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Abstract. Powerful proof techniques, such as logical relation arguments, have
been developed for establishing the strong normalisation property of term-
rewriting systems. The first author used such a logical relation argument to es-
tablish strong normalising for a cut-elimination procedure in classical logic. He
presented a rather complicated, but informal, proof establishing this property. The
difficulties in this proof arise from a quite subtle substitution operation, which im-
plements proof transformation that permute cuts over other inference rules. We
have formalised this proof in the theorem prover Isabelle/HOL using the Nominal
Datatype Package, closely following the informal proof given by the first author
in his PhD-thesis. In the process, we identified and resolved a gap in one cen-
tral lemma and a number of smaller problems in others. We also needed to make
one informal definition rigorous. We thus show that the original proof is indeed a
proof and that present automated proving technology is adequate for formalising
such difficult proofs.

1 Introduction

Proofs about syntax are often not very deep; rather the difficulties arise from the huge
amount of details. Human reasoners seem to be ill-equipped to cope with such amounts
of details. This observation is based on the experience obtained with a formalisation
[18] of a paper on LF by Harper and Pfenning [6]. Their paper contained many informal
proofs spread over more than 30 pages. The formalisation revealed a gap in one of the
proofs and a small number of minor lacunae in others. Also in the present paper we
describe a formalisation of an informal 20-page proof given by the first author [14] (see
also [17]). This proof claims to establish a strong normalisation result of cut-elimination
in classical logic. However, this formalisation, too, uncovers a number of errors in the
informal proof, including one that required to restate two central lemmas.

In the literature there are numerous informal proofs for the termination of various
cut-elimination procedures. One of the main applications of these procedures is to en-
sure consistency of sequent-calculi, that means that there is no proof for the sequent
� ⊥. Gentzen [5] was the first who proved in this way the consistency of a sequent-
calculus for intuitionistic and classical logic. Most of such cut-elimination procedures,
including Gentzen’s original, are weakly normalising, i.e., they employ a particular
cut-elimination procedure strategy. While for establishing consistency a weakly nor-
malising procedure is usually sufficient, if one wants to do computations with sequent
proofs then strong normalisation is a more useful property. One reason for this is that
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cut-elimination in classical logic is not confluent and therefore one might reach differ-
ent cut-free proofs by reducing cuts in a different order or applying different reduction
rules.

For the purpose of calculating the collection of all cut-free proofs reachable from
a classical proof, the first author introduced in [14,17] a strongly normalising proce-
dure for cut-elimination. Note that simply taking an unrestricted version of Gentzen’s
cut-elimination procedure, that is removing the strategy, leads to infinite reduction se-
quences. Therefore the strongly-normalising cut-elimination procedure in [14,17] uses
Gentzen’s original rules for logical cuts, but modifies the rules for commuting cuts. (An
instance of the cut-rule is said to be a logical cut when both cut-formulae are intro-
duced by axioms or logical inference rules; otherwise the cut is said to be a commuting
cut.) An interesting feature of this procedure is that it allows commuting cuts to pass
over other cuts. It achieves strong normalisation by restricting the rules for commuting
cuts so that they must “transport” in one step a commuting cut to all places where the
corresponding cut-formula is introduced (Gentzen defined for this process local reduc-
tion rules, which only rewrite neighboring inference rules in a proof). As a result one
ends up with a quite general reduction system for cut-elimination: for example it can
simulate β-reduction in the λ-calculus [14].

Unfortunately, the generality of the reduction system means also that strong normal-
isation is much more difficult to prove. Our proof establishing this property is based
on symmetric reducibility candidates [2], a powerful proof technique from the term-
rewriting literature. To present the proof in a convenient form, sequent proofs are an-
notated with terms and the cut-elimination procedure is defined as a term-rewriting
system. In particular, the proof transformation for commuting cuts is expressed as a
special sort of proof substitution.

The disadvantage of using terms is that in order to deal with them in a convenient
manner they nearly always need to be quotiented modulo α-equivalence—for exam-
ple in order to have capture-avoiding substitution being definable as a total function.
However, this quotienting makes (formal) reasoning much harder: inductions and re-
cursions over the structure of α-equated terms are not immediately defined concepts;
that means one has to spend some effort to derive them (in contrast with unquotient, or
raw, terms where these concepts are for “free”). Moreover function definitions need to
respect α-equivalence. This precludes, for example, the definition of the function that
returns the immediate subterms of an α-equated term [15]. When working with such
terms, one also often employs an informal variable convention [3] without giving a
proper justification for its validity. By using this convention, one does not consider truly
arbitrary bound variables, as required by the induction principles, but rather bound vari-
ables about which various freshness assumptions are made. Such reasoning is in general
however unsound (see [16] for an example).

In informal “pencil-and-paper” proofs such problems are usually ignored. While this
is harmless in easy proofs of simple properties, in difficult ones ignoring such problems
carries the danger of overlooking errors (see [8, Page 16] for one overlooked by Kleene).
Since the proof given by the first author for the strong-normalisation property is quite
difficult and since a number of researchers have built their results directly on the strong-
normalisation property (for example the lemuridæ system [4] and the typed version of
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the X -calculus [20]) or adapted the same proof-technique to other rewrite systems [21],
it seems prudent to reconsider whether the original informal proof is actually a proof.

The Nominal Datatype Package [19] provides an infrastructure for reasoning con-
veniently about datatypes with a built-in notion of α-equivalence: it allows to specify
such datatypes, provides appropriate recursion combinators and derives strong induc-
tion principles that have the usual variable convention already built-in. The latter comes
with safeguards that make the variable convention a safe reasoning principle.

The main contribution of this paper is a complete formalisation of a difficult strong
normalisation proof.1 This formalisation uncovers a number of errors in the informal
proof and makes one informal definition from the infromal proof more rigorous. The
techniques used for the latter are applicable also in other calculi where non-trivial op-
eration need to be defined over terms with involving binders. In the formalisation we
also encounter some difficulties with a standard formulation for notion of strong nor-
malisation. The rest of the paper is organised as follows: Sec. 2 reviews the informal
proof, that is the definitions for terms, typing-rules and cut-elimination reductions given
in [14,17]. The details about the formalisation are given in Sec. 3; Sec. 4 concludes and
gives suggestions for further work.

2 Sequent Proofs and Cut-Elimination

The main idea behind the cut-elimination procedure presented in [14,17] is to transport
one subderivation of a commuting cut to the place(s) where the cut-formula is intro-
duced. To specify this operation, we used terms to annotate sequent proofs, whose in-
ference rules are inspired by Kleene’s sequent calculus G3a [7] and the sequent calculus
G3c of [13]. These terms encode the structure of a proof and are defined as:

M, N ::= Ax(x, a) Axiom
| Cut(〈a〉M, (x)N) Cut
| AndR(〈a〉M, 〈b〉N, c) And-R
| Andi

L((x)M, y) And-Li (i = 1, 2)
| OriR(〈a〉M, b) Or-Ri (i = 1, 2)
| OrL((x)M, (y)N, z) Or-L
| ImpR((x)〈a〉M, b) Imp-R
| ImpL(〈a〉M, (x)N, y) Imp-L

(1)

where x, y, z are taken from a set of names and a, b, c from a set of co-names. We use
round brackets to signify that a name becomes bound and angle brackets that a co-name
becomes bound.

Our sequents, or typing judgements, are of the form Γ � M � Δ, where Γ is a left-
context, M a term and Δ a right-context. The inference rules for those typing judge-
ments are given in Fig. 1. One distinguishing feature of this term-calculus is that the
structural rules, weakening and contraction, are completely implicit in the form of the
inference rules. Thus we regard contexts as sets of (label,formula)-pairs, as in type the-
ory, and not as multisets, as in LK or LJ. A label is either a name (for left-contexts) or
a co-name (for right-contexts).

1 Available at http://isabelle.in.tum.de/nominal .
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x : B, Γ � Ax(x, a) � Δ, a : B

x : Bi, Γ � M � Δ

y : B1∧B2, Γ � Andi
L((x)M, y) � Δ

∧Li

Γ � M � Δ, a : B Γ � N � Δ, b : C
Γ � AndR(〈a〉M, 〈b〉N, c) � Δ, c : B∧C

∧R

x : B, Γ � M � Δ y : C, Γ � N � Δ

z : B∨C, Γ � OrL((x)M, (y)N, z) � Δ
∨L

Γ � M � Δ, a : Bi

Γ � OriR(〈a〉M, b) � Δ, b : B1∨B2

∨Ri

Γ � M � Δ, a : B x : C, Γ � N � Δ

y : B⊃C, Γ � ImpL(〈a〉M, (x)N, y) � Δ
⊃L

x : B, Γ � M � Δ, a : C
Γ � ImpR((x)〈a〉M, b) � Δ, b : B⊃C

⊃R

Γ1 � M � Δ1, a : B x : B, Γ2 � N � Δ2

Γ1, Γ2 � Cut(〈a〉M, (x)N) � Δ1, Δ2
Cut

Fig. 1. The inference, or typing, rules of our sequent calculus.

To see how our terms encode sequent proofs, suppose a sequent . . . A � B . . . can
be proved. Then in our judgments, A and B have labels (say x : A and a : B), and
M would be an encoding of the proof of . . . A � B . . ., with these labels, so denoted
. . . x : A � M � a : B . . . Then, where the sequent proof is extended further downwards,
x : A and a : B might disappear from the contexts. At the point where they disappear,
the corresponding proof-term includes the binding (x) or 〈a〉 , reflecting the fact that
the choice of label (x or a) is not relevant to the proof as a whole.

To form contexts we have the following conventions: a context can only include a sin-
gle association for each name (similarly for co-names); a comma in a conclusion stands
for the set union and a comma in a premise stands for the disjoint set union. Consider
for example the ⊃R-rule. This rule introduces the (co-name,formula)-pair b : B⊃C in
the conclusion, and consequently, b is a free co-name in the term ImpR((x)〈a〉M, b).
However, b can already be free in the subterm M , in which case b : B⊃C belongs to Δ.
Thus the conclusion of the ⊃R-rule is of the form

Γ � ImpR((x)〈a〉M, b) � Δ ⊕ b : B⊃C

where ⊕ denotes set union. Note that x : B and a : C in the premise are not part of the
conclusion because they are intended to become bound. Hence the premise must be of
the form

x : B ⊗ Γ � M � Δ ⊗ a : C

where ⊗ denotes disjoint set union. Our cut-rule requires that two contexts are joined
on each side of the conclusion. Thus we take this rule to be of the following form:

Γ1 Δ1 ⊗ a : B x : B ⊗ Γ2 Δ2

Γ1 ⊕ Γ2 Δ1 ⊕ Δ2
Cut
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Next we focus on the cut-elimination rules. For this consider the following logical
cut:

Γ1 Δ1, B Γ1 Δ1, C

Γ1 Δ1, B∧C
∧R

B, Γ2 Δ2

B∧C, Γ2 Δ2
∧L1

Γ1, Γ2 Δ1, Δ2
Cut

where we omitted for better readability the labels and term-annotations. We expect this
cut to reduce to

Γ1 Δ1, B B, Γ2 Δ2

Γ1, Γ2 Δ1, Δ2
Cut .

However because of our implicit treatment of the structural rules, some care is needed:
we have to ensure that the cut-formula B∧C does not occur in Δ1 or Γ2. If it does,
then we have not a logical cut, but a commuting cut. In order to distinguish between
both kinds of cuts, we introduce the notion when a term introduces freshly a name or
a co-name (this corresponds to the usual definition of a main formula in an inference
rule).

Definition 1. A term, M , introduces the name z or co-name c, if and only if M is of
the form

for z: Ax(z, c)
Andi

L((x)S, z)
OrL((x)S, (y)T , z)
ImpL(〈a〉S, (x)T , z)

for c: Ax(z, c)
AndR(〈a〉S, 〈b〉T , c)
OriR(〈a〉S, c)
ImpR((x)〈a〉S, c)

A term freshly introduces a name, if and only if none of its proper subterms introduces
this name. In other words, the name must not be free in a proper subterm. Similarly for
co-names.

Armed with this definition we can state the cut-reduction rules for dealing with logical
cuts (they correspond to Gentzen’s rules for logical cuts):

Definition 2 (Reductions for Logical Cuts, i = 1, 2)

Cut(〈b〉AndR(〈a1〉M1, 〈a2〉M2, b), (y)Andi
L((x)N, y))−−→ Cut(〈ai〉Mi, (x)N)

if AndR(〈a1〉M1, 〈a2〉M2, b) and Andi
L((x)N, y) freshly introduce b and y, resp.

Cut(〈b〉Ori
R(〈a〉M, b), (y)OrL((x1)N1, (x2)N2, y))−−→ Cut(〈a〉M, (xi)Ni)

if OriR(〈a〉M, b) and OrL((x1)N1, (x2)N2, y) freshly introduce b and y, resp.

Cut(〈b〉ImpR((x)〈a〉M, b), (z)ImpL(〈c〉N, (y)P , z))
−−→ Cut(〈a〉Cut(〈c〉N, (x)M), (y)P ) or
−−→ Cut(〈c〉N, (x)Cut(〈a〉M, (y)P ))

if ImpR((x)〈a〉M, b) and ImpL(〈c〉N, (y)P , z) freshly introduce b and z, resp.

Cut(〈a〉M, (x)Ax(x, b)) −−→M [a �→b] if M freshly introduces a

Cut(〈a〉Ax(y, a), (x)M) −−→M [x �→y] if M freshly introduces x
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In this definition we use M [a �→ b] to stand for capture-avoiding renaming of a to b in
M (similarly M [x �→y] for names).

The definition of the reduction rules for dealing with commuting cuts is more subtle.
Consider the following proof (where again we left out the labels and annotations):

π1

⎧
⎪⎨

⎪⎩
A B⊃C, A•

A, B C, A•

A B⊃C, A
⊃R

A∨A B⊃C, A
∨L

A� D, A A� D, A

A D, A∧A
∧R

A�, E A A�, E A

A, E A∧A
∧R

A, D⊃E A∧A
⊃L

⎫
⎪⎬

⎪⎭
π2

A∨A, D⊃E B⊃C, A∧A
Cut

The cut-formula A is neither a main formula in the inference rule ∨L, nor in ⊃L (on the
term-level that means that the terms for π1 and π2 do not freshly introduce the name
and co-name corresponding for A). Therefore the cut is a commuting cut. In π1 the
cut-formula is a main formula in the axioms marked with a bullet; in π2, respectively,
in the axioms marked with a star. Eliminating the cut in the proof above means to
either transport the derivation π2 to the places marked with a bullet and “cut it against”
the corresponding axioms, or to transport π1 and “cut it against” the axioms marked
with a star. In both cases the derivation being transported is duplicated. We realise
these operations with two symmetric forms of substitution, which we shall write as
P{x := 〈a〉Q} and S{b := (y)T}.

Whenever such a substitution is “next” to a term in which the cut-formula is intro-
duced, then the substitution becomes an instance of the Cut-term constructor. In the
following two examples we shall write {σ} and {τ} for the substitutions {c := (x)P}
and {x := 〈b〉Q}, respectively.

AndR(〈a〉M, 〈b〉N, c){σ} = Cut(〈c〉AndR(〈a〉M{σ}, 〈b〉N{σ}, c), (x)P )
ImpL(〈a〉M, (y)N, x){τ} = Cut(〈b〉Q, (x)ImpL(〈a〉M{τ}, (y) N{τ}, x))

In the first term the formula labelled with c is the main formula and in the second the
one labelled with x. So in both cases the substitutions “expand” to cuts, and in addition,
the substitutions are pushed inside the subterms. This is because there might be several
occurrences of c and x: both labels need not have been freshly introduced. We are left
with specifying the cases where the name or co-name that is being substituted for is
not a label of the main formula. In these cases the substitutions are pushed inside the
subterms or vanish in case of the axioms. Fig. 2 gives all clauses for the cases where a
cut expands and the clauses for when a substitution is pushed inside the terms. We do
not need to worry about inserting contraction rules when a term is duplicated, since our
contexts are sets of labelled formulae, and thus contractions are made implicitly.

There is one point worth mentioning about the clauses marked with 
 in Fig. 2.
Although these clauses are not needed for strong normalisation, they are needed to
have the property

M{x := 〈a〉P}{b := (y)Q} = M{b := (y)Q}{x := 〈a〉P}

for b not free in 〈a〉P and x not free in (y)Q. This property is crucial in our strong
normalisation proof. However, this property does not hold for a slightly simpler defi-
nition of the substitution operation where the lines marked with 
 are deleted and the

first two clauses are replaced by Ax(x, c){c := (y)P} def= P [y �→ x] and Ax(y, a){y :=
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def

def

def

def

def

def

def

def

def

def

Otherwise we push the substitution inside the subterms

def

def

def

def

def

def

def

def

Fig. 2. Definition of the substitution operation. This operation is used in the cut-reduction dealing
with commuting cuts. For more details see [14,17].

〈c〉P} def= P [c �→ a]. This simpler definition corresponds to the more familiar method
how cuts are eliminated. A consequence of the lines marked with 
, as we shall see, is
that calculations and properties involving substitution are quite subtle.

However, we are now in a position to complete the definition of our cut-elimination
procedure by stating how commuting cuts reduce, namely:

Definition 3 (Reductions for Commuting Cuts)

Cut(〈a〉M, (x)N) −−→ M{a := (x)N} if M does not freshly introduce a, or
−−→ N{x := 〈a〉M} if N does not freshly introduce x

and close the reduction relation under term-formation. The important properties of this
cut-elimination procedure are subject-reduction and strong normalisation.

Theorem 1 (Subject Reduction and Strong Normalisation [14,17])

• If Γ � M � Δ and M −−→M ′ then Γ � M ′ � Δ.
• If Γ � M � Δ then M is strongly normalising w.r.t. −−→ .
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3 The Formalisation of the Strong Normalisation Proof

In this section we describe the formalisation of the strong normalisation proof. While
the informal description of this proof is already quite detailed—the details are spread
over more than 20 pages in [14], we found that several subtle points were overlooked,
one central lemma is faulty and has to be restated, and a definition has to be made
rigorous.

The definition of the terms given in (1) and formulae (which we omitted in this pa-
per) pose no problem for the Nominal Datatype Package, as it was designed to deal with
such definitions. From the definition of terms, the package derives automatically a weak
and a strong structural induction principle (the strong one has the variable convention
already built in [19]), and provides a recursion combinator for defining functions over
the structure of the terms [15]. With this combinator, it is easy to define the capture-
avoiding renaming functions M [a �→ b] and M [x �→ y], although these definitions re-
quire that several proof-obligations are discharged by the user (the proof-obligations
ensure that the renaming-functions preserve α-equivalence).

The typing-system rules given in Fig. 1 can also be formalised with ease, except
that we have chosen to represent typing-context as (label,formula)-lists rather than sets.
This requires that we add appropriate validity and freshness-constraints to the inference
rules. A context is defined to be valid provided no name or co-name occurs twice. This
can be stated with the rules:

valid([])
a # Δ valid(Δ)
valid ((a : B) ::Δ)

x # Γ valid(Γ )
valid ((x : B) ::Γ )

where a # Δ (similarly x # Γ ) stands for a being fresh for Δ (i.e. not occurring in
Δ). Using this definition and freshness, the axiom and ∧R-rules, for example, look in
the formalisation as follows:

valid(Γ ) valid(Δ) (x : B) ∈ Γ (a : B) ∈ Δ

Γ � Ax(a, b) � Δ

Γ � M � (a : B) ::Δ Γ � N � (b : C) ::Δ
a # Δ b # Δ Δ′ ≈ (c : B∧C) ::Δ valid (Δ′)

Γ � AndR(〈a〉M, 〈b〉N, c) � Δ′ ∧R

where ≈ stands for two lists being equal if regarded as sets.
Most of the effort during the formalisation we had to invest in defining the sub-

stitution operation and proving associated lemmas. One reason for this is that the in-
formal definition given in Fig. 2 makes from a formal point of view only little sense.
For example, merging the two clauses given for {c := (x)P} and the term-constructor
AndR(〈a〉M, 〈b〉N, d) into an if -statement (as is required in a formal definition by re-
cursion over the structure of terms) leads to:

AndR(〈a〉M, 〈b〉N, d){c := (x)P} def=
if c = d

then Cut(〈d〉AndR(〈a〉(M{c := (x)P}), 〈b〉(N{c := (x)P}), d), (x)P )
else AndR(〈a〉(M{c := (x)P}), 〈b〉(N{c := (x)P}), d)
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where the “true”-branch corresponds to the case where the substitution expands to a
cut, and the “false”-branch where the substitution is just pushed inside the subterms M
and N . The obvious problem is that we attempt to push a substitution under binders
(in this example the binders are 〈a〉 and 〈b〉 ). This is only possible provided a and b
do not occur freely in the term P . Hence we have to restrict the clause with suitable
preconditions, namely:

provided a # P and b # P then

AndR(〈a〉M, 〈b〉N, d){c := (x)P} def=
if c = d

then Cut(〈d〉AndR(〈a〉(M{c := (x)P}), 〈b〉(N{c := (x)P}), d), (x)P )
else AndR(〈a〉(M{c := (x)P}), 〈b〉(N{c := (x)P}), d)

Since we define substitution over α-equivalence classes, we still obtain a total function
with this restriction in place. The hope is that we can always rename AndR(〈a〉M, 〈b〉N,
d) appropriately so that the preconditions are met. However, this is futile for the proof
substitution operation, because in the “true”-branch also the (free) co-name d is bound
with the scope of P—and we cannot rename (potentially) free co-names in a term with-
out violating α-equivalence. The way out is to choose in the “true”-branch explicitly a
fresh co-name d′ and define the clause formally as

provided a # P and b # P then

AndR(〈a〉M, 〈b〉N, d){c := (x)P} def=
if c = d

then fresh (λd′.Cut(〈d′〉AndR(〈a〉(M{c := (x)P}), 〈b〉(N{c := (x)P}), d′), (x)P ))
else AndR(〈a〉(M{c := (x)P}), 〈b〉(N{c := (x)P}), d)

using the fresh function defined in [10]. Space constraints prevent us to give more de-
tails about this function here, except that this function characterises when a construction
that picks a fresh (co-)name is independent of which fresh (co-)name is chosen. While
this clause (and similar ones for the other term-constructors) give us the properties
we expect from the substitution operation (which defines cut-reductions), the corre-
sponding definition leads to quite complicated proofs. One reason is that in the “true”-
branches we need to find a fresh (co-)name so that the fresh function provides us with
the desired result. At the moment this has to be done by hand, as the Nominal Datatype
Package provides only little help for dealing conveniently with the fresh functions.

Having properly defined the substitution operation, we can prove facts about how
substitutions interact; for example the following form of the substitution lemma is
needed in several places in the proof:

Lemma 1 (Some Substitution Lemmas)

• If x # P then M{x := 〈c〉Ax(y, c)}{y := 〈c〉P} = M{y := 〈c〉P}{x := 〈c〉P}
• If x # (y)Q then M{x := 〈a〉P}{b := (y)Q} = M{b := (y)Q}{x := 〈a〉(P{b := (y)Q})}

where the first one is needed in the proof of the second (note that in the second x # (y)Q
stands for x = y or x # Q). We prove such lemmas using the strong structural induction
principle for terms, as this minimises the need for renaming bound names and co-names.
Still these proofs require some considerable effort due to the sheer number of cases that
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need to be analysed. In order to appreciate the difficulties involving the substitution
operation for terms, note that the symmetric property for the first part of the lemma,
namely

M{y := 〈c〉P}{x := 〈c〉Ax(y, c)} = M{y := 〈c〉P}{x := 〈c〉P}

does not hold. The formalisation of properties about substitution requires approximately
20% of the formalisation code.

In comparison with the definition of the substitution operation, the definition of the
cut-reduction relation is relatively simple. It relies on the auxiliary notions for when a
term freshly introduces a name or co-name; for example

fin(Ax(z, a), z)
z # (x)M z # (y)N

fin(OrL((x)M, (y)N, z), z)

and so on for the notion of freshly introducing a name (similarly fic for freshly intro-
ducing a co-name). The formal definition of the cut-reductions look then as follows (the
first two are examples for logical cuts; the last for a commuting cut):

fic(M, a)
Cut(〈a〉M, (x)Ax(x, b))−−→M [a �→b]

fic(AndR(〈a1〉M1, 〈a2〉M2, b), b) fin(And1
L((x)N, y), y)

Cut(〈b〉AndR(〈a1〉M1, 〈a2〉M2, b), (y)And1
L((x)N, y))−−→Cut(〈a1〉M1, (x)N)

¬fic(M, a)
Cut(〈a〉M, (x)N)−−→M{a := (x)N}

In addition to those rules we specified in the formalisation a slew of congruence rules,
such as:

M −−→M ′

AndR(〈a〉M, 〈b〉N, c)−−→AndR(〈a〉M ′, 〈b〉N, c)

N −−→N ′

AndR(〈a〉M, 〈b〉N, c)−−→AndR(〈a〉M, 〈b〉N ′, c)

These rules were not explicitly mentioned in the informal proof. For the cut-reductions
and fin (similarly fic) we need to establish the lemma:

Lemma 2. If M −−→M ′ and fin(M, x) then fin(M ′, x).

This is relatively easy to prove by a strong induction over M −−→M ′. We next es-
tablish important properties characterising the interactions between cut-reductions and
substitution:

Lemma 3

• M{x := 〈c〉Ax(y, c)} −−→ ∗M [x �→y]
• M{c := (x)Ax(x, d)} −−→ ∗M [c �→d]
• If M −−→M ′ then M{σ} −−→ ∗M ′{σ}.
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The first two properties are by strong structural inductions over M ; the third is by strong
induction over the reduction M −−→M ′. All proofs require many case distinctions and
rely on additional proofs relating substitutions and the inductively defined predicates fin
and fic. The third property in this lemma is interesting insofar as it is quite un-intuitive
considering a similar property for capture avoiding substitution in the lambda-calculus.2

In the informal proof [14,17], this lemma was stated and proved as:

Lemma 4 (Faulty). If M −−→M ′ then either M{σ}=M ′{σ} or M{σ} −−→M ′{σ}.

The case where M{σ} = M ′{σ} was correctly analysed. It involves reductions of the
form

Cut(〈a〉M, (x)Ax(x, b))−−→M [a �→b]

with M being of the form Ax(y, a) and {σ} being {y := 〈c〉P}. In this case M{y := 〈c〉P}
is defined as Cut(〈c〉P , (x)Ax(x, b)), and M ′{y := 〈c〉P} as Ax(y, b){y := 〈c〉P}, which
in turn is defined as Cut(〈c〉P , (y)Ax(y, b)). Both terms are equal by α-equivalence.

However, the case where M{σ} needs more than one reduction to reach M ′{σ} was
overlooked! Such a case occurs with logical cuts, for example

Cut(〈b〉AndR(〈a1〉M1, 〈a2〉M2, b),(z)And1
L((x)N, z)) −−→ Cut(〈a1〉M1,(x)N )

with the proviso that M1 is of the form Ax(y, a1). In this case the left-hand side M{σ}
is

Cut(〈b〉AndR(〈a1〉Cut(〈c〉P , (y)Ax(y, a1)), 〈a2〉M2{σ}, b),(z)And1
L((x)N{σ}, z))

which in a single step reduces to

Cut(〈a1〉Cut(〈c〉P , (y)Ax(y, a1)),(x)N{σ})

and in possibly more than one step reduces to

Cut(〈a1〉P [c �→a1],(x)N )

which in turn is equal to M ′{σ}. Since in the formalisation we have to go through every
case one by one, such cases cannot be overlooked there. Fortunately, the proof of the
more general lemma goes through. Fortunately, also, the more general property does
not destroy the overall proof: the next lemma (Lem. 7 below) that uses this lemma can
be modified to deal with the many step-reduction sequence.

Next the informal proof considered the notion for a term being strongly normalising.
This notion was stated as all reductions sequences starting from a term must be finite.
As the formal definition of a term M being strongly normalising we used the inductive
definition:

∀M ′.M −−→M ′ implies M ′ ∈ SN

M ∈ SN (2)

This is a standard definition used in many formalisations. Two interesting phenomena
arose however with this definition. One was that in the informal proof we stated in a
passing (one-sentence) remark that the strong normalisation is preserved under renam-
ings, namely

2 In the λ-calculus the property is if M −−→ βM ′ then M{σ} −−→ βM ′{σ}.
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Lemma 5. If M ∈ SN then M [a �→b] ∈ SN and also M [x �→y] ∈ SN .

This lemma is “obvious” because renaming cannot create any new redexes, or cuts
(unlike the proof substitution which might create new cuts). Surprisingly, however, this
fact caused us a lot of frustration in the formalisation and resulted in slightly more than
10%(!) of the formalisation code. The problem is that we know by induction hypothesis
that (∀M ′.M −−→M ′ implies M ′ ∈ SN). We can further assume that for an M ′,
M [a �→ b] reduces to M ′, and we have to show that M ′ ∈ SN . To do so, we have to
analyse how M [a �→b] reduces w.r.t. M . As a result we have to show a fact:

Lemma 6. If M [a �→ b] −−→M ′, then there exists an M0 such that M ′ = M0[a �→ b]
and M −−→M0.

Its proof needs to analyse all the term constructors and all the applicable reductions.
This is extremely laborious. The problem is independent of our calculus and would
also arise in the λ-calculus. The fact that the lemma is “obvious”, but its proof is hard,
seems to indicate that the definition shown in (2) is not the right definition for estab-
lishing Lemma 5. We have however not seen any better formal definition for strong
normalisation in the term-rewriting literature.

Finally the informal proof establishes that all typable terms are strongly normalising.
Surprisingly the symmetric candidates �(B)� and �〈B〉� defined for this part of the proof
do not create any difficulties (the corresponding definitions are therefore omitted here,
see [14,17]). We show that the candidates are closed under reductions

Lemma 7 (Reduction Preserves Candidates)

• If 〈a〉M ∈ �〈B〉� and M −−→ ∗M ′, then 〈a〉M ′ ∈ �〈B〉�.
• If (x)M ∈ �(B)� and M −−→ ∗M ′, then (x)M ′ ∈ �(B)�.

In comparison with the informal proof, however, the assumptions in this lemma had to
be strengthened to deal with many-step reductions (i.e. −−→ ∗) because of the flaw in
the third part of Lemma 3. However, this generalisation does not affect the structural
induction over B that is employed to establish Lemma 7. Now we can show how the
candidates imply the property of strong normalisation, namely

Lemma 8

• If 〈a〉M ∈ �〈B〉�, then M ∈ SN ;
• If (x)M ∈ �(B)�, then M ∈ SN .

The last difficult lemma spells out the conditions when a cut is strongly normalising,
namely:

Lemma 9. If M, N ∈ SN and 〈a〉M ∈ �〈B〉�, (x)N ∈ �(B)� then

Cut(〈a〉M, (x)N) ∈ SN .

The informal proof of this lemma is inspired by a technique of Prawitz [11]. It pro-
ceeds by induction over a lexicographically ordered induction value of the form (δ, μ, ν)
where δ is the size of the cut-formula B; μ and ν are the longest reductions sequences
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starting from M and N . Because of the assumptions that M ∈ SNand N ∈ SN , the
informal proof claims without proof that these maximal lengths must be finite and the
induction therefore is sensible.

Here arises, however, the second problem with the definition of strong normalisation
shown in (2): while this claim is indeed true for the reduction system at hand, it is not
true in general. The reason is that a strongly normalising term does not need to have
an upper bound for the longest reduction sequence: consider the term M that reduces
in one step to the normal form M1, but also in two steps to the normal form M2 and
so on for any n. For this term we have that every reduction sequence starting from M
is finite, but there is no upper bound for the length of the longest reduction sequence
starting from M . This problem does not arise in our reduction system, because −−→
is only finitely branching. Together with the König’s lemma one can then infer that
a longest reduction sequence indeed exists for every strongly normalising term. The
problem with this argument, however, is that establishing that −−→ is only finitely
branching is far from trivial and also a formalisation of König’s lemma is not readily
available in Isabelle.

We were able to completely avoid the work involved with this argument by perform-
ing a well-founded induction, not on the triple using the longest reduction sequence,
but directly on the predicate SN (which is well-founded). This change in the induction
value does not require any changes to the other arguments in the proof. Though we had
to supply details for cases which were not present in the informal proof and which were
not like the other cases that were shown.

The final proof builds up a closing substitution for a well-typed term Γ � M � Δ
and shows that M is strongly normalising under this closing substitution. While all
these proofs involving candidates are quite laborious, they do not contain any surprises
(except the point about the length of the longest reduction sequence of a strongly nor-
malising term). Therefore we omit all details about them. The formalisation is part of
the Nominal Datatype Package and can be downloaded from

http://isabelle.in.tum.de/nominal

4 Conclusion

We have described a formalisation of an informal proof establishing the strong-normali-
sation property of the cut-elimination procedure for classical logic given in [14,17]. Be-
sides confirming that the informal proof is really a proof (all errors can be fixed), the
purpose of this paper is to convey the point that such formalisations are feasible and
the formal proving techniques are within reach of being useful in “everyday” reasoning
(The distribution of the Nominal Datatype Package contains a number of other formal-
isations from a wide range of topics). The formalisation of the strong-normalisation
proof was still quite demanding. However, given that the time formalising the informal
proof (which was however already quite detailed) is roughly equal to the time finding
and writing down this informal proof, then this additional effort seems more than ac-
ceptable to us. The additional time spent with formalising the proof ensures that no
case is overlooked and that the definitions are rigorous. Also, having a formalisation of
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the proof allows one to “play” with the definitions. This is in contrast with an informal
proof where it is rather impractical to change any definition, since checking that the
change does not affect the proof is “equal” to re-doing the proof. In contrast, we hope
to be able to improve in the future upon the problems we encountered with the defi-
nition of strong normalisation. Once we find a more convenient alternative definition
for strong normalisation, we can just re-run the formalisation and quickly focus on the
places where the proof might break with the new definition.

Our formalisation is at the moment the biggest single-file formalisation in the whole
Isabelle distribution. Its size is slightly more than 770 KByte. It took us approximately
5 person-weeks to complete the formalisation (including finding fixes for all the prob-
lems). The big size and speed with which the formalisation was completed is due to the
fact that in cut-elimination proofs many cases are repetitive and only differ in details.
So we were often able to complete one case and then cut-and-paste this case in place of
the other cases. The copied code then often only needed tweaking to deal with slightly
different assumptions and proof-obligations. The formalisation needs approximately 14
minutes to check on a standard laptop. Our work is now used for benchmarking Is-
abelle and also has proved to be a very useful testcase for any new features that are
implemented in Isabelle.

The Nominal Datatype Package has been invaluable for proving properties about
terms involving simple, lambda-calculus-like binders (our terms annotated to sequent-
proofs are only slightly more complicated than the λ-terms annotated to natural
deduction proofs). We note that de-Bruijn indices can be used in principle for such
formalisations involving α-equated terms; but also note practical difficulties when sev-
eral kinds of binders need to be treated and some binders even occur iterated in term-
constructors (like in our ImpR). In our opinion, a proof on the scale that we have done
here employing de-Bruijn indices is not feasible, because of the complications arising
from our substitution operation. Twelf, a system that provides an infrastructure for rea-
soning about higher-order abstract syntax—another existing technique for dealing with
binders, seems not yet streamlined enough to deal conveniently with logical relation
arguments on the scale that are used in the informal proofs above (See [12] for an ap-
proach about how to perform logical relation arguments in Twelf). The formalisation
of a weakly normalising cut-elimination procedure done by Pfenning [9] using higher-
order abstract syntax in Twelf does not seem to scale to our strong normalisation proof,
as it is impossible to define our notion of symmetric reducibility candidates in Twelf.
Also our proof is substantially more complex than the proof underlying the formalisa-
tion by Pfenning (he considers only weak normalisation). Aydemir et al. have reported
recently [1] that a locally nameless representation for terms with binders has been very
useful in formalising informal proofs from programming language theory. We have not
yet been able to thoroughly compare their results with ours and do not know how their
results scale to our quite difficult proof. For example, what helped us to avoid mistakes
in our formalisation was that names and co-names have different type. As a result the
type-system will immediately complain whenever we mixed up these names. It remains
to be seen whether a locally nameless representation of terms can be defined so that
formalisations have a similar convenience.
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The most annoying aspect in our formalisation is the lack of automated support for
dealing with the fresh function. Finding an appropriate fresh name or co-name that
meets the conditions can be easily automated. However the verification of the conditions
associated with the fresh function seems hard to automate. This and comparing our work
with the one by Aydemir et al. we leave as future work.

Acknowledgements. The first author thanks Jeremy Dawson and Michael Norrish who
gave helpful hints to formalise Lemma 9. Markus Wenzel and Stefan Berghofer stream-
lined Isabelle to cope with the size of the formalisation.
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