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Abstract There are numerous textbooks on regular languages. Many of them focus on fi-
nite automata for proving properties. Unfortunately, automata are not so straightforward to
formalise in theorem provers. The reason is that natural representations for automata are
graphs, matrices or functions, none of which are inductive datatypes. Regular expressions
can be defined straightforwardly as a datatype and a corresponding reasoning infrastruc-
ture comes for free in theorem provers. We show in this paper that a central result from
formal language theory—the Myhill-Nerode Theorem—can be recreated using only regular
expressions. From this theorem many closure properties of regular languages follow.

1 Introduction

Regular languages are an important and well-understood subject in Computer Science, with
many beautiful theorems and many useful algorithms. There is a wide range of textbooks
on this subject, many of which are aimed at students and contain very detailed ‘pencil-and-
paper’ proofs (e.g. the textbooks by Hopcroft and Ullman (1969) and by Kozen (1997)).
It seems natural to exercise theorem provers by formalising the theorems and by verifying
formally the algorithms.

A popular choice for a theorem prover would be one based on Higher-Order Logic
(HOL), for example HOL4, HOLIlight or Isabelle/HOL. For the development presented in
this paper we will use the Isabelle/HOL system. HOL is a predicate calculus that allows
quantification over predicate variables. Its type system is based on the Simple Theory of
Types by Church (1940). Although many mathematical concepts can be conveniently ex-
pressed in HOL, there are some limitations that hurt when attempting a simple-minded for-
malisation of regular languages in it.

* This is a revised and much expanded version of Wu et al. (2011a).
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The typical approach to regular languages, taken for example by Hopcroft and Ullman
(1969) and by Kozen (1997), is to introduce finite deterministic automata and then define
most notions in terms of them. For example, a regular language is normally defined as:

Definition 1 A language A is regular, provided there is a finite deterministic automaton that
recognises all strings of A.

This approach has many benefits. Among them is the fact that it is easy to convince one-
self that regular languages are closed under complementation: one just has to exchange the
accepting and non-accepting states in the corresponding automaton to obtain an automaton
for the complement language. The problem, however, lies with formalising such reasoning
in a theorem prover. Automata are built up from states and transitions that are commonly
represented as graphs, matrices or functions, none of which, unfortunately, can be defined
as an inductive datatype.

In case of graphs and matrices, this means we have to build our own reasoning infrastruc-
ture for them, as neither Isabelle/HOL nor HOL4 nor HOLIlight support them with libraries.
Also, reasoning about graphs and matrices can be a hassle in theorem provers, because we
have to be able to combine automata. Consider for example the operation of sequencing two
automata, say A; and Ag, by connecting the accepting states of A to the initial state of Aa:

o3 - 30

On ‘paper’ we can define the corresponding graph in terms of the disjoint union of the state
nodes. Unfortunately in HOL, the standard definition for disjoint union, namely

AvwAs € {(1,x) | x €A} U{(2,y) |y €A} 1)

changes the type—the disjoint union is not a set, but a set of pairs. Using this definition for
disjoint union means we do not have a single type for the states of automata. As a result we
will not be able to define a regular language as one for which there exists an automaton that
recognises all its strings (Definition 1). This is because we cannot make a definition in HOL
that is only polymorphic in the state type, but not in the predicate for regularity; and there
is no type quantification available in HOL.' Systems such as Coq permit quantification over
types and thus can state such a definition. This has been recently exploited in an elegant and
short formalisation of the Myhill-Nerode theorem in Coq by Doczkal et al. (2013), but as
said this is not available to us working in Isabelle/HOL.

An alternative, which provides us with a single type for states of automata, is to give
every state node an identity, for example a natural number, and then be careful to rename
these identities apart whenever connecting two automata. This results in clunky proofs es-
tablishing that properties are invariant under renaming. Similarly, connecting two automata
represented as matrices results in messy constructions, which are not pleasant to formally
reason about. Braibant (2012, Page 67), for example, writes that there are no problems with
reasoning about matrices, but that there is an “intrinsic difficulty of working with rectangular
matrices” in some parts of his formalisation of formal languages in Coq.

Functions are much better supported in Isabelle/HOL, but they still lead to similar prob-
lems as with graphs. Composing, for example, two non-deterministic automata in parallel
requires also the formalisation of disjoint unions. Nipkow (1998) dismisses for this the op-
tion of using identities, because it leads according to him to “messy proofs”. Since he does

I Slind already pointed out this problem in an email to the HOL4 mailing list on 21st April 2005.
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not need to define what regular languages are, Nipkow opts for a variant of (1) using bit
lists, but writes

“All lemmas appear obvious given a picture of the composition of automata. . . Yet
their proofs require a painful amount of detail.”

and

“If the reader finds the above treatment in terms of bit lists revoltingly concrete, 1
cannot disagree. A more abstract approach is clearly desirable.”

Because of these problems to do with representing automata, formalising automata the-
ory is surprisingly not as easy as one might think, despite the sometimes very detailed, but
informal, textbook proofs. Lammich and Tuerk (2012) formalised Hopcroft’s algorithm us-
ing an automata library of 14 kloc in Isabelle/HOL. There they use matrices for representing
automata. Functions are used by Nipkow (1998), who establishes the link between regular
expressions and automata in the context of lexing. Berghofer and Reiter (2009) use func-
tions as well for formalising automata working over bit strings in the context of Presburger
arithmetic. A larger formalisation of automata theory, including the Myhill-Nerode theo-
rem, was carried out in Nuprl by Constable et al. (2000) which also uses functions. Other
large formalisations of automata theory in Coq are by Fillidtre (1997) who essentially uses
graphs and by Almeida et al. (2010) and Braibant (2012), who both use matrices. Many of
these works, like Nipkow (1998) or Braibant (2012), mention intrinsic problems with their
representation of automata which made them ‘fight’ their respective theorem prover.

In this paper, we will not attempt to formalise automata theory in Isabelle/HOL nor will
we attempt to formalise automata proofs from the literature, but take a different approach to
regular languages than is usually taken. Instead of defining a regular language as one where
there exists an automaton that recognises all its strings, we define a regular language as:

Definition 2 A language A is regular, provided there is a regular expression that matches
all strings of A.

We then want to ‘forget’ automata completely and see how far we come with formalising
results from regular language theory by only using regular expressions. The reason is that
regular expressions, unlike graphs, matrices and functions, can be defined as an inductive
datatype and a reasoning infrastructure for them (like induction and recursion) comes for
free in HOL.

While our choice of using regular expressions is motivated by shortcomings in theorem
provers, the question whether formal language theory can be done without automata crops
up also in non-theorem prover contexts. For example, Gasarch asked in the Computational
Complexity blog by Fortnow and Gasarch (2013) whether the complementation of regular-
expression languages can be proved without using automata. He concluded

“...itcan’t be done”
and even pondered
“...[b]ut is there a rigorous way to even state that?”

We shall give an answer to these questions with our paper.
The convenience of regular expressions has recently been exploited in HOL4 with a for-
malisation of regular expression matching based on derivatives by Owens and Slind (2008),
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and with an equivalence checker for regular expressions in Isabelle/HOL by Krauss and
Nipkow (2012) and in Matita by Asperti (2012) and in Coq by Coquand and Siles (2011).
The main purpose of this paper is to show that a central result about regular languages—the
Myhill-Nerode Theorem—can be recreated by only using regular expressions. This theorem
gives necessary and sufficient conditions for when a language is regular. As a corollary of
this theorem we can easily establish the usual closure properties, including complementa-
tion, for regular languages. We use the Continuation Lemma, which is also a corollary of
the Myhill-Nerode Theorem, for establishing the non-regularity of the language a"b".

Contributions: There is an extensive literature on regular languages. To our best knowledge,
our proof of the Myhill-Nerode Theorem is the first that is based on regular expressions,
only. The part of this theorem stating that finitely many partitions imply regularity of the
language is proved by an argument about solving equational systems. This argument requires
a ‘reversed’ version of Arden’s Lemma. For the other part, we give two proofs: one direct
proof using certain tagging-functions, and another indirect proof using Antimirov’s partial
derivatives (1995). Again to our best knowledge, the tagging-functions have not been used
before for establishing the Myhill-Nerode Theorem. Derivatives of regular expressions have
been used recently quite widely in the literature; partial derivatives, in contrast, attract much
less attention. However, partial derivatives are more suitable in the context of the Myhill-
Nerode Theorem, since it is easier to formally establish their finiteness result. We are not
aware of any proof that uses either of them for proving the Myhill-Nerode Theorem.

2 Preliminaries

Strings in Isabelle/HOL are lists of characters with the empty string being represented by the
empty list, written []. We assume there are only finitely many different characters. Languages
are sets of strings. The language containing all strings is written in Isabelle/HOL as UNIV.
The concatenation of two languages is written A - B and a language raised to the power 7 is
written A”. They are defined as usual

AB Y (s1@sy|51€ANSso€B)
def

A =)

Aty g

where @ is the list-append operation. The Kleene-star of a language A is defined as the union

over all powers, namely A* = Un A™. In the paper we will make use of the following
properties of these constructions.

Proposition 1

(i) A=A -A"U{[]}

(i) If[| ¢ A and s € A" then n < length s.

(iii) B-(UnA")=(UnB-A")

(iv) If x € A* and x # [] then there exists an xp and xs with x = xp Q xs and
xp # [] such that x, € A and x5 € A*.

In (if) we use the notation length s for the length of a string; this property states that if [| ¢ A
then the lengths of the strings in A must be longer than n. Property (iv) states that a
non-empty string in A* can always be split up into a non-empty prefix belonging to A and
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the rest being in A*. We omit the proofs for these properties, but invite the reader to consult
our formalisation.

The notation in Isabelle/HOL for the quotient of a language A according to an equiva-
lence relation & is A J/ ~. We will write [x]~ for the equivalence class defined as {y | y ~ x},
and have x ~ y if and only if [x]~ = [y]~.

Central to our proof will be the solution of equational systems involving equivalence
classes of languages. For this we will use Arden’s Lemma (see for example Sakarovitch
(2009, Page 100)), which solves equations of the form X = A - X U B provided || ¢ A.
However we will need the following ‘reversed’ version of Arden’s Lemma (‘reversed’ in the
sense of changing the order of A - X to X - A).

Lemma 1 (Reversed Arden’s Lemma)
If]¢AthenX=X-AUBifandonlyif X =B - A"

The proof of this reversed version of Arden’s lemma follows the proof of the original ver-
sion. Regular expressions are defined as the inductive datatype

ZERO
ONE
ATOM ¢
TIMES r r
PLUS rr
STAR r

r

and the language matched by a regular expression is defined by recursion as

c(zero) ¥ g
L(ONE) {0}
carome) ¥ {dy
LPLUS 1 12) % £(r1) U L(r2)
L(TIMES 11 r2) < £(ry) - £(r2)
L(STARr) ¥ r(r)*

dof

def

Given a finite set of regular expressions rs, we will make use of the operation of gen-
erating a regular expression that matches the union of all languages of rs. This definition is
not trivial in a theorem prover, because rs (being a set) is unordered, but the regular expres-
sion needs an order. Since we only need to know the existence of such a regular expression,
we can use Isabelle/HOL'’s fold_graph and Hilbert’s choice operator, written SOME in Is-
abelle/HOL, for defining =-rs. This operation, roughly speaking, folds PLUS over the set rs
with ZERO for the empty set. We can prove that for a finite set rs

L(Frs)=U (£ “r) @
holds, whereby £ * rs stands for the image of the set »s under function £ defined as
Lrs d:ef{ﬂ(r)|r€rs}

In what follows we shall use this convenient short-hand notation for images of sets also with
other functions.

2 Available under Wu et al. (2011b) in the Archive of Formal Proofs at
http://afp.sourceforge.net/entries/Myhill-Nerode.shtml.
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3 The Myhill-Nerode Theorem, First Part

The key definition in the Myhill-Nerode Theorem is the Myhill-Nerode Relation, which
states that two strings are related w.r.t. a language, provided there is no distinguishing ex-
tension in this language. This can be defined as a ternary relation.

Definition 3 (Myhill-Nerode Relation) Given a language A, two strings x and y are Myhill-
Nerode related provided

xRy Yy, (x@QzeA)=(yQzecA)

It is easy to see that a4 is an equivalence relation, which partitions the set of all strings,
UNIV, into a set of disjoint equivalence classes. To illustrate this quotient construction, let
us give a simple example: consider the regular language built up over the alphabet {a, b}
and containing just the string two strings [a] and [a, b]. The relation ~ {[al, [a, b]} PArtitions
UNIV into four equivalence classes X1, X2, X3 and X4 as follows

X1 ={[]}
X2 = {[a]}
X3 - {[a7 b]}

X4 = UNIV — {[]7 [a]’ [a7 b]}

One direction of the Myhill-Nerode Theorem establishes that if there are finitely many
equivalence classes, like in the example above, then the language is regular. In our setting
we therefore have to show:

Theorem 1 If finite (UNIV |/, then regular A.

To prove this theorem, we first define the set finals A as those equivalence classes from
UNIV |/ =4 that contain strings of A, namely

finals A d:ef{[[s]]zA | s €A} 3)

In our running example, X2 and X3 are the only equivalence classes in finals {[a], [a, b]}. It
is straightforward to show that in general

A= Uﬁnals A finals A C UNIV || =4 4

hold. Therefore if we know that there exists a regular expression for every equivalence class
in finals A (which by assumption must be a finite set), then we can use = to obtain a regular
expression that matches every string in A.

Our proof of Theorem 1 relies on a method that can calculate a regular expression for
every equivalence class, not just the ones in finals A. We first define the notion of one-
character-transition between two equivalence classes

vesx ¥y (dycx )

which means that if we append the character c to the end of all strings in the equivalence
class Y, we obtain a subset of X. In our concrete example we have
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b
X1 ':a> Xo, X1 = Xy;
b
Xo == X3, Xo == Xy;
b
X3 == X4, X3 = X4 and
b
X4 l:a> X4, X4 = X4.
Next we construct an initial equational system that contains an equation for each equiv-
alence class. We first give an informal description of this construction. Suppose we have
the equivalence classes X1,. .. ,Xn, there must be one and only one that contains the empty

string [] (since equivalence classes are disjoint). Let us assume [] € X1. We build the follow-
ing initial equational system

X1 = (Y11,ATOM Cll) +... + (Ylp,ATOM C1p) + )\(ONE)
Xo = (YQl,ATOMC21)+... +(Y20,ATOMC20)
X, = (Ynl,ATOM Cnl) +... + (an,ATOM qu)

where the terms (Y;;, ATOM c; ;) are pairs consisting of an equivalence class and a regular

expression. In the initial equational system, they stand for all transitions Y ; 4 X i- There
can only be finitely many terms of the form (V;;, ATOM c;;) in a right-hand side since by
assumption there are only finitely many equivalence classes and only finitely many charac-
ters. The term A\(ONE) in the first equation acts as a marker for the initial state, that is the
equivalence class containing the empty string []. In our running example we have the initial
equational system

X1 = A\(ONE)
X2 = (X1, ATOM a)
X3 = (X2, ATOM b) (6)

X4 = (X1, ATOM b) + (X2, ATOM a) + (X3, ATOM a)
+ (X3, ATOM b) + (X4, ATOM a) + (X4, ATOM b)

Note that we mark, roughly speaking, the single ‘initial’ state in the equational system,
which is different from the method by Brzozowski (1964), where he marks the ‘terminal’
states. We are forced to set up the equational system in our way, because the Myhill-Nerode
Relation determines the ‘direction’ of the transitions—the successor ‘state’ of an equiva-
lence class Y can be reached by adding a character to the end of Y. If we had defined our
equations the ‘Brzozowski-way’, then our variables do not correspond to the equivalence
classes generated by the Myhill-Nerode relation. This need of reverse marking is also the
reason why we have to use our reversed version of Arden’s Lemma.

Overloading the function £ for the two kinds of terms in the equational system, we have

cr,n€yoc) L0 € L)
and we can prove for X». ., that the following equations
X; Zl:(Yil,ATOMCil) U... U,C(Yiq,ATOMCiq). 7

hold. Similarly for X; we can show the following equation

X1 = [,(Yll,ATOM Cll) U... U ,C(Ylp,ATOM Clp) U L()\(ONE)) (8)
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holds. Again note that the reason for adding the A\-marker to our initial equational system is
to obtain this equation: it only holds with the marker, since none of the other terms contain
the empty string. The point of the initial equational system is that solving it means we will
be able to extract a regular expression for every equivalence class generated by the Myhill-
Nerode relation.

Our representation for the equations in Isabelle/HOL are pairs, where the first compo-
nent is an equivalence class (a set of strings) and the second component is a set of terms.
Given a set of equivalence classes CS, our initial equational system /nit CS is thus formally
defined as

hit_rhs CSX ¥ ifex
then {(Y,ATOM ¢) | Y € CS A Y == X} U {\(ONE)}
else {(Y,ATOM ¢) | Y € CS N Y == X}
def

mitcS < {(X, Init_rhs CSX) | X € CS}

(C))

Because we use sets of terms for representing the right-hand sides of equations, we can
prove (7) and (8) more concisely as

Lemma 2 If (X, rhs) € Init (UNIV ~,) then X =] L ‘ rhs.

Our proof of Theorem 1 will proceed by transforming the initial equational system into one
in solved form maintaining the invariant in Lemma 2. From the solved form we will be able
to read off the regular expressions.

In order to transform an equational system into solved form, we have two operations:
one that takes an equation of the form X = rhs and removes any recursive occurrences of X
in the rhs using our variant of Arden’s Lemma. The other operation takes an equation X =
rhs and substitutes X throughout the rest of the equational system adjusting the remaining
regular expressions appropriately. To define this adjustment we define the append-operation
taking a term and a regular expression as argument

(Y7 r2)<1r1 d:ef (Y, TIMES ro r1)

Ar2)arr & A(TIMES ry 1)

We lift this operation to entire right-hand sides of equations, written as rhs < r. With this we
can define the arden-operation for an equation of the form X = rhs as:

def

Arden Xrhs = let
rhs' = rhs — {(X, r) | (X, r) € rhs} (10)
r' = STAR (+{r | (X, r) € rhs})
in rhs’ ar’

In this definition, we first delete all terms of the form (X, r) from rhs; then we calculate the
combined regular expressions for all r coming from the deleted (X, r), and take the STAR
of it; finally we append this regular expression to rhs’. If we apply this operation to the
right-hand side of X4 in (6), we obtain the equation:

X4 = (X1, TIMES (ATOM b) (STAR +{ATOM a, ATOM b})) +
(X2, TIMES (ATOM a) (STAR +{ATOM a, ATOM b})) +
(X3, TIMES (ATOM a) (STAR +{ATOM a, ATOM b})) +
(X3, TIMES (ATOM b) (STAR +{ATOM a, ATOM b}))
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That means we eliminated the recursive occurrence of X4 on the right-hand side.

It can be easily seen that the Arden-operation mimics Arden’s Lemma on the level of
equations. To ensure the non-emptiness condition of Arden’s Lemma we say that a right-
hand side is ardenable provided

ardenable rhs 2 v Y 1. (Y,r)erhs — [| & L(r)
This allows us to prove a version of Arden’s Lemma on the level of equations.

Lemma 3 Given an equation X = rhs. If X =\ L ‘ rhs, ardenable rhs, and finite rhs, then
X=UZL ‘ (Arden X rhs).

Our ardenable condition is slightly stronger than needed for applying Arden’s Lemma, but
we can still ensure that it holds throughout our algorithm of transforming equations into
solved form.

The substitution-operation takes an equation of the form X = xrhs and substitutes it into
the right-hand side rhs.

Subst rhs X xrhs = let
rhs' =rhs — {(X, r) | (X, r) € rhs}
r'=+{r|(X,r) € rhs}

in rhs' U (xrhs ar')

We again delete first all occurrences of (X, r) in rhs; we then calculate the regular expression
corresponding to the deleted terms; finally we append this regular expression to xrhs and
union it up with ris’. When we use the substitution operation we will arrange it so that xrhs
does not contain any occurrence of X. For example substituting the first equation in (6) into
the right-hand side of the second, thus eliminating the equivalence class X1, gives us the
equation

X2 = M(TIMES ONE (ATOM a)) (11

With these two operations in place, we can define the operation that removes one equa-
tion from an equational systems ES. The operation Subst_all substitutes an equation X =
xrhs throughout an equational system ES; Remove then completely removes such an equa-
tion from ES by substituting it to the rest of the equational system, but first eliminating all
recursive occurrences of X by applying Arden to xrhs.

Subst_all ES X xrhs % {(Y, Subst yrhs X xrhs) | (Y, yrhs) € ES}
Remove ES Xxrhs L Subst_all (ES — {(X, xrhs)}) X (Arden X xrhs)

Finally, we can define how an equational system should be solved. For this we will need
to iterate the process of eliminating equations until only one equation will be left in the
system. However, we do not just want to have any equation as being the last one, but the one
involving the equivalence class for which we want to calculate the regular expression. Let
us suppose this equivalence class is X. Since X is the one to be solved, in every iteration step
we have to pick an equation to be eliminated that is different from X. In this way X is kept
to the final step. The choice is implemented using Hilbert’s choice operator, written SOME
in the definition below.

ferXES Y Jer
(Y, yrhs) = SOME (Y, yrhs). (Y, yrhs) EESAX #Y
in Remove ES'Y yrhs
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The last definition we need applies Iter over and over until a condition Cond is not satisfied
anymore. This condition states that there are more than one equation left in the equational
system ES. To solve an equational system we use Isabelle/HOL’s while-operator as follows:

Solve X ES < while Cond (Iter X) ES

We are not concerned here with the definition of this operator (see Berghofer and Nipkow
(2002) for example), but note that we eliminate in each Irer-step a single equation, and
therefore have a well-founded termination order by taking the cardinality of the equational
system ES. This enables us to prove properties about our definition of Solve when we ‘call’
it with the equivalence class X and the initial equational system Init (UNIV }/ ~4) from (9)
using the principle:

invariant (Init (UNIV | z24))
V ES. invariant ES N\ Cond ES — invariant (Iter X ES)
V ES. invariant ES A\ Cond ES — card (Iter X ES) < card ES (12)
YV ES. invariant ES N\ = Cond ES — P ES
P (Solve X (Init (UNIV [[=y)))

This principle states that given an invariant (which we will specify below) we can prove a
property P involving Solve. For this we have to discharge the following proof obligations:
first the initial equational system satisfies the invariant; second the iteration step Iter pre-
serves the invariant as long as the condition Cond holds; third Iter decreases the termination
order, and fourth that once the condition does not hold anymore then the property P must
hold.

The property P in our proof will state that Solve X (Init (UNIV |/ ~4)) returns with a
single equation X = xrhs for some xrhs, and that this equational system still satisfies the
invariant. In order to get the proof through, the invariant is composed of the following six
properties:

invariant ES %< finite ES (finiteness)
A Y (X, rhs)€ES. finite rhs (finiteness rhs)
A Y(X,rhs)€ES.X =] L ‘rhs (soundness)
A VXrhsrhs' (X, rhs) € ES A (X, rhs”) € ES — rhs = rhs’
(distincmess)
A Y (X, rhs)€ES. ardenable rhs (ardenable)
A Y (X, rhs)€ES. rhss rhs C lhss ES (validity)

The first two ensure that the equational system is always finite (number of equations and
number of terms in each equation); the third makes sure the ‘meaning’ of the equations is
preserved under our transformations. The other properties are a bit more technical, but are
needed to get our proof through. Distinctness states that every equation in the system is
distinct. Ardenable ensures that we can always apply the Arden operation. The last property
states that every rhs can only contain equivalence classes for which there is an equation.
Therefore lhss is just the set containing the first components of an equational system, while

rhss collects all equivalence classes X in the terms of the form (X, r). That means formally

Ihss ES % {X| (X, rhs) € ES} and rhss rhs & {X| (X, r) € rhs}.

It is straightforward to prove that the initial equational system satisfies the invariant.

Lemma 4 [f finite (UNIV || =4) then invariant (Init (UNIV [/ =y)).
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Proof Finiteness is given by the assumption and the way how we set up the initial equa-
tional system. Soundness is proved in Lemma 2. Distinctness follows from the fact that the
equivalence classes are disjoint. The ardenable property also follows from the setup of the
initial equational system, as does validity. O

Next we show that Iter preserves the invariant.
Lemma 5 [f invariant ES, (X, rhs) € ES and Cond ES, then invariant (Iter X ES).

Proof The argument boils down to choosing an equation ¥ = yrhs to be eliminated and to
show that Subst_all (ES — {(Y, yrhs)}) Y (Arden Y yrhs) preserves the invariant. We prove
this as follows:

VES. invariant (ES U {(Y, yrhs)}) implies invariant (Subst_all ES Y (Arden Y yrhs))

Finiteness is straightforward, as the Subst and Arden operations keep the equational sys-
tem finite. These operations also preserve soundness and distinctness (we proved sound-
ness for Arden in Lemma 3). The property ardenable is clearly preserved because the
append-operation cannot make a regular expression to match the empty string. Validity is
given because Arden removes an equivalence class from yrhs and then Subst_all removes
Y from the equational system. Having proved the implication above, we can instantiate
ES with ES — {(Y, yrhs)} which matches with our proof-obligation of Subst_all. Since
ES =ES — {(Y, yrhs)} U {(Y, yrhs)}, we can use the assumption to complete the proof.
O

‘We also need the fact that /ter decreases the termination measure.

Lemma 6 [f invariant ES, (X, rhs) € ES and Cond ES, then
card (Iter X ES) < card ES.

Proof By assumption we know that ES is finite and has more than one element. Therefore
there must be an element (Y, yrhs) € ES with (Y, yrhs) # (X, rhs). Using the distinctness
property we can infer that Y # X. We further know that Remove ES Y yrhs removes the
equation Y = yrhs from the system, and therefore the cardinality of Iter strictly decreases.
O

This brings us to our property we want to establish for Solve.

Lemma 7 [f finite (UNIV |/ =4) and X € UNIV || =24 then there exists a rhs such that Solve
X (Init (UNIV || =4)) = {(X, rhs)} and invariant {(X, rhs)}.

Proof In order to prove this lemma using (12), we have to use a slightly stronger invariant
since Lemma 5 and 6 have the precondition that (X, rhs) € ES for some rhs. This precondi-
tion is needed in order to choose in the Iter-step an equation that is not X = rhs. Therefore
our invariant cannot be just invariant ES, but must be invariant ES A (3rhs. (X, rhs) € ES).
By assumption X € UNIV J/ =, and Lemma 4, the more general invariant holds for the initial
equational system. This is premise 1 of (12). Premise 2 is given by Lemma 5 and the fact
that Iter might modify the rhs in the equation X = rhs, but does not remove it. Premise 3
of (12) is by Lemma 6. Now in premise 4 we like to show that there exists a rhs such that
ES = {(X, rhs)} and that invariant {(X, rhs)} holds, provided the condition Cond does not
hold. By the stronger invariant we know there exists such a rhs with (X, rhs) € ES. Because
Cond is not true, we know the cardinality of ES is /. This means ES must actually be the
set {(X, rhs)}, for which the invariant holds. This allows us to conclude that Solve X (Init
(UNIV | =4)) = {(X, rhs)} and invariant {(X, rhs)} hold, as needed. O
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With this lemma in place we can show that for every equivalence class in UNIV j/ =4 there
exists a regular expression.

Lemma 8 [f finite (UNIV /~,) and X € UNIV ||z, then regular X.

Proof By the preceding lemma, we know that there exists a rhs such that Solve X (Init
(UNIV || =4)) returns the equation X = rhs, and that the invariant holds for this equation.
That means we know X = | J £  rhs. We further know that this is equal to | J £ * (Arden X rhs)
using the properties of the invariant and Lemma 3. Using the validity property for the equa-
tion X = rhs, we can infer that rhss rhs C {X} and because the Arden operation removes
that X from rhs, that rhss (Arden X rhs) = {}. This means the right-hand side Arden X rhs
can only consist of terms of the form A(r). So we can collect those (finitely many) regular
expressions s and have X = £(—rs). With this we can conclude the proof. O

Lemma 8 allows us to finally give a proof for the first direction of the Myhill-Nerode Theo-
rem.

Proof (of Theorem 1) By Lemma 8 we know that there exists a regular expression for every
equivalence class in UNIV | 4:

if X € UNIV j/ =, then there exists a r such that X = £(r)

Since finals A is a subset of UNIV /) =4, we also know that for every equivalence class in
finals A there exists a regular expression. Moreover by assumption we know that finals A
must be finite, and therefore there must be a finite set of regular expressions rs such that
Ufinals A = L(—rs). Since the left-hand side is equal to A, we can use —rs as the regular
expression that is needed in the theorem. 0O

Solving the equational system of our running example gives as solution for the two final
equivalence classes:

Xy = TIMES ONE (ATOM a)
X3 = TIMES (TIMES ONE (ATOM a)) (ATOM b)

Combining them with =+ gives us a regular expression for the language {[a], [a, b]}.

Note that our algorithm for solving equational systems provides also a method for cal-
culating a regular expression for the complement of a regular language: if we combine all
regular expressions corresponding to equivalence classes not in finals A (in the running ex-
ample X; and X4), then we obtain a regular expression for the complement language A. This
is similar to the usual construction of a ‘complement automaton’.

4 Mpyhill-Nerode, Second Part

In this section we will give a proof for establishing the second part of the Myhill-Nerode
Theorem. It can be formulated in our setting as follows:

Theorem 2 Given r is a regular expression, then finite (UNIV | ~ L(r))'

The proof will be by induction on the structure of r. It turns out the base cases are straight-
forward.



A Formalisation of the Myhill-Nerode Theorem based on Regular Expressions 13

Proof (Base Cases) The cases for ZERO, ONE and ATOM are routine, because we can
easily establish that

UNIV =y € ({0}, UNIV = {[1}}
UNIV =1y € {0} {le]}, UNIV = {[], [c]}}

hold, which shows that UNIV |/ ~ £(r) must be finite. O

Much more interesting, however, are the inductive cases. They seem hard to be solved di-
rectly. The reader is invited to try.

In order to see how our proof proceeds consider the following suggestive picture given
by Constable et al. (2000):

a2 a1
as | as (13)
UNIV UNIV [ ) UNIV /R

The relation ~ . partitions the set of all strings, UNIV, into some equivalence classes. To
show that there are only finitely many of them, it suffices to show in each induction step that
another relation, say R, has finitely many equivalence classes and refines ~ L(r):

Definition 4 A relation R; refines R2 provided R1 C Ro.

For constructing R, we will rely on some ragging-functions defined over strings, see Fig. 1.
These functions are parameterised by sets of strings A and B standing for arbitrary languages
and will be instantiated with the induction hypotheses. Given the inductive hypotheses, it
will be easy to prove that the range of these tagging-functions is finite. The range of a
function f is defined as

range f dzeff‘ UNIV

that means we take the image of f w.r.t. all elements in the domain. With this we will be able
to infer that the tagging-functions, seen as relations, give rise to finitely many equivalence
classes. Finally we will show that the tagging-relations are more refined than ~ L(r) which
implies that UNIV /| ~ £(r) must also be finite. We formally define the notion of a tagging-
relation as follows.

Definition 5 (Tagging-Relation) Given a tagging-function fag, then two strings x and y are
tag-related provided

~ def
XMy = tagx =tagy .

In order to establish finiteness of a set A, we shall use the following powerful principle
from Isabelle/HOL’s library.

If finite (f “A) and inj_onfA then finite A. (14)

It states that if an image of a set under an injective function f (injective over this set) is finite,
then the set A itself must be finite. We can use it to establish the following two lemmas.

3 The induction hypothesis is not strong enough to make any progress with the TIMES and STAR cases.
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def

“ ([ i)

& ([*]~a; {[*s]~B | xp € A A (xp, x5) € Partitions x})
def

+tag A B x
xtag A B x

*tag A x {[xs]la | xp < x A xp € A* A (xp, x5) € Partitions x}

Fig. 1 Three tagging functions used in the cases for PLUS, TIMES and STAR regular expressions. The sets A
and B are arbitrary languages instantiated in the proof with the induction hypotheses. Partitions is a function
that generates all possible partitions of a string.

Lemma 9 If finite (range tag) then finite (UNIV [ Rag).

Proof We set in (14), f to be X — rag ‘ X. We have range f to be a subset of Pow (range
tag), which we know must be finite by assumption. Now f * UNIV [/ R4 is a subset of range
/. and so also finite. Injectivity amounts to showing that X = Y under the assumptions that
X,Y € UNIV || ¥tqg and f X = f Y. From the assumptions we obtain x € X and y € ¥ with
tag x = tag y. Since x and y are tag-related, this in turn means that the equivalence classes X
and Y must be equal. Therefore (14) allows us to conclude with finite (UNIV | ®tag). O

Lemma 10 Given two equivalence relations R1 and Ra, whereby R1 refines Ro. If finite
(UNIV J/ Ry) then finite (UNIV | R2).

Proof We prove this lemma again using (14). This time we set f to be X — {[x]g, | x € X}.
It is easy to see that finite (f * UNIV J/ R2) because it is a subset of Pow (UNIV J/ R1), which
must be finite by assumption. What remains to be shown is that f is injective on UNIV // R2.
This is equivalent to showing that two equivalence classes, say X and Y, in UNIV J/ R, are
equal, provided f X = fY. For X = Y to be equal, we have to find two elements x € X and y
€ Y such that they are R> related. We know there exists a x € X with X = [x]g,. From the
latter fact we can infer that [x]g, € fX and further [x]g, € fY. This means we can obtain a
y such that [x]g, = [y]g, holds. Consequently x and y are R;-related. Since by assumption
Ry refines Ra, they must also be Ro-related, as we need to show. O

Chaining Lemma 9 and 10 together, means in order to show that UNIV | ~ £(r) is finite,
we have to construct a tagging-function whose range can be shown to be finite and whose
tagging-relation refines ~ L(r)- Let us attempt the PLUS-case first. We take from Fig. 1

d
+tagABx ¥ ([~ [M~p)

where A and B are some arbitrary languages. The reason for this choice is that we need to
establish that N ;44 4 p refines x4 . This amounts to showing x ~24 y or x ~p y under
the assumption x & 40 4 p y- As we shall see, this definition will provide us with just the
right assumptions in order to get the proof through.

Proof (PLUS-Case) We can show in general, if finite (UNIV |/ =) and finite (UNIV |/ ~p)
then finite (UNIV |/ 4 x UNIV /| ~g) holds. The range of +tag A B is a subset of this
product set—so finite. For the refinement proof-obligation, we know that ([x]~,, [x[~p)
= ([V]~4 » [Y]~p) holds by assumption. Then clearly either x ~4 y or x ~g y, as we needed
to show. Finally we can discharge this case by setting A to £(r1) and Bto L(r2). O

The TIMES-case is slightly more complicated. We first prove the following lemma, which
will aid the proof about refinement.
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Lemma 11 The relation Ryag refines =4, provided for all strings x, y and z we have that
X Nggyand x Qz € Aimplyy Q z € A.

We therefore can analyse how the strings x @ z are in the language A and then construct an
appropriate tagging-function to infer that y @ z are also in A. For this we will use the notion
of the set of all possible partitions of a string:

Partitions x % {(xp, xs) | xp Qx5 = x} (15)

If we know that (xp, xs) € Partitions x, we will refer to x, as the prefix of the string x, and
respectively to xs as the suffix.

Now assuming x @ z € A - B, there are only two possible ways of how to ‘split’ this
string to be in A - B:

x@QzeA- B
r X A N\
X %
Zp Zs
Y Y
X@ZPGA ZseB
x@QzeA B
r X A N\
X %
Xp Xs
Y N4
Xp €A xs@QzeB

Either x and a prefix of z is in A and the rest in B (first picture) or there is a prefix of x in A
and the rest is in B (second picture). In both cases we have to show that y @ z € A - B. The
first case we will only go through if we know that x =24 y holds (x). Because then we can
infer from x @ z;, € A that y @ z;, € A holds for all z,. In the second case we only know
that xp and x5 is one possible partition of the string x. We have to know that both x;,, and the
corresponding partition y, are in A, and that x; is ‘B-related’ to ys (**). From the latter fact
we can infer that ys @ z € B. This will solve the second case. Taking the two requirements,
(*) and (xx), together we define the tagging-function in the TIMES-case as (see Fig. 1):

d
xtag A B x Y ([x] a5 {[xs]~B | xp € A A (xp, xs) € Partitions x})

Note that we have to make the assumption for all suffixes xs, since we do not know anything
about how the string x is partitioned. With this definition in place, let us prove the TIMES-
case.

Proof (TIMES-Case)If finite (UNIV |/ ~,) and finite (UNIV | =g) then finite (UNIV [/ 24 x
Pow (UNIV J/=p)) holds. The range of xfag A B is a subset of this product set, and therefore
finite. For the refinement of ~4 . g and Xy /4 4 g, We have by Lemma 11

xtag A Bx = xtagABYy

and x @ z € A - B, and have to establish y @ z € A - B. As shown in the pictures above, there
are two cases to be considered. First, there exists a z, and zs such that x @ z, € A and z5 €
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B. By the assumption about xtag A B we have [x]~, = [y]~, and thus x ~4 y. Hence by
the Myhill-Nerode Relation y @ z;, € A holds. Using zs € B, we can conclude in this case
withy @z € A - B (recall z, @ z5 = 7).

Second there exists a partition x;, and xs with x, € A and x5 @ z € B. We therefore have

[xs]~p € {[xs]~B | Xp € A A (xp, xs) € Partitions x}
and by the assumption about xtag A B also

[xsJ~p € {[vsl~p | yo € AN (vp, ys) € Partitions y}

This means there must be a partition y, and ys such that y, € A and [xs]~pz = [ys]~p. Un-
folding the Myhill-Nerode Relation and together with the facts that x, € A and xs Q z € B,
we obtain y, € A and ys @ z € B, as needed in this case. We again can complete the TIMES-
case by setting A to £(r1) and Bto L(r2). O

The case for STAR is similar to TIMES, but poses a few extra challenges. To deal with them,
we define first the notion of a string prefix and a strict string prefix:
d
x<y :efElz.y:x@Z

de
x<y =efx§y/\x7éy

When analysing the case of x @ z being an element in A* and x is not the empty string,
we have the following picture:

x@zeA”
s A \
X X

Xpmax Xs Za <b

Y Y Y
Xpmax €A* N xs @zg €A Zp cA* J

Y
xs @z € A"

We can find a strict prefix xp of x such that x, € A*, x, < x and the rest x; @ z € A*.
For example the empty string [| would do (recall x # []). There are potentially many such
prefixes, but there can only be finitely many of them (the string x is finite). Let us therefore
choose the longest one and call it xpmax. Now for the rest of the string xs @ z we know it is
in A* and cannot be the empty string. By Property 1(iv), we can separate this string into two
parts, say a and b, such that a # [], @ € A and b € A*. Now a must be strictly longer than
Xs, otherwise xpmax is not the longest prefix. That means a ‘overlaps’ with z, splitting it into
two components z, and z;,. For this we know that xs @ z, € A and z;, € A*. To cut a story
short, we have divided x @ z € A* such that we have a string a with a € A that lies just on
the ‘border’ of x and z. This string is xs @ z,.

In order to show that x @ z € A* implies y @ z € A*, we use the following tagging-
function:

dof
xtag A x Y {[xs]a | xp < x A xp € A* A (xp, xs) € Partitions x}

Proof (STAR-Case) If finite (UNIV || =) then finite (Pow (UNIV | ~24)) holds. The range
of xtag A is a subset of this set, and therefore finite. Again we have to show under the
assumption x A%, 4e 4 ¥ that x @ z € A™ implies y @ z € A™.



A Formalisation of the Myhill-Nerode Theorem based on Regular Expressions 17

We first need to consider the case that x is the empty string. From the assumption about
strict prefixes in A, o. We can infer y is the empty string and then clearly have y @ z €
A*. In case x is not the empty string, we can divide the string x @ z as shown in the picture
above. By the tagging-function and the facts xpmax € A* and xpmax < x, we have

[xs]xa € {[xs]an | Xpmax < X A Xpmax € A* A (Xpmax, Xs) € Partitions x}
which by assumption is equal to

[xsl~a € {[vsl=a | yp <y Ayp € A* A (yp, ys) € Partitions y}

From this we know there exist a partition y, and ys with y, € A* and also x5 ~4 ys. Unfold-
ing the Myhill-Nerode Relation we know ys @ z, € A. We also know that z; € A*. Therefore
yp @ (ys @ z4) @ z;, € A*, which means y @ z € A*. The last step is to set A to £(r) and
thus complete the proof. 0O

Remark While our proof using tagging functions might seem like a ‘rabbit pulled out of a
hat’, the intuition behind can be somewhat rationalised by taking the view that the equiva-
lence classes UNIV /| =~ L(r) stand for the states of the minimal automaton for the language
L(r). The theorem amounts to showing that this minimal automaton has finitely many states.
However, by showing that our &4, relation refines ~4 we do not actually have to show that
the minimal automata has finitely many states, but only that we can show finiteness for an
automaton with at least as many states and which can recognise the same language. By
performing the induction over the regular expression r, this means we have to construct
inductively an automaton in the cases for PLUS, TIMES and STAR.

In the PLUS-case, we can assume finitely many equivalence classes of the form [-]~4
and [_] .5, each standing for an automaton recognising the languages A and B respectively.
The +tag function constructs pairs of the form ([_]~a, []~p) Which can be seen as the
states of an automaton recognising the language A U B. This is the usual product construc-
tion of automata: Given a string x, the first automata will be in the state [x] 4 after recog-
nising x (similarly [x]pg for the other automaton). The product automaton will be in the
state ([x]~a, [x]~p), which is accepting if at least one component is an accepting state.

The TIMES-case is a bit more complicated—essentially we need to sequentially com-
pose the two automata with the states [_] 4, respectively [—]~p. We achieve this sequential
composition by taking the first automaton [_]4 and append on each of its accepting state
the automaton [_]~p. Unfortunately, this does not lead directly to a correct composition,
since the automaton [_]~4 might have consumed some of the input needed for the automa-
ton [_]~p to succeed. The textbook construction for sequentially composing two automata
circumvents this problem by connecting the terminating states of the first automaton via
an epsilon-transition to the initial state of the second automaton (see for example Kozen
(1997)). In the absence of any epsilon-transition analogue in our work, we let the second
automaton start in all possible states that may have been reached if the first automaton had
not consumed the input meant for the second. We achieve this by having a set of states as the
second component generated by our xfag function (see second clause in Fig. 1). A state of
this sequentially composed automaton is accepting, if the first component is accepting and
at least one state in the set is also accepting.

The idea behind the STAR-case is similar to the TIMES-case. We assume some automa-
ton has consumed some strictly smaller part of the input in A*; we need to check that from
the state we ended up in a terminal state in the automaton [_]~4 can be reached. Since
we do not know from which state this will succeed, we need to run the automaton from all
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possible states we could have ended up in. Therefore the xtag function generates again a set
of states.

However, note that while the automata view sheds some light behind the idea of the
tagging functions, our proof only works because we can perform a structural induction on
the regular expression .

5 Second Part proved using Partial Derivatives

As we have seen in the previous section, in order to establish the second direction of the
Myhill-Nerode Theorem, it is sufficient to find a more refined relation than ~ " for which
we can show that there are only finitely many equivalence classes. So far we showed this di-
rectly by induction on r using tagging-functions. However, there is also an indirect method to
come up with such a refined relation by using derivatives of regular expressions introduced
by Brzozowski (1964).

Assume the following two definitions for the left-quotient of a language, which we write
as Der ¢ A and Ders s A where c is a character and s a string, respectively:

Derca {s|[c]@seA}
DerssA ¥ {s"|s@s'c A}

In order to aid readability, we shall make use of the following abbreviation

Derss s As % U (Ders s “ As)

where we apply the left-quotient to a set of languages and then combine the results. Clearly
we have the following equivalence between the Myhill-Nerode Relation (Definition 3) and
left-quotients

x=,y ifandonlyif DersxA =DersyA (16)

It is also straightforward to establish the following properties of left-quotients

Dera {} = {}
Dera{[]} = {}
Dera{[b]} = ifa=bthen{[|} else {}
Dera (AUB) = DeraAU DeraB 17
Derc(A-B) = (DercA)-BU(if [] €A then Der ¢ B else {})
Derc (A*) = (DercA)-A*
Ders [ A = A
Ders (c::s) A = Derss (DercA)
Note that in the last equation we use the list-cons operator written _ :: _. The only interesting

case is the case of A* where we use Property 1(i) in order to infer that Der ¢ (A*) = Der ¢
(A - A¥). We can then complete the proof by using the fifth equation and noting that Der ¢
(A*) C (DercA) - A* provided [] € A.

Brzozowski (1964) observed that the left-quotients for languages of regular expressions
can be calculated directly using the notion of derivatives of a regular expression. We define
this notion in Isabelle/HOL as follows:
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der ¢ (ZERO) Y 7ERO
der ¢ (ONE) Y zERO
def

der ¢ (ATOM d) if ¢ = d then ONE else ZERO
der ¢ (PLUS r1 r2) Y pLus (der cr1) (dercra)

€

der ¢ (TIMES r1 r2) & if 6(r1) then PLUS (TIMES (der ¢ r1) r2) (der c r2)
else TIMES (der c r1) ro

der ¢ (STAR r) Y TIMES (der ¢ r) (STAR r)
ders || r “ ,
dej

ders (c::s)r Y ders s (dercr)

The last two clauses extend derivatives from characters to strings. The boolean function §(r)
needed in the TIMES-case tests whether a regular expression can recognise the empty string.
It can be defined as follows.

§(ZERO) Y False
5(ONE) Y True
satoMmce) ¥ Faise
S(PLUS r1 r2) % 5(r1) v 8(r2)
S(TIMES r1 r2) & 6(r1) A 8(r2)
SSTART) ¥ True

By induction on the regular expression r, respectively on the string s, one can easily show
that left-quotients and derivatives of regular expressions relate as follows (see for exam-
ple Sakarovitch (2009)):
Derc (L(r)) = L(dercr)
Ders s (L(r)) = L(ders s r)
The importance of this fact in the context of the Myhill-Nerode Theorem is that we can use
(16) and (18) in order to establish that

(18)

x®~ppyy  ifand only if L(dersxr) = L(dersyr).

holds and hence
XXy provided dersxr=dersyr (19)

This means the right-hand side (seen as a relation) refines the Myhill-Nerode Relation. Con-
sequently, we can use & », Jors x r) s a tagging-relation. However, in order to be use-
ful for the second part of the Myhill-Nerode Theorem, we have to be able to establish
that for the corresponding language there are only finitely many derivatives—thus ensur-
ing that there are only finitely many equivalence classes. Unfortunately, this is not true
in general. Sakarovitch gives an example where a regular expression has infinitely many
derivatives w.r.t. the language (ab)* U (ab)*a, which is formally written in our notation as
{la,b]}* U ({[a,b]}* - {[a]}) (see (Sakarovitch 2009, Page 141)).
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What Brzozowski (1964) established is that for every language there are only finitely
‘dissimilar’ derivatives for a regular expression. Two regular expressions are said to be sim-
ilar provided they can be identified using the using the ACI-identities:

(A)  PLUS (PLUS ry ra) r3 = PLUS r1 (PLUS r2 r3)
(C) PLUSriro=PLUSTra 1 (20)
(I)y PLUSrr=vr

Carrying this idea through, we must not consider the set of all derivatives, but the one
modulo ACI. In principle, this can be done formally, but it is very painful in a theorem
prover—since there is no direct characterisation of the set of dissimilar derivatives. There-
fore Coquand and Siles (2011) who follow through this idea had to spend extra effort and
first formalise the quite intricate notion of inductively finite sets in order to formalise this
property.

Fortunately, there is a much simpler approach using partial derivatives. They were in-
troduced by Antimirov (1995) and can be defined in Isabelle/HOL as follows:

pder ¢ (ZERO) Y

pderc(ONE) <}

pder ¢ (ATOM d) 4 if c = d then {ONE} else {}

pder ¢ (PLUS r1 12) & pder ¢ r1 U pder ¢ ra

pder ¢ (TIMES r1 r2) 4 if 6(r1) then (U r'epder ¢ ry \TIMES r'ra}) U pder ¢ ra
else U yiepder ¢ ry {TIMES 1" r2}

def
U repder e » {TIMES r' (STAR r)}

pder ¢ (STAR r)
pders [| r =4 {r}

def

pders (¢ ::s) r = U (pderss) “ (pdercr)

Again the last two clauses extend partial derivatives from characters to strings. Unlike ‘sim-
ple’ derivatives, the functions for partial derivatives return sets of regular expressions. In the
TIMES and STAR cases we therefore use the auxiliary definition

TIMESS rs r % {TIMES r'r | r' € rs}

in order to ‘sequence’ a regular expression with a set of regular expressions. Note that in
the last clause we first build the set of partial derivatives w.r.t the character c, then build the

image of this set under the function pders s and finally ‘union up’ all resulting sets. It will
be convenient to introduce for this the following abbreviation

pderss s rs 4 U (pders s “ rs)

which simplifies the last clause of pders to

pders (c::s)r “ pderss s (pder ¢ r)
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Partial derivatives can be seen as having the ACI-identities already built in: taking the
partial derivatives of the regular expressions in (20) gives us in each case equal sets. An-
timirov (1995) showed a similar result to (18) for partial derivatives, namely

(@) Derc (L(r)) =U (L “pdercr)

(ii) Derss (L(r)) =U (L “pderssr) D

Proof The first fact is by a simple induction on r. For the second we slightly modify An-
timirov’s proof by performing an induction on s where we generalise over all r. That means
in the cons-case the induction hypothesis is

(IH) Vr.Derss (L(r)) = (L ‘pderssr)

With this we can establish

Ders (c ::s) (L(r)) = Ders s (Der c (L(r))) by def.
= Derss (|J(L “pdercr)) by (2l.i)
= Derss s (L “pdercr) by def. of Ders
= J(L “pderss s (pder cr)) by IH
= J(L “pders (c::5) ) by def.

Note that in order to apply the induction hypothesis in the fourth equation, we need the
generalisation over all regular expressions r. The case for the empty string is routine and
omitted. 0O

Taking (18) and (21) together gives the relationship between languages of derivatives and
partial derivatives
(i)  L(dercr)=(L ‘pdercr)

(@) L(derssr)=\J(L ‘pderssr) @2)

These two properties confirm the observation made earlier that by using sets, partial deriva-
tives have the ACI-identities of derivatives already built in.

Antimirov also proved that for every language and every regular expression there are
only finitely many partial derivatives, whereby the set of partial derivatives of r w.r.t. a
language A is defined as

pdersl A r 4 UxeA pders x r (23)

Theorem 3 (Antimirov (1995)) For every language A and every regular expression r,
finite (pdersl A r).

Antimirov’s proof first establishes this theorem for the language UNIVT, which is the set of
all non-empty strings. For this he proves:

pdersl UNIVT (ZERO) = {}
pdersl UNIVY (ONE) = {}
pdersl UNIVT (ATOM c¢) = {ONE}
pdersl UNIVT (PLUS ry r2) = pdersl UNIV' r1 U pdersl UNIV™T ro
pdersl UNIV™ (TIMES 11 72) € (U i pderst untv+ 7y {TIMES 1" r2}) U pderst UNIVY r
pdersl UNIVT (STAR r) C ( r'epdersl UNIV* r {TIMES r' (STAR r)})

(24)
from which one can deduce by induction on r that
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finite (pdersl UNIV™ r)
holds. Now Antimirov’s theorem follows because
pdersl UNIV r = pders [| r U pdersl UNIV™ r

and for all languages A, pdersl A r is a subset of pdersl UNIV r. Since we follow Antimirov’s
proof quite closely in our formalisation (only the last two cases of (24) involve some non-
routine induction arguments), we omit the details.

Let us now return to our proof for the second direction in the Myhill-Nerode Theorem.
The point of the above calculations is to use & (\x. pders x r) 88 tagging-relation.

Proof (of Theorem 2 (second version)) Using (16) and (21) we can easily infer that
XRp() Y provided pders x r = pdersy r

which means the tagging-relation N (\x. pders x 1) refines ~ ) So we know by Lemma 10,
Sfinite (UNIV )| zﬁ(r)) holds if finite (UNIV )| N (. pders x ,)). In order to establish the latter,
we can use Lemma 9 and show that the range of the tagging-function Ax. pders x r is finite.
For this recall Definition 23, which gives us that

dof
pdersl UNIV r Y Jx pders xr

Now the range of A\x. pders x r is a subset of Pow (pdersl UNIV r), which we know is finite by
Theorem 3. Consequently there are only finitely many equivalence classes of %( Ax. pders x r)*
This relation refines ~ , (r) and therefore we can again conclude the second part of the
Myhill-Nerode Theorem. O

6 Closure Properties of Regular Languages

The beauty of regular languages is that they are closed under many set operations. Closure
under union, concatenation and Kleene-star are trivial to establish given our definition of
regularity (recall Definition 2). More interesting in our setting is the closure under com-
plement, because it seems difficult to construct a regular expression for the complement
language by direct means. However the existence of such a regular expression can now be
easily proved using both parts of the Myhill-Nerode Theorem, since

51 =4 s2 if and only if 51 R 82

holds for any strings s; and so. Therefore A and the complement language A give rise to
the same partitions. So if one is finite, the other is too, and vice versa. As noted earlier,
our algorithm for solving equational systems actually calculates a regular expression for
the complement language. Calculating such a regular expression via automata using the
standard method would be quite involved. It includes the steps: regular expression = non-
deterministic automaton = deterministic automaton =- complement automaton = regular
expression. Clearly not something you want to formalise in a theorem prover if it is cumber-
some to reason about automata.

A perhaps surprising fact is that regular languages are closed under any left-quotient.
Define
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DersiBA Uxep Ders x A

and assume B is any language and A is regular, then Dersl B A is regular. To see this consider
the following argument using partial derivatives (which we used in Section 5): From A being
regular we know there exists a regular expression r such that A = £(r). We also know that
pdersl B r is finite for every language B and regular expression r (recall Theorem 3). By
definition and (21) we have

Dersl B (L(r)) = U (L “pdersl B r) (25)

Since there are only finitely many regular expressions in pdersl B r, we know by (2) that
there exists a regular expression so that the right-hand side of (25) is equal to the language
L(~+ (pdersl B r)). Thus the regular expression —+(pdersl B r) verifies that Dersl B A is
regular.

Even more surprising is the fact given first by Haines (1969) stating that for every lan-
guage A, the language consisting of all (scattered) substrings of A is regular (see also Shallit
(2008); Fenner et al. (2009)). A (scattered) substring can be obtained by striking out zero
or more characters from a string. This can be defined inductively in Isabelle/HOL by the
following three rules:

x=y X=Xy

=<y x=c:uy cux=Xcuy
It is straightforward to prove that < is a partial order. Now define the language of substrings
and superstrings of a language A respectively as
SubA ¥ (x| 3yeA. x <y}
Sup A o {x|3JycA.y < x}
We like to establish

Theorem 4 (Haines (1969)) For every language A, the languages (i) Sub A and (ii) Sup A
are regular.

Our proof follows the one given by Shallit (2008, Pages 92-95), except that we use Higman’s
Lemma, which is already proved in the Isabelle/HOL library by Sternagel (2013). Higman’s
Lemma allows us to infer that every language A of antichains, satisfying

VX, yEA. x#Yy—xAYNYy AX (26)

is finite.
The first step in our proof of Theorem 4 is to establish the following simple properties
for Sup

Sup {} ={}
Sup {[]} = UNIV
Sup {[c]} = UNIV - {[c]} - UNIV

Sup (AUB) = Sup AU Sup B @7

Sup (A-B) =SupA-Sup B
Sup (A*) = UNIV

whereby the last equation follows from the fact that A* contains the empty string. With these
properties at our disposal we can establish the lemma
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Lemma 12 [f A is regular, then also Sup A.

Proof Since our alphabet is finite, we have a regular expression, written ALL, that matches
every string. Using this regular expression we can inductively define the operation 71

(ZERO)t Y 7ERO
(ONE)t Y ALL
AtoMc)t  “ TIMES ALL (TIMES (ATOM ¢) ALL)

(PLUS r1 r2)t < PLUS (r1)1 (ra2)*t

(TIMES r1 r2)t < TIMES (r1)1 (r2)1

(STAR 1)t Y ALL

and use (27) to establish that £((r)1) = Sup (L(r)) holds. This shows that Sup A is regular,
provided Ais. O

Now we can prove the main lemma w.r.t. Sup, namely

Lemma 13 For every language A, there exists a finite language M such that
Sup M = Sup A .

Proof For M we take the set of all minimal elements of A. An element x is said to be minimal
in A provided

minAxd:eryeA.ij—>xjy

By Higman’s Lemma (26) we know that M & {x € A | miny x} is finite, since every minimal
element is incomparable, except with itself. It is also straightforward to show that Sup M C
Sup A. For the other direction we have x € Sup A. From this we obtain a y such that y € A and
¥ =< x. Since we have that the relation {(y, x) | y < x A x # y} is well-founded, there must be
a minimal element z such that z € A and z < y, and hence by transitivity also z < x (here we
deviate from the argument given by Shallit (2008), because Isabelle/HOL provides already
an extensive infrastructure for reasoning about well-foundedness). Since z is minimal and
an element in A, we also know that z is in M. From this together with z < x, we can infer
that x is in Sup M, as required. O

This lemma allows us to establish the second part of Theorem 4.

Proof (of the Second Part of Theorem 4) Given any language A, by Lemma 13 we know
there exists a finite, and thus regular, language M. We further have Sup M = Sup A, which
establishes the second part. 0O

In order to establish the first part of this theorem, we use the property proved by Shallit
(2008), namely that

Sub A = Sup (Sub A) (28)
holds. Now the first part of Theorem 4 is a simple consequence of the second part.
Proof (of the First Part of Theorem 4) By the second part, we know the right-hand side of

(28) is regular, which means Sub A is regular. But since we established already that regularity
is preserved under complement (using Myhill-Nerode), also Sub A must be regular. O
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Finally we like to show that the Myhill-Nerode Theorem is also convenient for estab-
lishing the non-regularity of languages. For this we use the following version of the Contin-
uation Lemma (see for example Rosenberg (2006)).

Lemma 14 (Continuation Lemma) If a language A is regular and a set of strings B is
infinite, then there exist two distinct strings x and y in B such that x =4 y.

This lemma can be easily deduced from the Myhill-Nerode Theorem and the Pigeonhole
Principle: Since A is regular, there can be only finitely many equivalence classes. Hence an
infinite set must contain at least two strings that are in the same equivalence class, that is
they need to be related by the Myhill-Nerode Relation.

. . . . . d
Using this lemma, it is straightforward to establish that the language A =) Una™ Qb
is not regular (a™ stands for the strings consisting of n times the character a; similarly for

. . . . def
b™). For this consider the infinite set B ) Una™
Lemma 15 No two distinct strings in set B are Myhill-Nerode related by language A.

Proof After unfolding the definition of B, we need to establish that given i # j, the strings
a' and o’ are not Myhill-Nerode related by A. That means we have to show that Vz. a* @ z
€ A =d’ @z e Aleads to a contradiction. Let us take b° for z. Then we know a’ @ b €
A.Butsince i # j, a’ @ b® ¢ A. Therefore a’ and a’ cannot be Myhill-Nerode related by A,
and we are done. O

To conclude the proof of non-regularity for the language A, the Continuation Lemma and
the lemma above lead to a contradiction assuming A is regular. Therefore the language A is
not regular, as we wanted to show.

7 Conclusion and Related Work

In this paper we took the view that a regular language is one where there exists a regular
expression that matches all of its strings. Regular expressions can be conveniently defined
as a datatype in theorem provers. For us it was therefore interesting to find out how far we
can push this point of view. But this question whether regular language theory can be done
without automata crops up also in non-theorem prover contexts. Recall Gasarch’s comment
cited in the Introduction. We have established in Isabelle/HOL both directions of the Myhill-
Nerode Theorem.

Theorem 5 (Myhill-Nerode Theorem)
A language A is regular if and only if finite (UNIV || =,).

Having formalised this theorem means we pushed our point of view quite far. Using this
theorem we can obviously prove when a language is not regular—by establishing that it has
infinitely many equivalence classes generated by the Myhill-Nerode Relation (this is usually
the purpose of the Pumping Lemma). We can also use it to establish the standard textbook
results about closure properties of regular languages. The case of closure under complement
follows easily from the Myhill-Nerode Theorem. So our answer to Gasarch is ‘yes we can’!

While regular expressions are convenient, they have some limitations. One is that there
are some regular expressions for which the smallest regular expression for the complement
language has a doubly-exponential blowup in size as shown by Gelade and Neven (2012).
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Another is that there seems to be no method of calculating a minimal regular expression
(for example in terms of length) for a regular language, like there is for automata. On the
other hand, efficient regular expression matching, without using automata, poses no problem
as shown by Owens et al. (2009). For an implementation of a simple regular expression
matcher, whose correctness has been formally established, we refer the reader to Owens and
Slind (2008). In our opinion, their formalisation is considerably slicker than for example the
approach to regular expression matching taken by Harper (1999) and by Yi (2006).

Our proof of the first direction is very much inspired by Brzozowski’s algebraic method
1964 used to convert a finite automaton to a regular expression. The close connection can
be seen by considering the equivalence classes as the states of the minimal automaton for
the regular language. However there are some subtle differences. Because our equivalence
classes (or correspondingly states) arise from the Myhill-Nerode Relation, the most natural
choice is to characterise each state with the set of strings starting from the initial state leading
up to that state. Usually, however, the states are characterised as the strings starting from that
state leading to the terminal states. The first choice has consequences about how the initial
equational system is set up. We have the A-term on our ‘initial state’, while Brzozowski has
it on the terminal states. This means we also need to reverse the direction of Arden’s Lemma.
We have not found anything in the literature about our way of proving the first direction of
the Myhill-Nerode Theorem.

We presented two proofs for the second direction of the Myhill-Nerode Theorem. One
direct proof using tagging-functions and another using partial derivatives. This part of our
work is where our method using regular expressions shines, because we can perform an
induction on the structure of regular expressions. However, it is also the direction where we
had to spend most of the ‘conceptual’ time, as our first proof based on tagging-functions
is new for establishing the Myhill-Nerode Theorem. All standard proofs of this direction
proceed by arguments over automata.

The indirect proof for the second direction arose from our interest in Brzozowski’s
derivatives for regular expression matching. While Brzozowski (1964) already established
that there are only finitely many dissimilar derivatives for every regular expression, this
result is not as straightforward to formalise in a theorem prover as one might wish. The
reason is that the set of dissimilar derivatives is not defined inductively, but in terms of an
ACI-equivalence relation. This difficulty prevented for example Krauss and Nipkow (2012)
to prove termination of their equivalence checker for regular expressions. Their checker is
based on Brzozowski’s derivatives and for their argument the lack of a formal proof of ter-
mination is not crucial (it merely lets them “sleep better” Krauss and Nipkow (2012)). We
expect that their development simplifies by using partial derivatives, instead of derivatives,
and that the termination of the algorithm can be formally established (the main ingredient is
Theorem 3). However, since partial derivatives use sets of regular expressions, one needs to
carefully analyse whether the resulting algorithm is still executable. Given the infrastructure
for executable sets introduced by Haftmann (2009) in Isabelle/HOL, it should.

We started out by claiming that in a theorem prover it is easier to reason about reg-
ular expressions than about automata. Here are some numbers: Our formalisation of the
Myhill-Nerode Theorem consists of 780 lines of Isabelle/Isar code for the first direction and
460 for the second (the one based on tagging-functions), plus around 300 lines of standard
material about regular languages. The formalisation of derivatives and partial derivatives
shown in Section 5 consists of 390 lines of code. The closure properties in Section 6 (ex-
cept Theorem 4) can be established in 100 lines of code. The Continuation Lemma and the
non-regularity of a™ b™ require 70 lines of code. The algorithm for solving equational sys-
tems, which we used in the first direction, is conceptually relatively simple. Still the use of
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sets over which the algorithm operates means it is not as easy to formalise as one might
wish. However, it seems sets cannot be avoided since the ‘input’ of the algorithm consists
of equivalence classes and we cannot see how to reformulate the theory so that we can use
lists or matrices. Lists would be much easier to reason about, since we can define functions
over them by recursion. For sets we have to use set-comprehensions, which is slightly un-
wieldy. Matrices would allow us to use the slick formalisation by Nipkow (2011) of the
Gauss-Jordan algorithm.

While our formalisation might appear large, it should be seen in the context of the work
done by Constable et al. (2000) who formalised the Myhill-Nerode Theorem in Nuprl using
automata. They choose to formalise the this theorem, because it gives them state minimiza-
tion of automata as a corollary. It is hard to gauge the size of a formalisation in Nurpl,
but from what is shown in the Nuprl Math Library about this development it seems sub-
stantially larger than ours. We attribute this to our use of regular expressions, which meant
we did not need to ‘fight’ the theorem prover. Recently, Lammich and Tuerk (2012) for-
malised Hopcroft’s algorithm in Isabelle/HOL (in 7000 lines of code) using an automata
library of 27000 lines of code. Also, Fillidtre (1997) reports that his formalisation in Coq
of automata theory and Kleene’s theorem is “rather big”. Almeida et al. (2010) reported
about another formalisation of regular languages in Coq. Their main result is the correctness
of Mirkin’s construction of an automaton from a regular expression using partial deriva-
tives. This took approximately 10600 lines of code. Braibant (2012) formalised a large part
of regular language theory and Kleene algebras in Coq. While he is mainly interested in
implementing decision procedures for Kleene algebras, his library includes a proof of the
Myhill-Nerode theorem. He reckons that our Myhill-Nerode “development is more con-
cise” than his one based on matrices (Braibant 2012, Page 67). He writes that there is no
conceptual problems with formally reasoning about matrices for automata, but notes “in-
trinsic difficult[ies]” when working with matrices in Coq, which is the sort of ‘fighting’
one would encounter also in other theorem provers. In terms of time, the estimate for our
formalisation is that we needed approximately 3 months and this included the time to find
our proof arguments. Unlike Constable et al. (2000), who were able to follow the Myhill-
Nerode proof by Hopcroft and Ullman (1969), we had to find our own arguments. So for
us the formalisation was not the bottleneck. The conclusion we draw from all these com-
parisons is that if one is interested in formalising results from regular language theory, not
results from automata theory, then regular expressions are easier to work with formally. The
code of our formalisation Wu et al. (2011b) can be found in the Archive of Formal Proofs at
http://afp.sourceforge.net/entries/Myhill-Nerode.shtml.

In this paper we leave out a discussion about the computational content of our proofs.
While the described algorithms (for instance for solving our equational systems) are exectu-
able as is, we have cut some ‘computational corners’ in our formalisation. For example, we
did not specify which particular equation should be chosen in each step, rather proved that
any choice will do. Similarly with our —+-operation, we did not specify the order in which
the regular expression should be composed, rather proved that any composition with PLUS
will do.

Our future work will focus on formalising the regular expression matchers developed by
Sulzmann and Lu (2012) which generate variable assignments for regular expression sub-
matching. For this they use both, derivatives and partial derivatives of regular expressions.
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