] and [9] give the fol-
lowing example:

Ar-rA A A Ar-rA A A

AVACAA P A ACANA CARt
AVA-A ORI ANA o f” 'L
AVA - ANA w

where a commuting cut needs to be eliminated. There are two possible reduc-
tions: either the cut can be permuted upwards in the left proof branch or in the
right proof branch. If one is not careful, applying these reductions in alternation
can lead to arbitrary big normal forms and to non-termination. This is reme-
died in [6] by devising a specific protocol for cut-elimination, which depends on
additional information (‘colours’) attached to every cut-formula. For this cut-
elimination procedure strong normalisation and confluence has been proved; the
colours are used to ingeniously map every LK*?-proof to a corresponding proof-
net in linear logic and every cut-elimination step to a series of reductions on
proof-nets (strong normalisation for proof-nets has been proved in [11]).

We shall consider a sequent calculus formulation very similar to Kleene’s G3
[16] and G3c of [18], where the structural rules are completely implicit in the form
of the logical rules. Another feature of our work is that we shall annotate proofs
with terms and term rewrite rules will describe the cut-elimination steps. In our
approach no additional information is required to guide the cut-elimination pro-
cess. The rest of the paper is organised as follows: §2 contains various notational
conventions and definitions; §3 contains a detailed proof of strong normalisation
for the rewrite system. The proof adapts the technique of symmetric reducibility
candidates [1]; §4 concludes and gives suggestions for further work.

2 Terms, Judgements, Rewrite Rules and Substitution

The main idea behind the cut-elimination procedure presented in this paper is
to transport one subderivation of a commuting cut to the place(s) where the
cut-formula is introduced. Consider the following proof in G3c:

ABrCA* | A'wDA AvDA A E-A A BrA
T A-BDC,A* ArB>C,A ¢ Ar D, ANA R A, Er ANA Rp w2
AVArL-BD C, A r A, DD Er AAA L .y
u

AVA,D D Ev~B D C,ANA

The cut-formula A is neither a main formula in the inference rule Vr,, nor in D,.
Therefore the cut is a commuting cut. In 71 the cut-formula is a main formula
in the axioms marked with a bullet; in 72, respectively, in the axioms marked
with a star. Eliminating the cut in the proof above means to either transport
the derivation mo to the places marked with a bullet and ‘cut it against’ the
corresponding axioms, or to transport m; and ‘cut it against’ the axioms marked
with a star. In both cases the derivation being transported is duplicated.

In the remainder of this section we shall annotate proofs, via the Curry-
Howard correspondence, with terms and present a rewrite system for cut-elim-
ination. The raw terms are defined in Figure 1 using names and co-names as

Raw Terms: M, N := Ax(x,a) Axiom
| Cut({a:B)M, (x:B)N) Cut
| Andr({a:BYM, (b:CYN,c) And-R
| And%(@:B)M,y) And-L; (i=1,2)
| Orh(ta:B)M,b) Or-R; (i=1,2)
| Orp(@:B)M,(y:C)N, z) Or-L
| Impg((@:B)Xa:CYM, b) Imp-R
| Impy({a:B)M, (x:C)N, y) Imp-L

Fig. 1. The grammar for the raw terms where B and C are types; x,y, z are
taken from a set of names and a, b, ¢ from a set of co-names.

binders. Besides the terms, which are going to be used as annotations for proofs,
there are two other syntactic categories which play an important role in the
definition of substitution and in the strong normalisation proof. Let M and N
be terms, then (z:B)M and (a:B)N are called named terms and co-named terms,
respectively. We use round brackets to signify that a name becomes bound in a
term and angle brackets that a co-name becomes bound in a term. Analogous
to the Church-style formation rules for the A-calculus, all binders are explicitly
typed (types are defined as normal). However in what follows we will omit these
typings when they are clear from the context. Given a term M, its set of free
names is written as FN(M) and its set of free co-names is written as FC(M)
(similarly for named and co-named terms) — their routine definitions are omitted.
We assume that the three types of terms are equal up to a-conversion and that
a Barendregt-style naming convention holds for names and co-names (see 2.1.13
in [2]). Rewriting a name x to y in M is written as M{x — y} (respectively
M{a—b} for co-names). The routine formalisation of the rewriting operation is
omitted.

In the following we are only concerned with terms which can be well-typed
by the inference system given in Figure 2. The typing judgements are of the form
I'> M v> A where I' is a set of name-type pairs and A is a set of co-name-type
pairs. The reader will see that this system is the term system for a variant of
Kleene’s G3 formulation via the Curry-Howard correspondence. Our Ap and Vg
rules differ slightly from the G3 and G3c of [18]: they provide more convenience
in the strong normalisation proof, but the original rules could be used as well
(see Section 4). There are no primitive rules for contraction and weakening: they
are completely implicit in the form of the logical rules. However, special care
needs to be taken with implicit contractions. Consider the proof fragment:

v:B,I'>Mv>A,b:B>C,a:C 5
o Impg(@(@M,b)> A b:B>C 1 (1)

The typing rule introduces the co-name-type pair b: B O C in the conclusion.
However it is allowed that this pair can already be present in the premise. On
the other hand, the name-type pair x: B and the co-name-type pair a:C in the

z:B,I' > Ax(z,a) » A,a: B

x:By, > MvA N I'cMvAa:B I'>N»>Ab:C
: L
y:B1ABe, I' > And7, ()M, y) » A I' > Andr({a) M, BYN, c) » A, c: BAC f
z:B,I'>MvA y:C,'>Nv>A y I'>Mv A a:B; y
- R;
2:BVC, T »Orp (@M, N, 2) > A ' ° I'»>Or((@M,b) > A,b: B1VBs
I'eM>Aa:B z:C;,'>Nv>A z:B,'vM>Aa:C

D D
y:BDC,I'vlmp,((a)M,(@N,y) > A r I > Impg(@(aM,b)>Ab:B D> C f

Iy >M>A17G:B x:B,FQ DNDAQ
F1,F2 l>CLJ'E((U‘)]\4, (ZL’)N) DAl,AQ

Cut

Fig. 2. The typing rules for the propositional fragment.

premise are not allowed to be in the conclusion: they become bound in the term.
The following definition corresponds to the traditional notion of what the main
formula of a inference rule is.

Definition 1.
A term M introduces the name z or co-name c if M is of the form:

for z: Ax(z,c) for ¢: Ax(z,c)
And’ ((2)8, z) Andg({a)S, 0T, c)
Orp (@S, T, z) ok, ((a)S, ¢)
Imp; ({a)S, ()T, z) Impg(@)a)S,)

Recall our example from the beginning of this section where a commuting cut
can be permuted in two different directions. Therefore the rewrite system for our
cut-elimination procedure is defined using two, symmetric forms of substitution,
which are written as Pz := (@)Q)] and S[b := () T]. These substitutions are used
when the inference rules directly above the cut do not introduce the cut-formula.
In these cases the cuts can permute, or ‘jump’ directly to the place(s) where the
cut-formula is introduced (i.e., is a main formula). Whenever a substitution ‘hits’
a term where the cut-formula is introduced the substitution ‘expands’ to a cut.
Two examples are as follows:

And g ((@)M, BN, c)[c := @)P] ¥ Cut((e)And g (@) M, BN, ¢), (@) P)

Ax(z,a)[z = Q) &f Cut((0Q, (®)Ax(z, a))

In the first term the formula labelled with ¢ is the main formula and in the
second the formula labelled with = is a main formula. So in both cases the
substitution expands to a cut. In the other cases where the name or co-name
that is substituted is not a label for the main formula, then the substitution is
pushed into the subterms or vanishes in case of the axioms. Two examples are
as follows (assume the substitution [o] is not of the form [z :=...] or [a := ..]):

Orp (@M, N, z)[o] def Orp (@) M[o],) Nlo], 2)
Ax(z,a)[o] def Ax(z,a)
However, special care needs to be taken for axioms, because they have two main

formulae. For technical reasons in the strong normalisation proof we need the
following property:

Mz := (@) P][b:= Q] = M[b:= @Q|[z := (@) P] (2)

it b ¢ FCla)P) and x ¢ FN((yQ). The naive definition outlined above does
not satisfy this property: in case M is of the form Ax(z,b) we get two different
terms:

Ax(z,b)[z := (@) P][b: >Q]d—efcut()P, (2)Cut((hAx(z, b), 1)Q))

Ax(z,b)[b := WQ][z := (@) P) s Cut(YCut({a) P, (@)Ax(z, b)), Q)
Furthermore the nested cuts with an axiom as an immediate subterm could be a
source for non-termination as noted in [6]. Therefore we use a more subtle defini-

tion of substitution and introduce two special clauses to handle the problematic
example above.

Definition 2. Substitution

Cut({@)Ax(z,a), @M)[z := (BP] = Cut(b)P, @ M{y—=x})
Cut(la) M, @Ax(z,b))[b = @P] % Cut(M{arb}, xP)
Mlc := (y)P] def Cut((e’M,) P) if M introduces ¢
My := (&) P] & Cut({e’P, (M) if M introduces y
otherwise def
Ax(z,a)[oc] = Ax(z,a)

Cut({a)M, (@)N)[o]
Andgr({@)M, (b)N, c)[o]

[
[Cut({a) M|[o], () N[o])

[Andg({a) M|o], b) Nlo],c)
[o

[

[

[

)
)
)
And (@M, y)[o] L Andi (@) Mo],y)
Ori({@ M, b)lo] L' Oriy(ta) Mlo],b)
Orp (@M, N, z)[o] def Orr((x) M|o],) Nlo], z)
Imp g (@) {a)M, b)[o] def Imp g ((@)a) M[o],b)
Imp,, (&) M, (@) N, y)[o] def Imp;, (@) M|o], (@) No],y)

Recall that we assumed a Barendregt-style naming condition for (co-)names. A
substitution M[a := (x:B)N] is said to be well-formed, iff Cut({a:B)M, (x:B)N)
is well-typed. In the following we shall consider only well-formed substitutions.

A naive translation of the traditional, logical cut-elimination rules into our
term calculus is, for example, as follows (A1 case):

Cut(()And g (aY M, (BN,), @)Andy (@) P,y)) — Cut({a)M, (@) P)

However, there is a problem with this reduction rule. In our sequent calculus, the
structural rules are implicit (see the discussion of proof (1)). This makes the cal-
culus smaller, and more importantly it provides a very convenient way to define

substitution (no explicit contractions are required when a term is duplicated).
Unfortunately, we have to pay a price for this in the logical cut-elimination rules.
Consider the following instance of the redex above:

IneM»>A,c:BANCoa: B F1>N>A1,b:0/\ x:B,Ih>P>A;
I > Andgr({@) M, ()N, c) » A1, c: BAC n y:BAC, I'y > And} (@) P, y) » As
I, Iy » Cut((@Andr (@) M, (BN, ¢), @ And} (@) P, y)) > A1, Az

Ay

ut

where ¢: BAC € FC(M). The naive reduction rule given above would (incor-
rectly!) reduce this proof to the following:
F1>M>A1,C:B/\C,a:B JZIB,FQDPDAQ
I, Iy » Cut({a) M, (@ P) » Ay, Az, c: BAC

Cut

Unfortunately ¢ has now become free! In order to obtain a subject reduction
property for the rewrite system we have to include in every logical reduction step
extra substitutions (the main formula of the conclusion could potentially be in
every subterm). These substitutions ensure that no bound (co-)name becomes
free. In effect the logical reduction rules look slightly complicated, but that is
the price we have to pay for the convenience of not having explicit structural
rules. The cut-elimination procedure is defined (in its entirety) as follows:

Definition 3. Cut-Elimination
Logical Cuts (i = 1,2)
1. Cut((®)Andg((a1) M, {a2) M, b), (@)And, ()N, y))
—Cut({a;) M;[b := @And7 (@ N, y)], @ N[y := (BAndr({a1) M1, (a2) M2, b)])

2. Cut((Org((a) M, b), @pOrr ((x1) N1, (x2) N2, y)) _
—Cut({@)M[b := @ OrL((@1) N1, (®2) N2, y)], @) N;[y := (b)Org({a) M, b)])

3. Cut(DImpg(@)adM,b), (DImp, ()N, ()P, z))
—Cut({a)Cut({c) N[z := (bS], @ M[b := (2T]), @ Plz := b)S]) or
—Cut({c) N[z := S], @)Cut({a) M [b := ()T, () P[z := b)S]))

where S = Impg ((@)a)M,b) and T = Imp, (&N, WP, z)
4. Cut({@?M, (@)Ax(z,b)) — M{a—b} if M introduces a
5. Cut({(@Ax(y,a), @ M) — M{z+—y} if M introduces x
Commuting Steps (otherwise)

6. Cut((@M,@N) —Mla := @N] if M does not introduce a or
— N[z := (@ M] if N does not introduce z

There are a few subtleties in the reduction rule for the third case. Firstly, there
are two ways to reduce a cut-rule having an implication as the cut-formula.
Therefore we have included two reductions for this case. Secondly, special care
needs to be taken that there is no clash between bound and free (co-)names. In
the first reduction rule we need to ensure that a is not a free co-name in N; in
the second rule that x is not free in P. This can always be achieved by renaming
a and x appropriately (they are binders in Impg((x)(a@)M,b)). We assume that
the renaming is done implicitly in the cut-elimination procedure.

The main difference between our rules and the cut-elimination procedure
defined for LK% is the inclusion of non-determinism. Recall our example from
the beginning of this section where a commuting cut can move in two directions.
Let Cut({a)M, (x)N) be the term annotation for this commuting cut where M
and NN are the corresponding term annotations for proofs 71 and 75, respectively.
According to our last rule, this term can reduce to either M[a := (x)N] or
N[z := (a)M]. The choice to which term it reduces is not specified (similarly
for the reduction of the logical cut in the third case). In contrast, in LK this
choice is completely determined by the colour annotation. In general the colour
annotation reduces the number of normal forms (cut-free proofs) reachable from
a proof containing cuts (see §4 for an example). For the substitution we have
the following lemmas:

Lemma 1.
(i) Mz := (@) Ax(y, a)|—T M{z—y} or Mz := (@) Ax(y,a)]
(ii) Ma = (@)Ax(z,b)]—T M{ar—b} or M[a := (x)Ax(z,b)]

M
M

Proof. Routine induction on the structure of M.

Lemma 2. For any arbitrary substitution [o]
if M——M', then M[o]— M'[o] or M|[c] = M'[0]

Proof. Induction on the structure of M. One interesting case is where M|[o] =
M'[o]; it is as follows:

Case M = Cut({a)Ax(y,a), (@ P): Let P introduce z, then M — M’ with M’ =
P{z—y}. Let [0] be [y := (&Q]. We have:
M{o] = Cut({a)Ax(y, a), (@) P)[y := (0)Q)] o Cut((0Q, W P{z—y})

M'[o] = P{z—y}y := (0Q] ef Cut({0Q, W P{z—y})
3 Proof of Strong Normalisation

We give in this section a detailed proof of strong normalisation for the reduction
system developed in the previous section. To save space only details for the A-
fragment are presented, but some pointers are given at the end of this section
for the other connectives. The proof uses the notion of symmetric reducibility
candidates from [1]. The proof proceeds as follows:

1. Define the sets of candidates over types using a fixed point construc-
tion.

2. Prove that candidates are closed under reduction.

3. Show that a named or co-named term in a candidate implies strong
normalisation for the corresponding term.

4. Prove that all terms are strongly normalising.

The set SN denotes the set of strongly normalising terms. The candidates are
defined only for named and co-named terms. We say that (B) is the type of
co-named terms of the form (a:B)M; similarly (B) is the type of named terms
of the form (x:B)M. We define:

1. CTpy is the set of co-named terms of type (B),
2. NT(p) is the set of named terms of type (B).

In the following we define for every type (B) and (B) the candidates, written
as [(B)] and [(B)]; they are subsets of CT gy and NT{p), respectively. The
definition of the candidates uses set operators for which we define the types as
follows (where the set of all subsets of a given set S will be denoted as P(.5)):

ANDRIGHT (gacy : P(CT(py) x P(CTicy) x P(NT(grcy) — P(CT(pacy)
ANDLEFT(B ABs) (NT(BZ)) X P(CT(BI/\32>) - P(NT(Bl/\Bg))

BINDING (g) : P(CT(py) — P(NT(p))
BINDING B> (B)) — P(CT(py)
NEG(B) () — P(NT(B))

NEG (p) : (CT< y) = P(NT(g))

The operators are indexed on types. When defining the set operators we use the
following two sets of named and co-named axioms:

AXIOMS) & {(@:B)Ax(y, b) | for all Ax(y,b)} C NT(p,
AXI0MS, gy < {(@:B)Ax(y, b) | for all Ax(y,b)} € CT(p)

The set operators ANDRIGHT, ANDLEFT? and BINDING are defined as follows:

ANDRIGHT (gacy (X, Y, Z) def {{BAC)Andg({a:B)M, (:C)N, c) |

¥ @:BAC)P € Z. (@) Me = @P] € X and (b N|c:= @P] € Y}
|

ANDLEFT! 5 (X, Y) € {(:B1ABo)And?, (:B) M,)

VA{a:B1AB)P €Y. (x) My :==(a)P] € X}
def

BINDING(p)(X) = {@:B)M |V(a:B)P € X. M[z := (a:B)P] € SN}

BINDING (V) & {{:BYM | V(@:B)P € Y. M[a := :B)P] € SN}

The set operator NEG and the candidates [(B)] and [(B)] are defined simulta-
neously over types:

NEG p) (X) def AXIOMS gy U BINDING p)(X) (B) atomic
def AXIOMS(capy U BINDING onpy(X) U (B) = (CAD)
ANDRIGHT (2 py ([(C)], [{D)], X)
NEG(g)(Y) def AXIOMS) U BINDING () (Y)) (B) atomic
2ef AXIOMS(cap)y U BINDING(cap)(Y) U (B) = (CAD)

ANDLEFT , 1) ([(C)], Y) U ANDLEFT{.,, 1y ([(D)],Y')

For the definition of the candidates we use fixed points of an increasing set
operator. A set operator op is said to be:

increasing, iff S C S = op(S) Cop(S’), and
decreasing, iff S C S = op(S) 2 op(S’).

The candidates are defined as follows:
def def
[(B)] = Xo and [(B)] = NG ([(B)])

where X is the least fixed point of the operator NEG(p)o NEG gy .1 We have that
BINDING gy and ANDRIGHT capy (i.e., X — ANDRIGHTcApy ([(C)], [(D)], X))
are decreasing operators. But then NEG gy must be a decreasing operator (sim-
ilarly NEG () must be decreasing). If both NEG gy and NEGpy are decreasing,
then the operator NEG(p)oNEGp) is increasing and the least fixed point Xj
exists according to Tarski’s fixed point theorem. For the candidates we have:

[(B)] = NEG(5) ([(B)]) and [(B)] = NEG5) ([(B)])-

Since NEG is closed under AXIOMS we also have have:
AXIOMS) C [(B)] and Ax1oMS gy C [(B)]. (3)

Lemma 3.

(i) If (@B)M € [(B)] and M—— M’ then (a:B)M' € [(B)].
(i) If @:B)M € [(B)] and M—— M’ then (x:BYM' € [(B)].

Proof. We prove both cases simultaneously by induction on (B) and (B).

Case (B) atomic: For (i) we have [(B)] = NEG gy ([(B)]); therefore (a:B)M €
AXIOMS gy U BINDING gy ([(B)]). M cannot be an axiom (because axioms do

not reduce), therefore (a:B)M € BINDING gy ([(B)]) def {{a:B)S | V(@:B)T €
[(B)].S]a := (@:B)T] € SN}. For (a:BYM we have MJa := (x:B)P] € SN for
all (@:B)P € [(B)] and since M—— M’ we know by Lemma 2 that either
Mla := @ P]—M'[a := @)P] or M[a := @)P] = M'[a := (©)P]. In both
cases we have M'[a := (z:B)P] € SN for all (a:B)P € [(B)]. This implies
that (a:B)M' € BINDING gy ([(B)]) and hence (a:B)M' € NEG g ([(B)]).
Therefore (w:BYM' € [(B)]. Similarly for (ii).

Case (B) = (CAD): (@CAD)M is element of [(CAD)] =NEG ¢ py ([(CAD)]) <
AXIOMS (¢ py UBINDING (¢4 py ([(CAD)])UANDRIGHT (4 py ([{C)], [{D)], [(DAC)]).

(@CAD)M ¢ AXIOMS(capy, because axioms do not reduce. Therefore we
have that (a:CAD)M € ANDRIGHTcpy([(C)], [(D)], [(CAD)]) or that
(aCAD)M € BINDING(capy ([(CAD)]). In the second case we reason as
in the atomic case. In the first case we know that (a)M is of the form
(CADYAndr({d)S, ()T, ¢) and (@M’ = (CADYAndr({d)S’, ()T, ¢) where
either S——S" and T = T" or S = S’ and T——T". Assume the former
case (the other case being similar). We have that (&:C)S[c := (©)P] € [(C)]
for all (x:CAD)P € [(CAD)]. Since S—S" we know by Lemma 2 that ei-
ther S[c:= @)P] = S'[c:= @)P] or S[c:= (@)P]—5"[c := @) P]. In both

1 In all rigour we also have to assume that the candidates are closed under a-
conversion.

cases (in the second by IH) we can infer that (d)S’[c:= (@P] € [(C)]
for all (:xCAD)P € [(CAD)]. Therefore we know that (@:CAD)M' must
be in ANDRIGHTcpy ([(C)], [{(D)], [(CAD)]) and we can conclude that
(@CAD)M' € [{(CAD)]. Similarly for (ii).

Lemma 4.

(i) If (@BYM € [(B)], then M € SN.
(i1) If @:B)M € [(B)], then M € SN.

Proof. Simultaneous induction on the types (B) and (B).

Case (B) atomic: Since [(B)] = NEGp)([(B)]) we have (a:B)M € AXIOMS p)
or (a:B)M € BINDING gy ([(B)]). In the first case M is an axiom and therefore
strongly normalising. In the second case we know that M[a := (a:B)P] € SN
for all (@:B)P € [(B)]. By (3) we have (x:B)Ax(z,a) € [(B)] and therefore
Mla = @)Ax(z,a)] € SN. Furthermore we know by Lemma 2 that either
Mla := @Ax(z,a)] = M or Ma := (@)Ax(z,a)]—+ M. Therefore M €
SN. Similarly for (ii).

Case (B) = (CAD): By [{(CAD)] = NEGcapy ([(CAD)]) we have that:

(a:CAD)M € AXIOMScapy U BINDINGcapy ([(CAD)]) U
ANDRIGHT (¢ p) ([(C)], [(D)], [(CAD)])

If {a:CAD)M is element of the first two sets we reason as in the atomic case.
Left to show is that M € SN if (a) MEANDRIGHT (¢ py ([(C)], [{D)], [(CAD)]).
In this case (a) M is of the form (¢)Andr({d)S, ()T, ¢) where (d)S[c := (@) P] €
[(C)] and (e)T'[c := (@) P] € [(D)] for all (x:CAD)P € [(CAD)]. By (3) we
know that (x:CAD)Ax(z,c) € [(CAD)] and we have (d)S[c := (©)Ax(z,c)] €
[(C)] and (e)T[c := @WAx(z,c)] € [(D)]. By IH we can infer that S[c :=
(@)Ax(z,c)] € SN and T[c := @Ax(x,c)] € SN. From Lemma 1 we can
infer that S[c := (@Ax(z,c)] = S or S[c:= (@)Ax(x,c)]—TS. In both cases
we know that S € SN (similarly 7' € SN). But then Andr({d) S, (e)T,c)
must be strongly normalising too. Similarly for (ii).

Lemma 5. If M,N € SN and {a:B)M € [(B)], @:B)N € [(B)]
then Cut({a:BYM, (x:B)N) € SN.

Proof. We assign to each term of the form Cut({a:B)M, (x:B)N) a lexicograph-
ically ordered induction value of the form (6,{(M),I(N)) where § is the degree
of the cut-formula B; (M) and I(N) are the lengths of the maximal reduction
sequences starting from M and N, respectively. By assumption both I(M) and
I(N) are finite. We prove that all terms to which Cut({a)M, (x)N) reduces are
strongly normalising.

Inner Reduction: Cut({a)M, (2)N)—Cut({a)M’, (@)N') where either M =
M’ and N—N’' or M——M' and N = N’. Assume the later case (the
other case being similar). We have to prove that Cut({a)M’, (@)N) € SN.

From (a:B)M € [(B)] we can infer by Lemmas 3 and 4 that (@:B)M’ € [(B)]
and M’ € SN. We know that the degree of the cut-formula is in both terms
equal, but [(M') < I(M). Therefore we can apply the IH and infer that
Cut({a)M',(x)N) € SN.

Commuting Reduction: Cut({a)M, (@)N)— MJa := (x)N]. By assumption
we have (wBYM € [(B)] = NEG([[(B)]]). We know that the commuting
reduction is only applicable if M does not introduce a; therefore we have that
(a:CAD)M ¢ ANDRIGHT (cnpy ([(C)], [(D)], [(CAD)]) (where B = CAD).
That means that (a:B)M € AXIOMSpy or (a:B)M & BINDINGg)([(B)]).
In the first case we have Cut({a)M,(@)N)—M][a := (x)N] = M (because
M is an axiom and does not introduce a); M is strongly normalising by
assumption.

In the second case we have that M[a := (y:B)P] € SN for all (y:B)P € [(B)].
Set (y:B)P to (z:B)N which is in [(B)] by assumption. Symmetric case is
similar.

Case Logical Reduction I: Cut({a)Ax(y,a), @ N)— N{z+—y}. By assump-
tion we know that N € SN. This implies that N{z+—y} € SN. Symmetric
case is similar.

Case Logical Reduction IT: Cut((c)Andg((a) S, () T, c), And} (@) U, y)),
where B = CAD. For more clarity we set (¢’ M = (¢CAD)Andg({a)S, (BT, c)
and ()N = (:CAD)And} (@)U, y).

Cut({@Andr((@)S, DT, ¢), pAnd] (@)U, y))
—Cut({a)S[c :== N], @ Uy := () M]).

By assumption we know that (¢CAD)M € [(CAD)] and (y:xCAD)N €
[(CAD)]. We have to show that Cut((a:C)S[c := ()N, (@:C)U[y := (e M]) €
SN.Since (&M € [(CAD)] = NEG(capy([(CAD)]) and (c) M & AXIOMS (cp p)

we know that:
(cCAD)M € BINDING oDy ([(CAD)]) or

(cCAD)M € ANDRIGHT (o py ([(C)], [{D)], [(CAD)]).
Similarly

(y:CAD)N € BINDING(C/\D ({CAD)]) or

(y:CAD)N € ANDLEFT(CAD)([[(C)H, [(CAD)]).
If (¢«CAD)M € BINDING(cap)([(CAD)]) we know that M(c := (2)P] € SN
for all (zCAD)P € [(CAD)]. By assumption (yzxCADIN € [(CAD)] and
therefore M[c := (y)N] = Cut({e’)M, () N) € SN. But then we also have that
its reduct Cut({a)S[c := (y)N], (x)U[= (&)M]) € SN. Similarly for the case
(y:CAD)N € BINDING(C/\D)([[(C/\D>]]) It is left to show strong normalisation
in the case where (¢CAD)M € ANDRIGHT (¢ py ([(C)], [(D)], [(CAD)]) and
(y:CAD)N € ANDLEFT(CAD)([[(], [[(C/\D)]]) We have (a) S[c:= @P] €
[{CY] and (@) Uly := Q] € [(C)] for all terms (y:CAD)P € [(CAD)] and
(eCAD)Q € [{CAD)]. By assumption we know that («CAD)M € [{CAD)]
and (y:CAD)N € [(CAD)]; set ()M for ()@ and (y)N for (y) P respectively.
Therefore we know that (a) S[c:= (y)N] € [(C)] and () U[y ={M] €
[(C)]. Furthermore, by Lemma 4 we have S[c := () N] € SN and Uly :=

(e)M] € SN. Because the degree of the cut-formula decreased we can apply
the IH and infer that

Cut({a)S[c :== WN], @ Uy := (o’ M]) € SN.

We have shown that all immediate reducts of Cut({a)M, (z)N) are strongly nor-
malising. Consequently Cut({a)M, () N) must be strongly normalising.

It is left to show that all well-typed terms are strongly normalising. To do so,
we shall consider a special class of simultaneous substitutions, which are called
safe. The principal property of safe substitutions [o1] and [o3] is that they can
be commuted, i.e. M[o1][o2] = M[os][o1].

Let 6 be a set of substitutions of the form [z := (@)P] and [b := @Q).
Let us call the set of the z’s and b’s the domain of & (written as dom(&));
the set of named terms (y)Q) and co-named terms (a)P is called the co-domain
of 6 (written as codom(d)). A safe simultaneous substitution (sss) is a set of
substitutions where no variable clash between the domain and co-domain occurs
(this can always be achieved by appropriate a-conversions, however, we omit a
precise definition). The next lemma shows that a specific type of simultaneous
substitutions is safe.

Lemma 6. Let 6 be of the form:

{ U [= <c>Ax(xi,c)]} U { U [a; := W Ax(y, aj)]}

i=0,..., j=0,...,m

where the x;’s and a;’s are distinct names and co-names, respectively. Substitu-
tion & is a sss.

Proof. Induction on the length of 4.

Lemma 7. For every term M (not necessarily strongly normalising) and for
every sss &, such that FN(M) U FC(M) C dom(é) (i.e., 6 is a closing
substitution®) and for every (z:B)P € codom(6) (x:B)P € [(B)] and every
(a:ChQ € codom(d) (@:ChQ € [(C)], we have Mo € SN.

Proof. We proceed by induction over the structure of M. We write &, [o] for the
set 6 U [o] where [o] € 6.

Case Ax(z,a): We have to prove that: Ax(z,a) &,z := OP],[a := WQ] €
SN. By definition of substitution Ax(x,a) &,z := BP],[a = Q] =
Cut((B)P, (1Q). By assumption (b:B)P € [(B)] and (y:B)Q € [(B)]. By
Lemma 4 we know that P € SN and Q € SN. Therefore we can apply
Lemma 5 and can infer that Cut(d) P, (1)Q) € SN. Therefore Ax(x, a)d, [v :=
BP), [a = Q] € SN.

2 All free names and co-names of M are amongst the domain of &.

Case Andr({@)M,(b)N,c): We prove that Andg({(a)M,(B)N,c) &,[c :== ()R] €
SN where (z:BAC)R is an arbitrary named term in [(BAC)]. We can infer
that Andg({a)M, (D)N, ¢) &, [c:=(2)R] = Cut({c)Andgr({a) M &, (VNG ¢), (2)R).
By IH we know that M &,[c := @S],[a := @P] € SN and N &,[c :=
@)S],[b := WQ] € SN for arbitrary (y:B)P € [(B)], @:C)Q € [(C)] and
(@:BAC)S € [(BAC)].

Making appropriate a-conversions we have (Mé§)[c := @)S][a := WP] €
SN and (N6)c := @S]b := Q] € SN. By definition of BINDING we
have (a@:B) (M&)[c:= @S] € [(B)] and (:C)(Né&)[c:= (@S] € [(C)]. Be-
cause (z:BAC)S is an arbitrary named term in the candidate [(BAC)] we
have by definition of ANDRIGHT gacy that (¢:BAC)Andg((a)Mé,(b)NG,c) €
[(BAC)]. Furthermore we know by Lemma 4 that Andgr({a)M &, (NG, c) €
SN.

For (z:BAC)R € [(BAC)] we have by Lemma 4 that R € SN. We can apply
Lemma 5 and have Cut({c)Andg({a)M &, (bYNG, ¢), () R) € SN and therefore
Andr({a)M, ()N, c) 6,[c := ()R] € SN. 4

Case And7 ((@)M,y) (i = 1,2): We have to prove that And} ()M ,y) &,[y :=
(&)R] € SN where (¢:B1AB3)R is an arbitrary co-named term in [(B1AB2)].
We have And% ((2)M,y) 6,y := (©R] = Cut({®R, @And% (@)Mé,y)) by
definition of substitution. By IH we know that M &, [y := (@)S], [z := T €
SN for arbitrary (@:B1AB2)S € [(B1ABs)], and arbitrary (0:B)T € [(B;)].
Making appropriate a-conversions we have (Mé&)[y := (a)S][z = BT €
SN. By definition of BINDING we have (x:B;) (M&)[y:= (@S] € [(B;)]-
Since (@:B1AB3)S is an arbitrary co-named term in [(B1ABsg)] we have by

definition of ANDLEFT’('BI/\BQ) that (:BiABy)And’, ((x)Mé,y) € [(B1ABs)].

By Lemma 4 we can infer that And’ ((x)Mé,y) € SN. For (¢B1AB2)R €
[(B1AB3)] we have by Lemma 4 that R € SN. We can apply Lemma 5 and
have Cut({e)R, (y)And’ ((x)M&,y)) € SN. Therefore And’, ((x)M,y) &, [y =
(¢)R] € SN.
Case Cut({a)M, (@)N):

Subcase I: M is an axiom (case N being an axiom is similar). We have to
show that Cut({a)Ax(x, a), @N) [z := (b)S],6 € SN. By definition of substi-
tution Cut({@)Ax(z,a), ®)N) [z := b)S],6 = Cut(D)S, (@) N{z—y}s). By
assumption we know that (:B)S € [(B)]; using Lemma 4 we know that
S € SN. By assumption we know that N &,[z = BS], [y := bS] €
SN for arbitrary (b:B)S € [(B)]. Because &,[z := bS], [y := bS] is a
safe simultaneous substitution we have (making appropriate a-conversions)
N 6,[z == bS], [y := bS] = (N{y — x}5) [z := b)S]. By definition of
BINDING we know that (z: B) N{y—=z}¢ € [(B)]. By Lemma 4 we can infer
that N{y+— x}6 € SN. Then we can apply Lemma 5 and can show that
Cut((0)S, (@) N{y—=x}6) € SN. Therefore Cut({a)Ax(z,a), y)N) &,z =
(b)S] € SN.

Subcase II: M and N are not axioms. We prove that Cut({a)M, (@)N) ¢ €
SN. By IH we know that M &,[a := ()S] € SN and N 6, [z := (bT] € SN
for arbitrary (y:B)S € [(B)] and (b:BYT € [(B)]. Making appropriate a-
conversions we know that (Md)[a := (y)S] € SN and (N&)[z := (W)T] € SN.

By definition of BINDING we can infer that (a:B) M§ € [(B)] and (a:B) N6 €
[(B)]. By Lemma 4 we have that Mé € SN and N6 € SN. Therefore we can
apply Lemma 5 and infer Cut({a) M, (x) N&) = Cut({a)M, (@)N) 6 € SN.

We can now prove our main theorem.
Theorem 1. All well-typed terms are strongly normalising.

Proof. We know by Lemma 7 that for arbitrary well-typed terms M and arbi-
trary safe simultaneous substitution &, we have Mé € SN. Let & be the safe
simultaneous substitution from Lemma 6. Using Lemma 1 we can infer that
either Mé——+M or Mé& = M. From this we have M € SN.

This theorem can be extended to the full classical logic. To save space we
give only the definitions for the set operators with implicational type:

IMPLEFT(BDC) P(CT) X P(NT(C)) X P(CT<BDC>) — P(NT(BDC))
IMPRIGHT (B>) ZP(NT(B)) X P(CT<C>) X 'P(NT(BDC)) — P(CT<BDC>)

IMPLEFT (550 (X, Y, Z) def {(z:B D C)ImpL((a B)M, (@:C)N, z) |

VB D CYP e Z.a M[z—(cP]EXand(m)N[z:z(c)P]EY}

IMPRIGHT (g5¢y (X, Y, Z) def {t:B D O)imp g ((@:B)a:CYM, b) |

V(zBD>CP € Z,V(eB)S € XAa) M[z:=)Pz :=()S] € Y and
V(zBDCOPeZVyOT e Y.(x) M|z :=(c)P]la = WT] € X}

def
NEG(55¢) (X) = AXIOMS g~ c)yU BINDING (g5 ¢y (X) UIMPRIGHT g~ ¢y ([(B)], [(C)], X)

def
NEG(550)(X) E AXIOMS(55¢)U BINDING(550) (X) UIMPLEFT 550y ([(B)], [(C)], X)

The strong normalisation proof can be easily extended using the definitions
above. The only difficulty arises in Lemma 5 for the cut-elimination reduction for
the connective D. The reduct of such a cut contains two nested cuts. Although the
degree of the cut-formula decreases for the outer cut, the IH is not immediately
applicable. In order to apply the induction hypothesis for the outer cut one has
to show for the inner cut that:

(@) Cut({e)N [z := Dmpg ((@){a) M, b)], @M][b := ()Imp, ()N, (y)P z)]) € [{C)] and
(@) Cut({@ M [b := (DImp, ()N, WP, 2)], @) Plz := b Impg (@) a) M, b)]) € [(B)]

In the first case (the other being similar) one has to show that:
Cut({&) Nz := Imp g (@Xa) M, b)], @M[b := DImp, (N, WP, 2)])[a := @T] € SN.

To infer this it is essential to know that a is not a free name in N and P
(requirement of the reduction rule which can always be achieved by renaming a
appropriately).

4 Conclusion

In this paper we presented a reduction system for cut-elimination in classical
logic. One feature of the reduction system is to permute a subderivation of a

A-rA A-A v Ar-rA A A A
AVA-AVA AVA-AVA |, AVAL A L TTAC ANA o tR
(AVA)V(AVA) - AVA AVA- ANA v

(AVA)V(AVA) - ANA

Cut

A-rA A A A A-rA A A A A-A A A v A-A A A v
A ANA B TTAE ANA v BTTAVAE A L TTAVA- A N E
AVA— ANA r AVAC AN, "

(AVA)V(AVA) - ANA

Fig. 3. A proof in G3c and a cut-free normalform which is not reachable by a cut-
elimination procedure using colours as in LK.

commuting cut directly to the place(s) where the cut-formula is a main formula.
This is an idea taken from the work in LK [6]. However we do not require
their colour annotations on the cut-formulae (in fact no additional information
is required at all). One consequence is that, in general, more normal forms can
be reached from a given proof containing cuts (see Figure 3 for an example).
Because of the fewer constraints on our reduction system strong normalisation
cannot be proved by translating every reduction to a series of reductions in
proof-nets as done for LK. The use of a term calculus for sequent derivations
allowed us to use directly proof techniques from the A“¥™-calculus [1] to prove
strong normalisation. This use of syntax to study proof structures is part of a
on-going research project [3,19].

The result presented in this paper can be extended to the first-order calculus
and can be adapted to LK or free-style LK%. There are many directions for
further work. For example what is the precise correspondence in the intuition-
istic case between normalisation and our strongly normalising cut-elimination
procedure? For classical logic the correspondence between our cut-elimination
procedure and normalisation in, for example, Parigot’s Ay [17] is another inter-
esting question. Some of these problems will be addressed in Urban’s PhD-thesis.

Acknowledgements: We should like to thank Roy Dyckhoff and Martin Hy-
land for their help and encouragement. The work has greatly benefited from
discussions with Harold Schellinx and Jean-Baptiste Joinet on LK%. Urban is
supported by a scholarship from the DAAD. Bierman is supported by EPSRC
Grant GR-M04716 and Gonville & Caius College, Cambridge.

References

1. F. Barbanera and S. Berardi. A Symmetric Lambda Calculus for “Classical” Pro-
gram Extraction. In Theoretical Aspects of Computer Software, volume 789 of
LNCS, pages 495-515. Springer Verlag, 1994.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

. H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of

Studies in Logic and the Foundations of Mathematics. North-Holland, 1981.

G. M. Bierman. Some Lectures on Proof Theory. Notes from course given at
PUC-Rio, November 1997.

E. T. Bittar. Strong Normalisation Proofs for Cut-Elimination in Gentzen’s Se-
quent Calculi. In Logic, Algebra and Computer Science, volume 46 of Banach-
Center Publications, pages 179-225, 1999.

E. A. Cichon, M. Rusinowitch, and S. Selhab. Cut-Elimination and Rewriting;:
Termination Proofs. Technical Report, 1996.

V. Danos, J.-B. Joinet, and H. Schellinx. A New Deconstructive Logic: Linear
Logic. Journal of Symbolic Logic, 62(3):755-807, 1997.

A. G. Dragalin. Mathematical Intuitionism: Introduction to Proof Theory, vol-
ume 67 of Translations of Mathematical Monographs. American Mathematical
Society, 1988.

R. Dyckhoff and L. Pinto. Cut-Elimination and a Permutation-Free Sequent Cal-
culus for Intuitionistic Logic. Studia Logica, 60(1):107-118, 1998.

J. Gallier. Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
A-calculi. Theoretical Computer Science, 110(2):249-239, 1993.

G. Gentzen. Untersuchungen tiber das logische Schlieflen I and II. Mathematische
Zeitschrift, 39:176-210, 405-431, 1935.

J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1-102, 1987.
J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

E. H. Hauesler and L. C. Pereira. Gentzen’s Second Consistency Proof and Strong
Cut-Elimination. Logique and Analyse, 154:95-111, 1996.

H. Herbelin. A A-calculus Structure Isomorphic to Sequent Calculus Structure. In
Computer Science Logic, volume 933 of LNCS, pages 67—75. Springer Verlag, 1995.
J.-B. Joinet, H. Schellinx, and L. Tortora de Falco. SN and CR for Free-Style LK"?:
Linear Decorations and Simulation of Normalisation. Preprint No. 1067, Utrecht
University, Department of Mathematics, 1998.

S. C. Kleene. Introduction to Metamathematics. North-Holland, 1952.

M. Parigot. Ap-calculus: An Algorithmic Interpretation of Classical Logic. In
Logic Programming and Automated Deduction, volume 624 of LNCS, pages 190—
201. Springer Verlag, 1992.

A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1996.
C. Urban. First-Year Report: Computational Content of Classical Proofs. Tech-
nical Report, 1997.

J. Zucker. The Correspondence Between Cut-Elimination and Normalisation. An-
nals of Mathematical Logic, 7:1-112, 1974.

