
Strong Normalisation for a Gentzen-like
Cut-Elimination Procedure

C. Urban?

Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge.
cu200@dpmms.cam.ac.uk

Abstract. In this paper we introduce a cut-elimination procedure for
classical logic, which is both strongly normalising and consisting of local
proof transformations. Traditional cut-elimination procedures, including
the one by Gentzen, are formulated so that they only rewrite neighbour-
ing inference rules; that is they use local proof transformations. Unfor-
tunately, such local proof transformation, if defined näıvely, break the
strong normalisation property. Inspired by work of Bloo and Geuvers
concerning the λx-calculus, we shall show that a simple trick allows us
to preserve this property in our cut-elimination procedure. We shall es-
tablish this property using the recursive path ordering by Dershowitz.

Keywords. Cut-Elimination, Classical Logic, Explicit Substitution,
Recursive Path Ordering.

1 Introduction

Gentzen showed in his seminal paper [6] that all cuts can be eliminated from
sequent proofs in LK and LJ. He not only proved that cuts can be eliminated,
but also gave a simple procedure for doing so. This procedure consists of proof
transformations, or cut-reductions, that do not eliminate all cuts from a proof
immediately, but rather replace every instance of a cut with simpler cuts, and
by iteration one eventually ends up with a cut-free proof. We refer to a proof
transformation as being local, or Gentzen-like, if it only rewrites neighbouring
inference rules, possibly by duplicating a subderivation. Most of the traditional
cut-elimination procedures, including Gentzen’s original procedure, consist of
such local proof transformations.

In [11] and [12] three criteria for a cut-elimination procedure were introduced:

1. the cut-elimination procedure should not restrict the collection of normal
forms reachable from a given proof in such a way that “essential” normal
forms are no longer reachable,

2. the cut-elimination procedure should be strongly normalising, i.e., all possi-
ble reduction strategies should terminate, and

3. the cut-elimination procedure should allow cuts to pass over other cuts.
? I should like to thank Roy Dyckhoff for many helpful discussions. I am currently

funded with a research fellowship from Corpus Christi College, Cambridge.

Owing to space restrictions we cannot defend these criteria here and refer the
reader to [11, 12] where it is explained why they play an important rôle in inves-
tigating the computational content of classical logic.

The main purpose of this paper is to present a cut-elimination procedure that
satisfies the three criteria and that consists of only Gentzen-like cut-reductions.
At the time of writing, we are not aware of any other cut-elimination procedure
fulfilling both demands. The problem with Gentzen-like cut-reductions is that
they, if defined näıvely, break the strong normalisation property, as illustrated
in the following example given in [2, 5]. Consider the following LK-proof.

A A A A
A∨A A,A

∨L

A∨A A
ContrR

A A A A
A,A A∧A

∧R

A A∧A ContrL

A∨A A∧A Cut

(1)

Using Gentzen-like proof transformations there are two possibilities for permut-
ing the cut upwards: it can either be permuted upwards in the left proof branch
or in the right proof branch. In both cases a subproof has to be duplicated.
Taking the former possibility, we obtain the proof

A A A A
A∨A A,A

∨L

A A A A
A,A A∧A

∧R

A A∧A ContrL

A∨A A,A∧A Cut

A A A A
A,A A∧A

∧R

A A∧A ContrL

A∨A A∧A,A∧A Cut

A∨A A∧A ContrR

where two copies of the right subproof are created. Now permute the upper cut
to the right, which gives the following proof.

A A A A
A∨A A,A

∨L

A A A A
A∨A A,A

∨L A A A A
A,A A∧A

∧R

A∨A,A A,A∧A Cut

A∨A,A∨A A,A,A∧A Cut

A∨A A,A,A∧A ContrL

A∨A A,A∧A ContrR

A A A A
A,A A∧A

∧R

A A∧A ContrL

A∨A A∧A,A∧A Cut

A∨A A∧A ContrR

This proof contains an instance of the reduction applied in the first step (compare
the rule names in bold face). Even worse, it is bigger than the proof with which
we started, and so in effect we can construct infinite reduction sequences.

Another problem with Gentzen-like cut-reductions arises from the third crite-
rion. If one introduces the following reduction rule, which allows a cut (Suffix 2)
to pass over another cut (Suffix 1)

.
.

Cut1
.

Cut2 −−→
.

.
Cut2

.
Cut1

(2)

then clearly one loses the strong normalisation property—the reduct is again an
instance of this rule, and one can loop by constantly applying this reduction.
Thus a common restriction is to not allow a cut to pass over another cut in
any circumstances. Unfortunately, this has several serious drawbacks, as noted
in [4, 7]; it limits, for example, in the intuitionistic case the correspondence be-
tween cut-elimination and beta-reduction. In particular, strong normalisation of
beta-reduction cannot be inferred from strong normalisation of cut-elimination.
Therefore we shall introduce cut-reductions that avoid the infinite reduction se-
quence illustrated in (1), but allow cuts to pass over other cuts without breaking
the strong normalisation property.

Because of the conflicting demands of being very liberal (e.g. allowing cuts to
pass over other cuts) and at the same time preserving the strong normalisation
property, such a cut-elimination procedure seems difficult to obtain. So rather
surprisingly we found that if one adds to the usual cut-rule

Γ1 ∆1, C C, Γ2 ∆2

Γ1, Γ2 ∆1,∆2
Cut

the following two, referred to as labelled cut-rules,

Γ1 ∆1, C C, Γ2 ∆2

Γ1, Γ2 ∆1,∆2
Cut
← Γ1 ∆1, C C, Γ2 ∆2

Γ1, Γ2 ∆1,∆2
Cut
→

then one can define a cut-elimination procedure that satisfies the three criteria
and that only consists of Gentzen-like cut-reductions.

Reconsider the proof given in (1). There the infinite reduction sequence could
be constructed by permuting cuts into alternating directions. Clearly, this reduc-
tion sequence can be avoided if commuting cuts have to be permuted into only
one direction. (A cut is said to be a logical cut when both cut-formulae are in-
troduced by axioms or logical inference rules; otherwise the cut is said to be a
commuting cut.) Furthermore, instead of the cut-reduction shown in (2), we can
introduce the following cut-reduction

.
. Cut

. Cut
← −−→

.
. Cut

←

.
. Cut

which allows cuts to pass over other cuts, but which does not break the strong
normalisation property—the reduction cannot be applied to the reduct.

Although the “trick” with the labelled cuts seems to be trivial, the corre-
sponding strong normalisation proof is rather non-trivial (mainly because we
allow cuts to pass over other cuts). To prove this property, we shall make use of
a technique developed in [1]. This technique appeals to the recursive path order-
ing theorem by Dershowitz. Our proof is more difficult than the one given in [4],
which also appeals to the recursive path ordering theorem, because we allow, as
mentioned above, cuts to pass over other cuts. To be able to present our proof
in a manageable form, we found it extremely useful to annotate sequent proofs
with terms. In consequence, our contexts are sets of (label,formula) pairs, as in
type theory, and not multisets, as in LK or LJ.

The paper is organised as follows. In Section 2 our sequent calculus and the
corresponding term annotations will be given. To save space, we shall restrict
our attention in this paper to the ∧-fragment of classical logic, but it should
be emphasised that the strong normalisation result for cut-elimination may be
obtained for all connectives by a simple adaptation of the proof we shall give.
The cut-elimination procedure will be defined in Section 3. A comparison with
the λx-calculus will be given in Section 4. In Section 5 we shall describe the proof
of strong normalisation, and conclude and give suggestions for further work in
Section 6.

2 Sequent Calculus, Terms and Typing Judgements

In this section we shall introduce our sequent calculus for classical logic. As
mentioned earlier, we shall restrict our attention to the ∧-fragment. Thus the
formulae are given by the grammar

B ::= A | B∧B

in which A ranges over propositional symbols.
Our sequents contain two contexts—an antecedent and a succedent—both of

which are sets of (label,formula) pairs. As we shall see, the use of sets allows
us to define the sequent calculus so that the structural rules, i.e., weakening
and contraction, are completely implicit in the form of the logical inference
rules. Since there are two sorts of contexts, it will be convenient to separate
the labels into names and co-names; in what follows a, b, c, . . . will stand for
co-names and similarly . . . , x, y, z for names. Thus, antecedents are built up
by (name,formula) pairs and succedents by (co-name,formula) pairs. We shall
employ some shorthand notation for contexts: rather than writing, for example,
{(x,B), (y, C), (z,D)}, we shall simply write x :B, y :C, z :D.

Whereas in LK the sequents consists of an antecedent and succedent only,
in our sequent calculus the sequents have another component: a term. Terms
encode the structure of sequent proofs and thus allow us to define a complete
cut-elimination procedure as a term rewriting system. The set of raw terms, R∧,
is defined by the grammar

M,N ::= Ax(x, a) Axiom
| AndR(〈a:B〉M, 〈b:C〉N, c) And-R
| AndiL((x:B)M,y) And-Li (i = 1, 2)
| Cut(〈a:B〉M, (x:B)N) Cut
| Cut

←(〈a:B〉M, (x:B)N) Cut with label ‘←’
| Cut

→(〈a:B〉M, (x:B)N) Cut with label ‘→’

where x, y are taken from a set of names and a, b, c from a set of co-names;
B and C are types (formulae). In a term we use round brackets to signify that
a name becomes bound and angle brackets that a co-name becomes bound. In
what follows we shall often omit the types on the bindings for brevity, regard
terms as equal up to alpha-conversions and adopt a Barendregt-style convention

for the names and co-names. These conventions are standard in term rewriting.
Notice however that names and co-names are not the same notions as a variable
in the lambda-calculus: whilst a term can be substituted for a variable, a name
or a co-name can only be “renamed”. Rewriting a name x to y in a term M
is written as M [x 7→ y], and similarly rewriting a co-name a to b is written as
M [a 7→ b]. The routine formalisation of these rewriting operations is omitted.
In our proof it will be useful to have the following notions: a term is said to be
labelled provided its top-most term constructor is either Cut

← or Cut
→; otherwise the

term is said to be unlabelled; a term is said to be completely unlabelled provided
all subterms are unlabelled. Other useful notions are as follows.

• A term, M , introduces the name z or co-name c iff M is of the form

for z: Ax(z, c), AndiL((x)S, z) for c: Ax(z, c), AndR(〈a〉S, 〈b〉T , c)

• A term, M , freshly introduces a name iff M introduces this name, but none
of its proper subterms. In other words, the name must not be free in a proper
subterm, just in the top-most term constructor. Similarly for co-names.

We can now formally introduce sequents, or typing judgements. They are of
the form Γ .M .∆ with Γ being an antecedent, M a term and ∆ a succedent.
Henceforth we shall be interested in only well-typed terms; this means those for
which there are two contexts, Γ and ∆, such that Γ .M .∆ holds given the
inference rules in Figure 1. We shall write T∧ for the set of well-typed terms.

Whilst the structural rules are implicit in our sequent calculus, i.e., the calcu-
lus has fewer inference rules, there are a number of subtleties concerning contexts.
First, we assume the convention that a context is ill-formed, if it contains more
than one occurrence of a name or co-name. For example the antecedent x:B, x:C
is not allowed. Hereafter, this will be referred to as the context convention, and
it will be assumed that all inference rules respect this convention.

Second, we have the following conventions for the commas in Figure 1: a
comma in a conclusion stands for set union and a comma in a premise stands
for disjoint set union. Consider for example the ∧Li-rule. This rule introduces
the (name,formula) pair y :B1∧B2 in the conclusion, and consequently, y is a
free name in AndiL((x)M,y). However, y can already be free in the subterm M ,
in which case y:B1∧B2 belongs to Γ . We refer to this as an implicit contraction.
Hence the antecedent of the conclusion of ∧Li is of the form y:B1∧B2⊕Γ where
⊕ denotes set union. Clearly, if the term AndiL((x)M,y) freshly introduces y,
then this antecedent is of the form y :B1∧B2 ⊗ Γ where ⊗ denotes disjoint set
union. Note that x:Bi cannot be part of the conclusion: x becomes bound in the
term. Thus the antecedent of the premise must be of the form x:Bi ⊗ Γ .

There is one point worth mentioning in the cut-rules, because they are the
only inference rules in our sequent calculus that do not share the contexts, but
require that two contexts are joined on each side of the conclusion. Thus we take
the cut-rule labelled with ‘←’, for example, to be of the form

Γ1 .M .∆1 ⊗ a:B x:B ⊗ Γ2 .N .∆2

Γ1 ⊕ Γ2 . Cut
←

(〈a〉M, (x)N) .∆1 ⊕∆2
Cut
←
.

x:B,Γ . Ax(x, a) .∆, a:B
Ax

x:Bi, Γ .M .∆

y:B1∧B2, Γ . AndiL((x)M,y) .∆
∧Li

Γ .M .∆, a:B Γ .N .∆, b:C

Γ . AndR(〈a〉M, 〈b〉N, c) .∆, c :B∧C
∧R

Γ1 .M .∆1, a:B x:B,Γ2 .N .∆2

Γ1, Γ2 . Cut
←

(〈a〉M, (x)N) .∆1,∆2
Cut
← Γ1 .M .∆1, a:B x:B,Γ2 .N .∆2

Γ1, Γ2 . Cut
→

(〈a〉M, (x)N) .∆1,∆2
Cut
→

Γ1 .M .∆1, a:B x:B,Γ2 .N .∆2

Γ1, Γ2 . Cut(〈a〉M, (x)N) .∆1,∆2
Cut

Fig. 1. Term assignment for sequent proofs in the ∧-fragment of classical logic.

In effect, this rule is only applicable, if it does not break the context convention,
which can always be achieved by renaming some labels appropriately. Notice
that we do not require that cut-rules have to be “fully” multiplicative: the Γi’s
(respectively the ∆j ’s) can share some formulae.

3 Cut-Reductions

We are now ready to define our Gentzen-like cut-elimination procedure. For this
we shall introduce four sorts of cut-reduction, each of which is assumed to be
closed under context formation. This is a standard convention in term rewriting.
The first sort of cut-reduction, written l−−→, deals with logical cuts.

Logical Reductions:

1. Cut(〈b〉AndR(〈a1〉M1, 〈a2〉M2, b), (y)AndiL((x)N, y)) l−−→ Cut(〈ai〉Mi, (x)N)

if AndR(〈a1〉M1, 〈a2〉M2, b) and AndiL((x)N, y) freshly introduce b and y

2. Cut(〈a〉M, (x)Ax(x, b)) l−−→M [a 7→b]
if M freshly introduces a

3. Cut(〈a〉Ax(y, a), (x)M) l−−→M [x 7→y]
if M freshly introduces x

As can be seen, these cut-reductions are restricted so that they are applicable
only if the immediate subterms of the cuts freshly introduce the names and co-
names corresponding to the cut-formulae. Without this restriction bound names
or bound co-names might become free during cut-elimination, as demonstrated
in [11, 12]. Note that in Reduction 2 (resp. 3) it is permitted that b (resp. y) is
free in M .

The next sort of cut-reduction applies to commuting cuts, that means to those
where at least one immediate subterm of the cut does not freshly introduce the
name or co-name of the cut-formula.

Commuting Reductions:

5. Cut(〈a〉M, (x)N) c−−→ Cut
←(〈a〉M, (x)N)

if M does not freshly introduce a and is unlabelled, or
6. Cut(〈a〉M, (x)N) c−−→ Cut

→(〈a〉M, (x)N)
if N does not freshly introduce x and is unlabelled.

A point to note is that Reductions 5 and 6 may be applicable at the same
time. Take for example the term Cut(〈a〉Ax(x, b), (y)Ax(z, c)), which can reduce to
either Cut

←(〈a〉Ax(x, b), (y)Ax(z, c)) or Cut
→(〈a〉Ax(x, b), (y)Ax(z, c))—the choice to

which term it reduces is not specified. Therefore, our cut-elimination procedure
is non-deterministic.

Once a cut is “labelled” by Reduction 5 or 6, then cut-reductions written as
x−−→ apply (see Figure 2). Each of them pushes labelled cuts inside the subterms

until they reach a place where the cut-formula is introduced. However care needs
to be taken when applying an x−−→-reduction to ensure that no name or co-name
clash occurs. This can always be achieved by appropriate alpha-conversions, and
we shall assume that these conversions are done implicitly.

It is worthwhile to comment on the reductions c−−→ and x−−→. We required
in Reduction 5 (similarly in 6) that the term M is unlabelled, i.e., the top-most
term constructor is not Cut

← or Cut
→. This restriction is to avoid certain reduction

sequences. Suppose M and N are cut-free, and assume the term Cut(〈a〉M, (x)N)
is a logical cut. Furthermore assume c is not free in this term. Then consider the
reduction sequence

Cut
←

(〈c〉Cut(〈a〉M, (x)N), (y)P) x−−→ Cut(〈a〉Cut
←

(〈c〉M, (y)P), (x)Cut
←

(〈c〉N, (y)P))
c−−→ Cut

←
(〈a〉Cut

←
(〈c〉M, (y)P), (x)Cut

←
(〈c〉N, (y)P))

x−−→+ Cut
←

(〈a〉M, (x)N)

where the logical cut has become labelled (c−−→-reduction), because another cut
passed over it (first x−−→-reduction). While this reduction is harmless with re-
spect to strong normalisation (this cut becomes a logical cut again), it causes the
strong normalisation proof to be much harder. To save space, we thus exclude re-
duction sequences in which a logical cut becomes labelled, and the side-conditions
in Reduction 5 and 6 are doing just that.

Another point worth mentioning is that the first and second rule in Figure 2
(similarly the fourth and fifth) can be replaced with the reduction

Cut
←

(〈c〉Ax(x, c), (y)P) −−→ P [y 7→x] (3)

which is equally effective, in that all cut-rules are eliminable from a proof. How-
ever, this reduction has subtle defect, as explained in [11, 12]. Consider a term N
in which x is not free and a term P in which b is not free. We would expect that
from Cut

→(〈a〉N, (x)Cut
←(〈b〉M, (y)P)) and Cut

←(〈b〉Cut
→(〈a〉N, (x)M), (y)P) the same

collection of normal forms can be reached (the order of “independent” labelled
cuts should not matter). Unfortunately, using the rule in (3) this does not hold.
Therefore we have formulated the x−−→-reductions so that the the order of la-
belled cuts—as long as they are “independent”—is irrelevant with respect to

Cut
←

(〈c〉Ax(x, c), (y)P) x−−→ Cut(〈c〉Ax(x, c), (y)P)
Cut
←

(〈b〉Cut(〈a〉M, (x)Ax(x, b)), (y)P) x−−→ Cut(〈a〉Cut
←

(〈b〉M, (y)P), (y)P)
Cut
←

(〈c〉AndR(〈a〉M, 〈b〉N, c), (y)P) x−−→
Cut(〈c〉AndR(〈a〉Cut

←
(〈c〉M, (y)P), 〈b〉Cut

←
(〈c〉N, (y)P), c), (y)P)

Cut
→

(〈c〉P , (y)Ax(y, a)) x−−→ Cut(〈c〉P , (y)Ax(y, a))
Cut
→

(〈b〉P , (x)Cut(〈a〉Ax(x, a), (y)M)) x−−→ Cut(〈b〉P , (y)Cut
→

(〈b〉P , (x)M))
Cut
→

(〈c〉P , (y)AndiL((x)M,y)) x−−→ Cut(〈c〉P , (y)AndiL((x)Cut
→

(〈c〉P , (y)M), y))

Cut
←

(〈b〉Ax(x, a), (y)P) x−−→ Ax(x, a)
Cut
←

(〈b〉Cut(〈a〉M, (x)N), (y)P) x−−→ Cut(〈a〉Cut
←

(〈b〉M, (y)P), (x)Cut
←

(〈b〉N, (y)P))
Cut
←

(〈a〉AndiL((x)M,y), (z)P) x−−→ AndiL((x)Cut
←

(〈a〉M, (z)P), y)
Cut
←

(〈d〉AndR(〈a〉M, 〈b〉N, c), (y)P) x−−→
AndR(〈a〉Cut

←
(〈d〉M, (y)P), 〈b〉Cut

←
(〈d〉N, (y)P), c)

Cut
→

(〈b〉P , (y)Ax(x, a)) x−−→ Ax(x, a)
Cut
→

(〈b〉P , (y)Cut(〈a〉M, (x)N)) x−−→ Cut(〈a〉Cut
→

(〈b〉P , (y)M), (x)Cut
→

(〈b〉P , (y)N))
Cut
→

(〈a〉P , (z)AndiL((x)M,y)) x−−→ AndiL((x)Cut
→

(〈a〉P , (z)M), y)
Cut
→

(〈d〉P , (y)AndR(〈a〉M, 〈b〉N, c)) x−−→
AndR(〈a〉Cut

→
(〈d〉P , (y)M), 〈b〉Cut

→
(〈d〉P , (y)N), c)

Fig. 2. Cut-reductions for labelled cuts.

which normal forms are reachable. This is an important property for analysing
the computational content of classical proofs [8].

The last sort of cut-reduction, named garbage reduction, deals with labelled
cuts whose name or co-name of the cut-formula is not free in the corresponding
subterm. In LK this corresponds to a cut on a weakened formula.

Garbage Reductions:

7. Cut
←(〈a〉M, (x)N) gc−−→M if a is not a free co-name in M

8. Cut
→(〈a〉M, (x)N) gc−−→ N if x is not a free name in N

We are now ready to define our Gentzen-like cut-elimination procedure. Since
we annotated terms to our sequent proofs, we can define it as a term rewriting
system.

Definition 1 (Gentzen-like Cut-Elimination Procedure). The Gentzen-
like cut-elimination procedure is the term rewriting system (T∧, loc−−→) where:

• T∧ is the set of terms well-typed by the rules shown in Figure 1, and
• loc−−→ consists of the reduction rules for logical, commuting and labelled cuts

as well as the garbage reductions; that is

loc−−→ def= l−−→ ∪ c−−→ ∪ x−−→ ∪ gc−−→ .

Notice that by assumption all reductions are closed under context formation. The
completeness of loc−−→ is simply the fact that every term beginning with a cut
matches at least one left-hand side of the reduction rules. So each irreducible
term is cut-free. We shall however omit a proof of this fact. The theorem for

which we are going to give a proof for is as follows, but we delay the proof until
Section 5.

Theorem 1. For all terms in T∧ the reduction loc−−→ is strongly normalising.

As said earlier, this theorem can be generalised to include all connectives, and
our proof can be easily adapted to the more general case.

4 Comparison with Explicit Substitution Calculi

There is a close correspondence between our cut-elimination procedure and ex-
plicit substitution calculi, as we shall illustrate in this section.

Explicit substitution calculi have been developed to internalise the substi-
tution operation—a meta-level operation on lambda-terms—arising from beta-
reductions. For example in λx [10], the beta-reduction (λx.M)N β−−→M [x := N]
is replaced by the reduction (λx.M)N b−−→ M〈x := N〉 where the reduct con-
tains a new syntactic constructor. The following reduction rules apply to this
constructor.

y〈x := P 〉 x−−→ P if x ≡ y otherwise y
(λy.M)〈x := P 〉 x−−→ λy.M〈x := P 〉
(MN)〈x := P 〉 x−−→ M〈x := P 〉N〈x := P 〉

Similarly, our labelled cuts internalise a proof substitution introduced in [11,
12]. This substitution operation is written as M{a := (x)N} and N{x := 〈a〉M}
where M and N belong to TU∧ that is defined as the set of terms well-typed
by the typing rules given in Figure 1 excluding the rules for labelled cuts. Thus
TU∧ consists of well-typed but completely unlabelled terms, and clearly, we have
TU∧ ⊂ T∧. In terms of the reductions given above the proof substitution can be
defined as the juxtaposition of a c−−→-reduction and a series of x−−→-reductions,
which need to be applied until no further x−−→-reduction is applicable (later we
shall refer to such a term as x-normal form). Here we omit an inductive defini-
tion of the proof substitution, which can be found in [11, 12]. Using this proof
substitution we can reformulate the reduction for commuting cuts as follows.

5’. Cut(〈a〉M, (x)N) c′−−→M{a := (x)N} if M does not freshly introduce a, or
6’. Cut(〈a〉M, (x)N) c′−−→ N{x := 〈a〉M} if N does not freshly introduce x.

This leads to the following cut-elimination procedure, which satisfies the three
criteria given in the introduction, but which is not Gentzen-like (the proof sub-
stitution is a “global” operation).

Definition 2 (Global Cut-Elimination Procedure). The cut-elimination
procedure (TU∧,

gbl−−→) is the term rewriting system where:

• TU∧ is the set of well-typed but completely unlabelled terms, and
• gbl−−→ consists of the reduction rules for logical and commuting cuts; that is

gbl−−→ def= l−−→ ∪ c′−−→ .

A proof of strong normalisation for (TU∧,
gbl−−→) is given in [11, 12]. There is

no known technique that would give a strong normalisation result for (T∧, loc−−→)
via a simple translation from T∧ to TU∧. This is similar to the situation with the
lambda-calculus and λx: strong normalisation for the explicit substitution cal-
culus does not follow directly from strong normalisation of the lambda-calculus.
Indeed as shown in [9] explicit substitution calculi, if defined näıvely, may break
the strong normalisation property. So the proof we shall present next is rather
involved.

5 Proof of Strong Normalisation

In this section we shall give a proof for Theorem 1. In this proof we shall make
use of the recursive path ordering by Dershowitz [3].

Definition 3 (Recursive Path Ordering). Let s ≡ f(s1, . . . , sm) and t ≡
g(t1, . . . , tn) be terms, then s>rpo t iff

(i) si ≥rpo t for some i = 1, . . . ,m (subterm)
or (ii) f � g and s>rpo tj for all j = 1, . . . , n (decreasing heads)
or (iii) f = g and {|s1, . . . , sm|} >rpomult {|t1, . . . , tn|} (equal heads)

where � is a precedence defined over term constructors, >rpomult is the extension
of>rpo to finite multisets and {| . . . |} stands for a multiset of terms; ≥rpo means
>rpo or equivalent up to permutation of subterms.

The recursive path ordering theorem says that>rpo is well-founded iff the prece-
dence of the term constructors,�, is well-founded. Unfortunately, two problems
preclude a direct application of this theorem.

• First, the theorem requires a well-founded precedence for our term con-
structors. However, our reduction rules include the two reductions (written
schematically)

Cut(,) c−−→ Cut
←

(,)
Cut
←

(Cut(,),) x−−→ Cut(Cut
←

(,),Cut
←

(,))

and consequently we have a cycle between Cut and Cut
←. In [1] a clever so-

lution for an analogous problem in λx was presented. We shall adapt this
solution for our rewrite system. The essence of this solution is that we take
into account (in a non-trivial way) that (TU∧,

gbl−−→) is strongly normalising.
• The second problem arises from the fact that the recursive path ordering the-

orem applies only to first-order rewrite systems, i.e., no binding operations
are allowed. In our term calculus however we have two binding operations:
one for names and one for co-names. We solve this problem by introducing
another term calculus, denoted by H, for which we can apply this theorem,
and then prove strong normalisation for (T∧, loc−−→) by translation.

The first important fact in our proof is that x−−→ is confluent, in contrast to
loc−−→, which is clearly not.

Lemma 1. The reduction x−−→ is strongly normalising and confluent.

Proof. We can show the first part of the lemma by a simple calculation using
the measure, [| |], that is 1 for axioms and that is the sum of the measures of the
subterms increased by 1 for AndR(,); similarly for AndiL() and Cut(,).
For the labelled cuts we have:

[|Cut
→

(〈a〉M, (x)N)|] def
= ([|M |] + 1) ∗ (4[|N |] + 1)

[|Cut
←

(〈a〉M, (x)N)|] def
= (4[|M |] + 1) ∗ ([|N |] + 1)

This gives [|M |] > [|N |] whenever M x−−→ N . Confluence of x−−→ follows from local
confluence, which can be easily established, and strong normalisation. ut

As a result, we can define the unique x-normal form of a term belonging to T∧.

Definition 4. The unique x-normal form of a term M ∈ T∧ is denoted by |M |x.

By a careful case analysis we can show that for all M ∈ T∧ the x-normal form
|M |x is an element TU∧, i.e., is well-typed and completely unlabelled. The details
are omitted.

Next we shall prove that x−−→ correctly simulates the proof substitution op-
eration of gbl−−→.

Lemma 2. For all M,N ∈ T∧ we have

(i) |Cut
←(〈a〉M, (y)N)|x ≡ |M |x{a := (y) |N |x}

(ii) |Cut
→(〈a〉N, (y)M)|x ≡ |M |x{y := 〈a〉 |N |x}

Proof. We can show the lemma by induction on M in case M is completely
unlabelled. We can then prove the lemma for all terms by a simple calculation,
as illustrated next for (i): by uniqueness of the x-normal form we have that
|Cut
←(〈a〉M, (y)N)|x ≡ |Cut

←(〈a〉 |M |x, (y) |N |x)|x and, because |M |x is completely
unlabelled, this is |M |x{a := (y) |N |x}. ut

Now we are in a position to show another important fact in our proof, namely
that the loc−−→-reductions project onto gbl−−→-reductions.

Lemma 3. For all terms M,N ∈ T∧ if M loc−−→ N then |M |x gbl−−→ |N |x.

Proof. By induction on the definition of loc−−→. ut

As mentioned earlier, this lemma is not strong enough to prove strong normali-
sation of loc−−→. To prove this property we shall use a translation that maps every
loc−−→-reduction onto a pair of terms belonging to the set H, defined as follows.

Definition 5. Let H be the set of all terms generated by the grammar

M,N ::= ? |M ·n N |M〈N〉n | 〈M〉nN | (|M,N |) | (|M |)

where n is a natural number. The well-founded precedence � is given by

·n+1 � 〈 〉n , 〈 〉n � ·n � ?, (| |), (| , |) .

To define the translation we shall use, as it turns out later, an alternative def-
inition of the set T∧. This alternative definition is required in order to strengthen
an induction hypothesis.

Definition 6. The set of bounded terms, B∧, consists of well-typed terms M
wherby for every subterm N of the M the corresponding x-normal form, |N |x,
must be strongly normalising with respect to gbl−−→.

Clearly, we now have to show the fact that

Lemma 4. The set of bounded terms is closed under loc−−→-reductions.

Proof. By induction on the definition of loc−−→ using Lemma 3.

Next we define the translation from bounded terms to terms of H.

Definition 7. The translation : B→ H is inductively defined by the clauses

Ax(x, a)
def
= ? AndR(〈a〉S, 〈b〉T , c)

def
= (|S, T |) AndiL((x)S, y)

def
= (|S|)

Cut(〈a〉S, (x)T)
def
= S ·l T l

def
= maxredgbl(|Cut(〈a〉S, (x)T)|x)

Cut
←

(〈a〉S, (x)T)
def
= S〈T 〉m m

def
= maxredgbl(|Cut

←
(〈a〉S, (x)T)|x)

Cut
→

(〈a〉S, (x)T)
def
= 〈S〉nT n

def
= maxredgbl(|Cut

→
(〈a〉S, (x)T)|x)

where maxredgbl(|M |x) denotes the number of steps of the longest gbl−−→-reduc-
tion sequence starting from the x-normal form of M . Clearly, this translation
is well-defined since it is restricted to bounded terms. The next lemma will be
applied when we need to compare labels of terms in H.

Lemma 5. For all terms M,N ∈ B we have

(i) maxredgbl(|M |x) ≥ maxredgbl(|N |x), provided M loc−−→ N .
(ii) maxredgbl(|M |x) ≥ maxredgbl(|N |x), provided N is an immediate subterm

of M and M is unlabelled.
(iii) maxredgbl(|M |x)>maxredgbl(|N |x), provided M l−−→ N or M c−−→ N on

the outermost level.

Proof. (i) follows from Lemma 3; for (ii) note that all reductions which |N |x can
perform can be performed by |M |x; (iii) is by a simple calculation and the fact
that the side conditions put on c−−→ ensures that |M |x gbl−−→ |N |x. ut

We shall now prove the (main) lemma, which relates a loc−−→-reduction to a pair
of terms belonging to H and ordered decreasingly according to>rpo.

Lemma 6. For all terms M,N ∈ B if M loc−−→ N , then M>rpoN .

Proof. By induction on the definition of loc−−→. As there are many possible re-
ductions, we shall present only a few representative cases. First we give one case

where an inner reduction occurs (we shall write rpo for Definition 3).

• M ≡ Cut(〈a〉S, (x)T) loc−−→ Cut(〈a〉S′, (x)T) ≡ N
(1) S loc−−→ S′ and S>rpoS′ by assumption and induction
(2) M = S ·m T and N = S′ ·n T by Definition 7
(3) m ≥ n by Lemma 5(i)
(4) S ·m T >rpoS′ , S ·m T >rpoT , {|S, T |} >rpomult {|S′, T |} by (1) and rpo(i)
(5) M>rpoN by (4) and rpo(ii,iii)

We now show two typical cases where an x−−→-reduction is performed

• M ≡ Cut
←(〈c〉AndR(〈a〉S, 〈b〉T , c), (x)U)
x−−→ Cut(〈c〉AndR(〈a〉Cut

←(〈c〉S, (x)U), 〈b〉Cut
←(〈c〉T , (x)U), c), (x)U) ≡ N

(1) M = LS, T M 〈U〉m and N = LS〈U〉r, T 〈U〉sM ·t U by Definition 7
(2) m ≥ t, r, s and 〈 〉m � ·t by Lemma 5(i,ii) and Definition 5
(3) LS, T M〈U〉m>rpoS, LS, T M〈U〉m>rpoU , {|LS, T M, U |} >rpomult {|S,U |} by rpo(i)
(4) LS, T M〈U〉m>rpoS〈U〉r by (3) and rpo(ii,iii)
(5) LS, T M〈U〉m>rpoT 〈U〉s analogous to (3,4)
(6) LS, T M〈U〉m>rpo LS〈U〉r, T 〈U〉sM by (4,5) and rpo(ii)
(7) LS, T M〈U〉m>rpoU by rpo(i)
(8) M>rpoN by (2,6,7) and rpo(ii)

• M ≡ Cut
←(〈d〉AndR(〈a〉S, 〈b〉T , c), (x)U)
x−−→ AndR(〈a〉Cut

←(〈d〉S, (x)U), 〈b〉Cut
←(〈d〉T , (x)U), c) ≡ N

(1) M = LS, T M 〈U〉m and N = LS〈U〉r, T 〈U〉sM by Definition 7
(2) m ≥ r, s by Lemma 5(i,ii)
(3) LS, T M〈U〉m>rpoS, LS, T M〈U〉m>rpoU , {|LS, T M, U |} >rpomult {|S,U |} by rpo(i)
(4) LS, T M〈U〉m>rpoS〈U〉r by (3) and rpo(ii,iii)
(5) LS, T M〈U〉m>rpoT 〈U〉s analogous to (3,4)
(6) M>rpoN by (4,5) and rpo(ii)

Last we tackle two cases, one where a commuting reduction and one where a
logical reduction occurs.

• M ≡ Cut(〈a〉S, (x)T) c−−→ Cut
←(〈a〉S, (x)T) ≡ N

(1) M = S ·m T and N = S〈T 〉n by Definition 7
(2) m > n and ·m � 〈 〉n by Lemma 5(iii) and Definition 5
(3) S ·m T >rpoS and S ·m T >rpoT by rpo(i)
(4) M>rpoN by (2,3) and rpo(ii)

• M ≡ Cut(〈c〉AndR(〈a〉S, 〈b〉T , c), (y)And1
L((x)U, y)) l−−→ Cut(〈a〉S, (x)U) ≡ N

(1) M = LS, T M ·m LUM and N = S ·n U by Definition 7
(2) m > n by Lemma 5(iii)
(3) LS, T M ·m LUM>rpoS , LS, T M ·m LUM>rpoU by rpo(i)
(4) M>rpoN by (2,3) and rpo(ii)

Using this lemma we can show that every loc−−→-reduction sequence starting from
a term belonging to TU∧ is terminating.

Lemma 7. Every loc−−→-reduction sequence starting with a term that belongs to
TU∧ is terminating.

Proof. Suppose for the sake of deriving a contradiction that from M the infinite
reduction sequence M ≡M1

loc−−→M2
loc−−→M3

loc−−→M4
loc−−→ . . . starts. Because

M is completely unlabelled we have for all subterms N of M that |N |x ≡ N , and
because M is well-typed we know that each of them is strongly normalising under
gbl−−→. Consequently, every maxredglb(|N |x) is finite, and thus M is bounded. By

Lemmas 4 and 7 we have that the infinite reduction sequence starting from M
can be mapped onto the decreasing chain M1>

rpoM2>
rpoM3>

rpoM4>
rpo . . .

which however contradicts the well-foundedness of>rpo. Thus all loc−−→-reduction
sequences starting with a term that is an element in TU∧ must terminate. ut

Next, we extend this lemma to all terms of T∧. To do so, we shall first show that
for every M ∈ T∧ there is a term N ∈ TU∧, such that N loc−−→∗ M . Because N
is an element in TU∧, we have that N is strongly normalising by the lemma just
given, and so M , too, must be strongly normalising.

Lemma 8. For every term M ∈ T∧ with the typing judgement Γ .M .∆,
there is a term N ∈ TU∧ with the typing judgement Γ ′, Γ .N .∆,∆′ such that
N loc−−→∗ M .

Proof. We construct N by inductively replacing in M all occurrences of Cut
← and

Cut
→ by some instances of Cut. We analyse the case where Cut

←(〈a〉S, (x)T) is a
subterm of M .

• If the subterm S does not freshly introduce a, then we replace Cut
←(〈a〉S, (x)T)

simply by Cut(〈a〉S, (x)T) (both terms have the same typing judgement). In
this case we have Cut(〈a〉S, (x)T) c−−→ Cut

←(〈a〉S, (x)T).

• The more interesting case is where S freshly introduces a. Here we cannot
simply replace Cut

← with Cut, because there is no reduction with N loc−−→∗ M .
Therefore we replace Cut

←(〈a〉S, (x)T) by Cut(〈a〉Cut(〈b〉S, (y)Ax(y, c)), (x)T)
in which b and c are fresh co-names that do not occur anywhere else (this
ensures that the new cut-instances are well-typed). Now we show how the
new term can reduce. Because Cut(〈b〉S, (y)Ax(y, c)) does not freshly intro-
duce a, we can first perform two commuting reductions and subsequently we
can remove the labelled cut by a gc−−→-reduction, viz.

Cut(〈a〉Cut(〈b〉S, (y)Ax(y, c)), (x)T) c−−→ Cut
←

(〈a〉Cut(〈b〉S, (y)Ax(y, c)), (x)T)
c−−→ Cut

←
(〈a〉Cut

←
(〈b〉S, (y)Ax(y, c)), (x)T)

gc−−→ Cut
←

(〈a〉S, (x)T) ut

Now the proof of Theorem 1 is by a simple contradiction argument.

Proof of Theorem 1. Suppose M ∈ T∧ is not strongly normalising. Then by
the lemma just given there is a term N ∈ TU∧ such that N loc−−→∗ M . Clearly, if
M is not strongly normalising, then so is N , which however contradicts Lemma 7.
Consequently, M must be strongly normalising. ut

6 Conclusion

In this paper we considered the problem of defining a strongly normalising cut-
elimination procedure for classical logic that satisfies the three criteria given
in the introduction and that is Gentzen-like. While Gentzen-like cut-elimination
procedures tend to break strong normalisation, in this paper we have shown that
this property can be retained by introducing labelled cuts. For reasons of space
we have given our system for only the ∧-fragment. However, our techniques apply
to the other connectives and to the first-order quantifiers. This should provide
us with a bridge between our earlier calculus [11, 12] and an implementation.

There are many directions for further work. For example what is the precise
correspondence in the intuitionistic case between normalisation in the lambda-
calculus (with explicit substitutions) and our strongly normalising cut-elimi-
nation procedure? This is of interest since the Gentzen-like cut-elimination pro-
cedure presented in this paper is rather helpful in proving strong normalisation
of other reduction systems by simple translations (e.g. the lambda-calculus, λx
and Parigot’s λµ). Some of these issues are addressed in [11].

References

1. R. Bloo and H. Geuvers. Explicit Substitution: On the Edge of Strong Normalisa-
tion. Theoretical Computer Science, 211(1–2):375–395, 1999.

2. V. Danos, J.-B. Joinet, and H. Schellinx. A New Deconstructive Logic: Linear
Logic. Journal of Symbolic Logic, 62(3):755–807, 1997.

3. N. Dershowitz. Orderings for Term Rewriting Systems. Theoretical Computer
Science, 17:279–301, 1982.

4. R. Dyckhoff and L. Pinto. Cut-Elimination and a Permutation-Free Sequent Cal-
culus for Intuitionistic Logic. Studia Logica, 60(1):107–118, 1998.

5. J. Gallier. Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
λ-calculi. Theoretical Computer Science, 110(2):249–239, 1993.

6. G. Gentzen. Untersuchungen über das logische Schließen I and II. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935.

7. H. Herbelin. A λ-calculus Structure Isomorphic to Sequent Calculus Structure. In
Computer Science Logic, volume 933 of LNCS, pages 67–75. Springer Verlag, 1994.

8. J. M. E. Hyland. Proof Theory in the Abstract. Annals of Pure and Applied Logic,
2000. To appear.

9. P. A. Melliès. Typed Lambda Calculi with Explicit Substitutions May Not Ter-
minate. In Typed Lambda Calculi and Applications, volume 902 of LNCS, pages
328–334. Springer Verlag, 1995.

10. K. H. Rose. Explicit Substitution: Tutorial & Survey. Technical report, BRICS,
Department of Computer Science, University of Aarhus, 1996.

11. C. Urban. Classical Logic and Computation. PhD thesis, Cambridge University,
October 2000.

12. C. Urban and G. M. Bierman. Strong Normalisation of Cut-Elimination in Classical
Logic. Fundamenta Informaticae, 45(1–2):123–155, 2001.

