POSIX Lexing with Derivatives of Regular
Expressions

Christian Urban
King’s College London, UK.

Corresponding author(s). E-mail(s): christian.urban@kcl.ac.uk;

Abstract

Brzozowski introduced the notion of derivatives for regular expressions.
They can be used for a very simple regular expression matching algo-
rithm. Sulzmann and Lu cleverly extended this algorithm in order
to deal with POSIX matching, which is the underlying disambigua-
tion strategy for regular expressions needed in lexers. Their algorithm
generates POSIX values which encode the information of how a reg-
ular expression matches a string—that is, which part of the string
is matched by which part of the regular expression. In this paper
we give our inductive definition of what a POSIX value is and show
that Sulzmann and Lu’s algorithm always generates such a value. We
also show that our inductive definition of a POSIX value is equiva-
lent to an alternative definition by Okui and Suzuki which identifies
POSIX values as least elements according to an ordering of values.

1 Introduction

Brzozowski [5] introduced the notion of the derivative r\c of a regular expres-
sion r w.r.t. a character ¢, and showed that it gave a simple solution to the
problem of matching a string s with a regular expression r: if the derivative
of r w.r.t. (in succession) all the characters of the string matches the empty

*This paper is a revised and expanded version of [1]. Compared with that paper we give a
second definition for POSIX values introduced by Okui and Suzuki [2, 3] and prove that it is
equivalent to our original one. This second definition is based on an ordering of values and very
similar to, but not equivalent with, the definition given by Sulzmann and Lu [4]. The advantage
of the definition based on the ordering is that it implements more directly the informal rules
from the POSIX standard. Furthermore we extend our results to bounded repetitions of regular
expressions, records and character sets.

2 POSIX Lexing with Derivatives of Regular Expressions

string, then r matches s (and wvice versa). The derivative has the property
(which may almost be regarded as its specification) that, for every string s
and regular expression r and character ¢, one has ¢s € L(r) if and only if
s € L(r\c). The beauty of Brzozowski’s derivatives is that they are neatly
expressible in any functional programming language, and easily definable and
reasoned about in theorem provers—the definitions just consist of inductive
datatypes and simple recursive functions. A mechanised correctness proof of
Brzozowski’s matcher in for example HOL4 has been mentioned by Owens
and Slind [6]. Another one in Isabelle/HOL is part of the work by Krauss and
Nipkow [7]. And another one in Coq is given by Coquand and Siles [8]. Also
Ribeiro and Du Bois give one in Agda [9].

If a regular expression matches a string, then in general there is more than
one way of how the string is matched. There are two commonly used dis-
ambiguation strategies to generate a unique answer: one is called GREEDY
matching [10] and the other is POSIX matching [2, 4, 11-13].} For example
consider the string zy and the regular expression (z + y + zy)*. Either the
string can be matched in two ‘iterations’ by the single letter-regular expres-
sions = and g, or directly in one iteration by zy. The first case corresponds to
GREEDY matching, which first matches with the left-most symbol and only
matches the next symbol in case of a mismatch (this is greedy in the sense of
preferring instant gratification to delayed repletion). The second case is POSIX
matching, which prefers the longest match.

In the context of lexing, where an input string needs to be split up into
a sequence of tokens, POSIX is the more natural disambiguation strategy for
what programmers consider basic syntactic building blocks in their programs.
These building blocks are often specified by some regular expressions, say 7iey
and 7,4 for recognising keywords and identifiers, respectively. There are a few
underlying (informal) rules behind tokenising a string in a POSIX [11] fashion:

o The Longest Match Rule (or “Mazimal Munch Rule”): The longest initial
substring matched by any regular expression is taken as next token.

e Priority Rule: For a particular longest initial substring, the first (leftmost)
regular expression that can match determines the token.

e Star Rule: A subexpression repeated by * shall not match an empty string
unless this is the only match for the repetition.

o Empty String Rule: An empty string shall be considered to be longer than
no match at all.

Consider for example the regular expression 7., for recognising keywords such
as if, then, while and so on; and r;4 for recognising identifiers (say, a single
character followed by characters or numbers). Then we can form the regular
expression (7ey + 7iq)* and use POSIX matching to tokenise strings, say iffoo
and if. For iffoo we obtain by the Longest Match Rule a single identifier token,
not a keyword followed by an identifier. For if we obtain by the Priority Rule

LPOSIX matching acquired its name from the fact that the corresponding rules were described
as part of the POSIX specification for Unix-like operating systems [11].

POSIX Lezing with Derivatives of Regular Expressions 3

a keyword token, not an identifier token—even if ;4 matches also. By the
Star Rule we know (rgey + 7q)* matches iffoo, respectively if, in exactly one
‘iteration’ of the star. The Empty String Rule is for cases where, for example,
the regular expression (a*)* matches against the string be. Then the longest
initial matched substring is the empty string, which is matched by both the
whole regular expression and the parenthesised subexpression.

One limitation of Brzozowski’s matcher is that it only generates a YES/NO
answer for whether a string is being matched by a regular expression. Sulzmann
and Lu [4] extended this matcher to allow generation not just of a YES/NO
answer but of an actual matching, called a lexical value. Assuming a regular
expression matches a string, values encode the information of how the string is
matched by the regular expression—that is, which part of the string is matched
by which part of the regular expression. For this consider again the string zy
and the regular expression (z + (y + xy))* (this time fully parenthesised).
We can view this regular expression as a tree and if the string xy is matched
by two Star ‘iterations’, then the x is matched by the left-most alternative in
this tree and the y by the right-left alternative. This suggests to record this
matching as

Stars [Left (Char z), Right (Left (Char y))]

where Stars, Left, Right and Char are constructors for values. Stars records
how many iterations were used; Left, respectively Right, which alternative is
used. The value for matching zy in a single ‘iteration’, i.e. the POSIX value,
would look as follows

Stars [Right (Right (Seq (Char z) (Char y)))]

where Stars has only a single-element list for the single iteration and Seq
indicates that xy is matched by a sequence regular expression. This ‘tree view’
leads naturally to the idea that regular expressions act as types and values as
inhabiting those types (see, for example, [14, 15]).

Sulzmann and Lu give a simple algorithm to calculate a value that appears
to be the value associated with POSIX matching. The challenge then is to
specify that value, in an algorithm-independent fashion, and to show that
Sulzmann and Lu’s derivative-based algorithm does indeed calculate a value
that is correct according to the specification. The answer given by Sulzmann
and Lu [4] is to define a relation (called an “order relation”) on the set of
values of r, and to show that (once a string to be matched is chosen) there is a
maximum element and that it is computed by their derivative-based algorithm.
This proof idea is inspired by work of Frisch and Cardelli [10] on a GREEDY
regular expression matching algorithm. However, we were not able to establish
transitivity and totality for the “order relation” by Sulzmann and Lu. There
are some inherent problems with their approach (of which some of the proofs
are not published in [4]); perhaps more importantly, we give in this paper a
simple inductive (and algorithm-independent) definition of what we call being

4 POSIX Lexing with Derivatives of Regular Expressions

a POSIX wvalue for a regular expression r and a string s; we show that the
algorithm by Sulzmann and Lu computes such a value and that such a value
is unique. Our proofs are both done by hand and checked in Isabelle/HOL.
The experience of doing our proofs has been that this mechanical checking was
absolutely essential: this subject area has hidden snares. This was also noted
by Kuklewicz [12] who found that nearly all POSIX matching implementations
are “buggy” [4, Page 203] and by Grathwohl et al [16, Page 36] who wrote:

“The POSIX strategy is more complicated than the greedy because of the dependence
on information about the length of matched strings in the various subexpressions.”

Contributions: We have implemented in Isabelle/HOL the derivative-based
regular expression matching algorithm of Sulzmann and Lu [4]. We have proved
the correctness of this algorithm according to our specification of what a
POSIX value is (inspired by work of Vansummeren [13]). Sulzmann and Lu
sketch in [4] an informal correctness proof: but to us it contains unfillable
gaps.? Our specification of a POSIX value consists of a simple inductive def-
inition that given a string and a regular expression uniquely determines this
value. We also show that our definition is equivalent to an ordering of values
based on positions by Okui and Suzuki [2].

2 Preliminaries

Strings in Isabelle/HOL are lists of characters with the empty string being
represented by the empty list, written [], and list-cons being written as _::_
Often we use the usual bracket notation for lists also for strings; for example
a string consisting of just a single character ¢ is written [c|; the string abc is
written [a, b, c]. We use the usual definitions for prefizes and strict prefizes
of strings. By using the type char for characters we have a supply of finitely
many characters roughly corresponding to the ASCII character set. Regular
expressions are defined as usual as the elements of the following inductive
datatype:
r:=0|1]c|ri+ra|r1-r2|r*| [es]

where 0 stands for the regular expression that does not match any string, 1
for the regular expression that matches only the empty string and ¢ for match-
ing a character literal. We use + and - for alternative and sequence regular
expressions, respectively. We are adding here to the usual regular expressions
also the regular expression for character sets, written [cs] where cs is a set of
characters. In applications this regular expression is often written as [A—Z] to
stand for example for the regular expression that can match any capital let-
ter, or as [0—9] to match any numeral. Such character sets can of course be
represented by using alternatives (or O if the set is empty) and therefore do
not add anything new in terms of recognised languages. We include them here

2An extended version of [4] is available at the website of its first author; this extended version
already includes remarks in the appendix that their informal proof contains gaps, and possible
fixes are not fully worked out.

POSIX Lezing with Derivatives of Regular Expressions 5

because they will show later on that the generality of a definition is required
once such simple regular expressions are added. They are also a ‘low hanging
fruit’ in terms of improving the runtime of derivative matchers. The reason is
that a simple membership test with the character sets can replace operations
that otherwise need to traverse sizable regular expressions.

The language of a regular expression is defined as usual by the recursive
function L with the seven clauses:

(1) Lo) = o

(2) L1 = {[}

(3) Lie) = {[}}

(4) Llri-ra) = L(r1) @ L(ry)
(5) L(ri+ry) = L(ry) U L(ry)
(6) Lir) = (L(r)*

(7) L[es]) = {[d]c € es}

In clause (4) we use the operation _ @ _ for the concatenation of two lan-
guages (it is also list-append for strings). We use the star-notation for regular
expressions and for languages (in the clause (6) above). The star for languages
is defined inductively by two clauses: (i) the empty string being in the star of a
language and (74) if s; is in a language and ss in the star of this language, then
also s1 @ s is in the star of this language. It will also be convenient to use
the following notion of a semantic derivative (or left quotient) of a language
defined as

DercA = {s|c:s e A}.

For semantic derivatives we have the following equations (for example mechan-
ically proved in [7]):

Der c @ = o

Der ¢ {[]} o

Der ¢ {[d]} = if ¢ = d then {[]} else @

Der ¢ (AU B) < Derc AU DercB

Der ¢ (A @ B) < (Derc¢ A @ B)U (if || € A then Der ¢ B else @)
Der ¢ (Ax) = Derc A Q@ Ax

Derc{[c] | ¢ € es} = ifc € csthen {[]} else &

(1)

Brzozowski’s derivatives of regular expressions [5] can be easily defined
by two recursive functions: the first is from regular expressions to booleans
(implementing a test when a regular expression can match the empty string),
and the second takes a regular expression and a character to a (derivative)

6 POSIX Lexing with Derivatives of Regular Expressions

regular expression:

0)
1) = True
) < False
def

(= Fulse
(
(
nullable (r1 + r2) = nullable r1 V nullable ro
(
(
(

nullable
nullable

nullable (c

Ty T2) < nullable r1 A nullable ro

nullable (r*) = True

nullable ([es]) < False

nullable

0\c =0
1\c =0
d\c = ifc=dthen1 else 0

(ri+7r2)\e = (ri\e) + (r2\¢)
(ry - m9)\¢ = if nullable 1 then (ri\c) - ro + (r2\c) else (r1\c) - 72
(r)\e = (r\e) -7

[esT\e = ifc € csthen1 else O

We may extend this definition to give derivatives w.r.t. strings:

M\(ezs) = (r\e)\s

Given the equations in (1), it is a relatively easy exercise in mechanical
reasoning to establish that

Proposition 1
(1) nullable v if and only if [] € L(r), and

(2) L(r\c) = Der ¢ (L(r)).

With this in place it is also very routine to prove that the regular expression
matcher defined as

match rs = nullable (r\s)

gives a positive answer if and only if s € L(r). Consequently, this regu-
lar expression matching algorithm satisfies the usual specification for regular
expression matching. While the matcher above calculates a provably correct
YES/NO answer for whether a regular expression matches a string or not, the
novel idea of Sulzmann and Lu [4] is to append another phase to this algorithm
in order to calculate a lexical value. We will explain the details next.

POSIX Lezing with Derivatives of Regular Expressions 7

3 POSIX Regular Expression Matching

There have been many previous works that use values for encoding how a
regular expression matches a string. The clever idea by Sulzmann and Lu [4] is
to define a function on values that mirrors (but inverts) the construction of the
derivative on regular expressions. Values are defined as the inductive datatype

v := Empty | Char c | Left v | Right v | Seq vy vz | Stars vs

where we use vs to stand for a list of values. (This is similar to the approach
taken by Frisch and Cardelli for GREEDY matching [10], and Sulzmann and
Lu for POSIX matching [4]). The string underlying a value can be calculated
by the flat function, written |_| and defined as:

[Empty] =] |Seq vy vo = 1| @ oy
|Char ¢| =[] |Stars]| =

| Left v| = | |Stars (vzvs)] = |v| @ |Stars vs|
|Right v| = |v]

We will sometimes refer to the underlying string of a value as flattened value.
We will also overload our notation and use |vs| for flattening a list of values
and concatenating the resulting strings.

Sulzmann and Lu follow Nielsen and Henglein and define inductively an
inhabitation relation that associates values to regular expressions (see [4, 15]).
We define this relation as follows:3

c € c¢s
F Empty : 1 F Charc: c F Char ¢ : Jes]
Fopry Foug:ry
F Left vy : 1 + 72 F Right vo : 79 + 71 (2)
Fop:r Foog:rg VYvewvs. o :r A v # |
F Seq vy vy : 71 - 1o F Stars vs : r*

where in the clause for Stars we use the notation v € wvs for indicating that v
is a member in the list vs. We require in this rule that every value in vs flattens
to a non-empty string. The idea is that Stars-values satisfy the informal Star
Rule (see Introduction) where the * does not match the empty string unless
this is the only match for the repetition. That means for example the value

Stars [Left (Char a), Empty, Right (Char b)]

3Note that the rule for Stars differs from our earlier paper [1]. There we used the original
definition by Sulzmann and Lu which does not require that the values v € wvs flatten to a non-
empty string (see also [15]). Our reason for introducing the more restricted version of lexical values
is that the resulting set is always finite, given an r and s, which provides more convenience later
on when reasoning about an ordering relation for values.

8 POSIX Lexing with Derivatives of Regular Expressions
is not inhabited by the regular expression (a + b)*, but the value

Stars [Right (Char b), Right (Char b)]

is. Note also that no values are associated with the regular expression 0 (since it
does not match any string), and that the only value associated with the regular
expression 1 is Empty. We use the Char-value for both, single character regular
expressions and character sets. It is routine to establish how values “inhabit-
ing” a regular expression correspond to the language of a regular expression,
namely

Proposition 2 L(r) = {|v| | F v : r}

Given a regular expression r and a string s, we define the set of all Lexical
Values inhabited by r with the underlying string being s:*

WWrsZ {v|Fv:rAlv=s}

The main property of LV r s is that it is always finite.
Proposition 3 finite (LV r s)

This finiteness property does not hold in general if we remove the side-condition
about |v| # [] in the Stars-rule above. For example using Sulzmann and Lu’s
less restrictive definition, LV (1*) [] would contain infinitely many values,
but according to our more restricted definition only a single value, namely
LV (1%) [| = {Stars []}.

If a regular expression r matches a string s, then generally the set LV r s is
not just a singleton set. In case of POSIX matching the problem is to calculate
the unique lexical value that satisfies the (informal) POSIX rules from the
Introduction. Graphically the POSIX value calculation algorithm by Sulzmann
and Lu can be illustrated by the picture in Figure 1 where the path from the
left to the right involving derivatives/nullable is the first phase of the algorithm
(calculating successive Brzozowski’s derivatives) and mkeps/inj, the path from
right to left, the second phase. This picture shows the steps required when a
regular expression, say 71, matches the string [a, b, ¢]. We first build the three
derivatives (according to a, b and ¢). We then use nullable to find out whether
the resulting derivative regular expression r4 can match the empty string. If
yes, we call the function mkeps that produces a value v4 for how r4 can match
the empty string (taking into account the POSIX constraints in case there are
several ways). This function is defined by the clauses:

40kui and Suzuki refer to our lexical values as canonical values in [2]. The notion of non-
problematic values by Cardelli and Frisch [10] is related, but not identical to our lexical values.

POSIX Lezing with Derivatives of Regular Expressions 9

a b c
r -\ > o -\ > 3 -\)mnullable

mkeps

V1 (Vg (V3 (Vg

mjrya mj ro b mj rs c

Fig. 1 The two phases of the algorithm by Sulzmann & Lu [4], matching the string [a, b,
c]. The first phase (the arrows from left to right) is Brzozowski’s matcher building successive
derivatives. If the last regular expression is nullable, then the functions of the second phase
are called (the top-down and right-to-left arrows): first mkeps calculates a value v4 witnessing
how the empty string has been recognised by r4. After that the function inj “injects back”
the characters of the string into the values.

mkeps 1 = FEmpty
mkeps (11 - 7o) = Seq (mkeps r1) (mkeps o)
mkeps (r1 + o) =
if nullable r1 then Left (mkeps r1) else Right (mkeps r3)
def
mkeps (1) = Stars []

Note that this function needs only to be partially defined, namely only for
regular expressions that are nullable. In case nullable fails, the string [a, b,]
cannot be matched by r; and the null value None is returned by the algorithm.
Note also how this function makes some subtle choices leading to a POSIX
value: for example if an alternative regular expression, say r; + ro, can match
the empty string and furthermore r; can match the empty string, then we
return a Left-value. The Right-value will only be returned if r; cannot match
the empty string.

The most interesting idea from Sulzmann and Lu [4] is the construction
of a value for how r; can match the string [a, b, ¢] from the value how the
last derivative, r4 in Figure 1, can match the empty string. Sulzmann and Lu
achieve this by stepwise “injecting back” the characters into the values thus
inverting the operation of building derivatives, but on the level of values. The
corresponding function, called inj, takes three arguments, a regular expression,
a character and a value. For example in the first (or right-most) inj-step in
Figure 1 the regular expression r3, the character ¢ from the last derivative step
and v,4, which is the value corresponding to the derivative regular expression 7.
The result is the new value v3. The final result of the algorithm is the value v .
The inj function is defined by recursion on regular expressions and by analysing

10 POSIX Lezing with Derivatives of Regular Expressions

the shape of values (corresponding to the derivative regular expressions).

o
o
&

Char c

Char c

Left (inj r1 ¢ vy)
Right (inj r2 ¢ va)

(1) inj d ¢ (Empty)
(2) inj[cs] ¢ (Empty)
(8) ing (r1 + ra2) ¢ (Left vq)
(4) ing (r1 + r2) ¢ (Right vs)
(5) ing (r1 - ra2) ¢ (Seq vy v2) Seq (inj r1 ¢ v1) v
(6) ing (r1 - ra2) ¢ (Left (Seq vy v2)) = Seq (inj r1 c v1) v2
(
(

&g g 1E Il

a
)
o

o
)
o

(7) inj (r1 - r2) ¢ (Right va) Seq (mkeps 1) (inj T2 ¢ va)
(8) inj (r*) ¢ (Seq v (Stars vs))

To better understand what is going on in this definition it might be instructive
to look first at the three sequence cases (clauses (5) — (7)). In each of these
cases we need to construct an “injected value” for r; - ry. Because of the
‘shape’ of the regular expression, this must be a value of the form Seq _ _ .
Recall the clause of the derivative-function for sequence regular expressions:

|&
3

Stars (inj r ¢ v::vs)

(r1 - mo)\¢ = if nullable ry then (ri\c) - ro + (r2\c) else (ri\c) - o

Consider first the else-branch where the derivative is (r1\¢) - r3. The corre-
sponding value must therefore be of the form Seq v; vo, which matches the
left-hand side in clause (5) of inj. In the if-branch the derivative is an alter-
native, namely (ri\c) - 72 + (r2\c). This means we either have to consider
a Left- or Right-value. In case of the Left-value we know further it must be
a value for a sequence regular expression. Therefore the pattern we match in
the clause (6) is Left (Seq vy va), while in (7) it is just Right va. One more
interesting point is in the right-hand side of clause (7): since in this case the
regular expression r1 does not “contribute” to matching the string, that means
it only matches the empty string, we need to call mkeps in order to construct
a value for how r; can match this empty string. A similar argument applies
for why we can expect in the left-hand side of clause (8) that the value is of
the form Seq v (Stars vs)—the derivative of a star is (r\c) - r*. Finally, the
reason for why we can ignore the first argument in clause (1) of inj is that it
will only ever be called in cases where ¢ = d, but the usual linearity restric-
tions in patterns do not allow us to build this constraint explicitly into our
function definition.® Similarly the clause in (2) will only be called in cases
where ¢ € c¢s holds. Notable in this clause, however, is the fact that we can-
not ignore the second argument of the injection function (the character that is
injected into the value), because otherwise there is no way to determine which
character from the character set should be injected into the value.

The idea of the inj-function to “inject” a character, say ¢, into a value can
be made precise by the first part of the following lemma, which shows that the
underlying string of an injected value has a prepended character c; the second

5Sulzmann and Lu state this clause as inj ¢ ¢ (Empty) def Char c, but our deviation is harmless.

POSIX Lezing with Derivatives of Regular Expressions 11

part shows that the underlying string of an mkeps-value is always the empty
string (given the regular expression is nullable since otherwise mkeps might
not be defined).

Lemma 4
(1) If = v:r\c then |injrcv| = c:|vl|.
(2) If nullable v then |mkeps r| = |].

Proof Both properties are by routine inductions: the first one can, for example, be
proved by induction over the definition of derivatives; the second by an induction on
r. There are no interesting cases. O

Having defined the mkeps and inj function we can extend Brzozowski’s
matcher from the Introduction so that a value is constructed (assuming the
regular expression matches the string). The clauses of the Sulzmann and Lu
lexer are

lexer r || = if nullable r then Some (mkeps) else None

a

lexer v (c::s) case lexer (r\c) s of
None = None

| Some v = Some (inj r ¢ v)

If the regular expression does not match the string, None is returned. If the
regular expression does match the string, then Some value is returned. One
important virtue of this algorithm is that it can be implemented with ease
in any functional programming language and also in Isabelle/HOL. In the
remaining part of this section we prove that this algorithm is correct.

The well-known idea of POSIX matching is informally defined by some
rules such as the Longest Match and Priority Rules (see Introduction); as cor-
rectly argued in [4], this needs formal specification. Sulzmann and Lu define an
“ordering relation” between values and argue that there is a maximum value,
as given by the derivative-based algorithm. In contrast, we shall introduce a
simple inductive definition that specifies directly what a POSIX value is, incor-
porating the POSIX-specific choices into the side-conditions of our rules. Our
definition is inspired by the matching relation given by Vansummeren [13].
The relation we define is ternary and written as (s, r) — v, relating strings,
regular expressions and values; the inductive rules are given in Figure 2. We
can prove that given a string s and regular expression r, the POSIX value v is
uniquely determined by (s,) — v.

Theorem 5
(1) If (s, 7) — vthen s € L(r) and |v| = s.
(2) If (s,) = v and (s, r) — v’ then v = v’

12 POSIX Lezing with Derivatives of Regular Expressions

c € cs
(M, 1) — Emptypl ([e], ¢) — Char CPC ([e], [es]) — Char ¢

Pecs

— — L
(57 Tl) v P+1 (5, TQ) v s ¢ (Tl)P+R
(s, r1 + ra) = Leftv (s, r1 + r2) = Right v

(817 Tl) — U1 (52, ’r'g) — U2
Bsz s4.a. 53 A As3Qsq=359NA5 Qsg € L(ry) Asy € L(ry)

(51 @Q 89, 71 - T2) — Seq vy vo

P

PS

(), ™) — Stars ||

(s1, 1) = (82, ™) = Stars vs lv] #]
Ps3 s4.a. 53 A ANs3Qsy=s83A5 Qsg € L(r)Asy € L(r")

(s1 Q 59, r*) — Stars (v::vs)

Px

Fig. 2 Our inductive definition of POSIX values.

Proof Both by induction on the definition of (s,) — v. The second part follows by
a case analysis of (s, r) — v’ and the first part. d

We claim that our (s,) — v relation captures the idea behind the four
informal POSIX rules shown in the Introduction: Consider for example the
rules P+L and P+R where the POSIX value for a string and an alternative
regular expression, that is (s, r1 + r2), is specified—it is always a Left-value,
except when the string to be matched is not in the language of r1; only then
it is a Right-value (see the side-condition in P+R). Interesting is also the rule
for sequence regular expressions (PS). The first two premises state that v; and
vo are the POSIX values for (s1, 71) and (s2, r2) respectively. Consider now
the third premise and note that the POSIX value of this rule should match
the string s; @ s5. According to the Longest Match Rule, we want that the s;
is the longest initial split of s; @ so such that so is still recognised by ro. Let
us assume, contrary to the third premise, that there exist an s3 and s4 such
that so can be split up into a non-empty string s3 and a possibly empty string
s4. Moreover the longer string s; @ s3 can be matched by r; and the shorter
s4 can still be matched by rs5. In this case s; would not be the longest initial
split of s1 @ s5 and therefore Seq v1 vo cannot be a POSIX value for (s1 @ so,
71 - r2). The main point is that our side-condition ensures the Longest Match
Rule is satisfied.

A similar condition is imposed on the POSIX value in the Px-rule. Also
there we want that s; is the longest initial split of s; @ s5 and furthermore the
corresponding value v cannot be flattened to the empty string. In effect, we
require that in each “iteration” of the star, some non-empty substring needs to
be “chipped” away; only in case of the empty string we accept Stars [| as the
POSIX value. Indeed we can show that our POSIX values are lexical values

POSIX Lezing with Derivatives of Regular Expressions 13

which exclude those Stars that contain subvalues that flatten to the empty
string.

Lemma 6 If (s,) — v then v € LV rs.

Proof By routine induction on (s, r) — v. O

Next is the lemma that shows the function mkeps calculates the POSIX value
for the empty string and a nullable regular expression.

Lemma 7 If nullable r then ([], r) — mkeps r.

Proof By routine induction on 7. O

The central lemma for our POSIX relation is that the inj-function preserves
POSIX values.

Lemma 8 If (s, r\c) — v then (cus, r) = injrco.

Proof By induction on r. We explain two cases.

e Case r = ry + ro. There are two subcases, namely (a) v = Left v’ and (s,
ri\¢) = v’; and (b) v = Right v’, s ¢ L(r1\c) and (s, r2\c) — v’ In (a)
we know (s, r1\c¢) — v’, from which we can infer (c::s, r1) — injry c v’
by induction hypothesis and hence (c:: s, r1 + ro) — inj (r1 + r2) ¢ (Left
v’) as needed. Similarly in subcase (b) where, however, in addition we have
to use Proposition 1(2) in order to infer c¢::s ¢ L(rq) from s ¢ L(r1\c).

e Case r = 71 - r9. There are three subcases:

(a) v = Left (Seq v1 v2) and nullable rq
(b) v = Right vy and nullable 1
(¢) v = Seq v1 ve and — nullable 1
For (a) we know (s1, r1\c¢) — v1 and (s2, r2) — v as well as

Bss sqa.53#[|As3@Qsy=53A5 @Qs3 € Lri\c) Asy € L(ra)
From the latter we can infer by Proposition 1(2):

Bss ssa.53#[|Ns3@Qsg=53Acs Qsz € L(ry) Asy € L(r)
We can use the induction hypothesis for 71 to obtain (c¢::s1, r1) — injr1 ¢

v1. Putting this all together allows us to infer (c¢::s1 @ s9, 71 - 72) — Seq
(inj r1 ¢ v1) va. The case (c¢) is similar.

14 POSIX Lezing with Derivatives of Regular Expressions

For (b) we know (s, ra\c¢) — vy and s1 @ sy ¢ L((r1\c) - 72). From the
former we have (c::s, r2) — inj ro ¢ v1 by induction hypothesis for rs.
From the latter we can infer

Ps3 s4.a. 83 A AN s3@Qsy=cusAsy € L(ry) Asy € L(ra)

By Lemma 7 we know ([|, 1) — mkeps r1 holds. Putting this all together,
we can conclude with (c::s, 71 - 72) — Seq (mkeps r1) (inj r2 ¢ v1), as
required.

Finally suppose » = r1*. This case is very similar to the sequence case,
except that we need to also ensure that |inj r1 ¢ v1| # []. This follows from
(¢::81, 1) = inj r1 ¢ vy (which in turn follows from (s1, 71\¢) — v; and
the induction hypothesis).

O

With Lemma 8 in place, it is completely routine to establish that the Sulzmann
and Lu lexer satisfies our specification (returning the null value None iff the
string is not in the language of the regular expression, and returning a unique
POSIX value iff the string is in the language):

Theorem 9
(1) s & L(r) if and only if lexer r s = None
(2) s € L(r) if and only if Jv. lexer r s = Some v A (s,) = v

Proof By induction on s using Lemma 7 and 8. (]

In (2) we further know by Theorem 5 that the value returned by the lexer
must be unique. A simple corollary of our two theorems therefore is:

Corollary 10

(1) lexer r s = None if and only if Bv.a. (s, r) = v
(2) lexer r s = Some v if and only if (s,) — v

This concludes our correctness proof. Note that we have not changed the algo-
rithm of Sulzmann and Lu,® but introduced our own specification for what a
correct result—a POSIX value—should be. In the next section we show that
our specification coincides with another one given by Okui and Suzuki using
a different technique.

S All deviations we introduced are harmless.

POSIX Lezing with Derivatives of Regular Expressions 15

4 Ordering of Values according to Okui and
Suzuki

While in the previous section we have defined POSIX values directly in terms
of a ternary relation (see inference rules in Figure 2), Sulzmann and Lu took a
different approach in [4]: they introduced an ordering for values and identified
POSIX values as the maximal elements. An extended version of [4] is available
at the website of its first author; this includes more details of their proofs,
but which are evidently not in final form yet. Unfortunately, we were not able
to verify claims that their ordering has properties such as being transitive or
having maximal elements.

Okui and Suzuki [2, 3] described another ordering of values, which they
use to establish the correctness of their automata-based algorithm for POSIX
matching. Their ordering resembles some aspects of the one given by Sulzmann
and Lu, but overall is quite different. To begin with, Okui and Suzuki identify
POSIX values as minimal, rather than maximal, elements in their ordering. A
more substantial difference is that the ordering by Okui and Suzuki uses posi-
tions in order to identify and compare subvalues. Positions are lists of natural
numbers. This allows them to quite naturally formalise the Longest Match
and Priority rules of the informal POSIX standard. Consider for example the
value v

v 2 Stars [Seq (Char z) (Char y), Char 2]
At position [0,1] of this value is the subvalue Char y and at position [1] the
subvalue Char z. At the ‘root’ position, or empty list [], is the whole value v.
Positions such as [0,1,0] or [2] are outside of v. If it exists, the subvalue of v
at a position p, written v|,, can be recursively defined by

def
vl v
de
Left v]oups = vlps
) de,
RZght ’UJ 1::ps = /UJ ps
de
Seq v1 v2]0::ps “ v1lps
def
Seq vq Valiups = V2lps
Stars USJ n:ps g ’US[n]Jps

In the last clause we use Isabelle’s notation vsj, for the nth element in a list.
The set of positions inside a value v, written Pos v, is given by

I

le

S

0s (Seq vy v3)
Pos (Stars vs)

U{0:ps| ps € Posvi} U{l:ps| ps € Posva}
U (Un <lenwvs {n:ps| ps € Pos vsy,})

&
&

Pos (Empty) = {[]}
Pos (Char ¢) < {[}
Pos (Left v)]y U {0:ps| ps € Pos v}
Pos (Right v) = {[J} U {1::ps| ps € Pos v}
({0
({03

16 POSIX Lezing with Derivatives of Regular Expressions

whereby len in the last clause stands for the length of a list. Clearly for every
position inside a value there exists a subvalue at that position.

To help understanding the ordering of Okui and Suzuki, consider again the
earlier value v and compare it with the following w:

v 2 Stars [Seq (Char z) (Char y), Char 2]
w = Stars [Char x, Char y, Char 2]

Both values match the string zyz, that means if we flatten these values at their
respective root position, we obtain zyz. However, at position [0], v matches
xy whereas w matches only the shorter z. So according to the Longest Match
Rule, we should prefer v, rather than w as POSIX value for string zyz (and
corresponding regular expression). In order to formalise this idea, Okui and
Suzuki introduce a measure for subvalues at position p, called the norm of v
at position p. We can define this measure in Isabelle as an integer as follows

lvll, & if p € Pos v then len |v],| else — 1

where we take the length of the flattened value at position p, provided the
position is inside v; if not, then the norm is — 1. The default for outside posi-
tions is crucial for the POSIX requirement of preferring a Left-value over a
Right-value (if they can match the same string—see the Priority Rule from
the Introduction). For this consider

def

v = Left (Char z) and w = Right (Char z)

Both values match z. At position [0] the norm of v is 1 (the subvalue matches
z), but the norm of w is —1 (the position is outside w according to how we
defined the ‘inside’ positions of Left- and Right-values). Of course at position
[1], the norms [|v[|[;; and [Jw||{;] are reversed, but the point is that subvalues
will be analysed according to lexicographically ordered positions. According
to this ordering, the position [0] takes precedence over [1] and thus also v will
be preferred over w. The lexicographic ordering of positions, written _ <je, _,
can be conveniently formalised by three inference rules

p1 < p2 PS1 <lex PS2
[| <iex piips P1:PS1T <lex P21 PS2 PiPST <iex P PS2

With the norm and lexicographic order in place, we can state the key
definition of Okui and Suzuki [2]: a value vy is smaller at position p than va,
written v1 <, v, if and only if (¢) the norm at position p is greater in vy (that
is the string |v1],| is longer than |va],|) and (i7) all subvalues at positions that
are inside v or vy and that are lexicographically smaller than p, we have the
same norm, namely

POSIX Lezing with Derivatives of Regular Expressions 17

i {(i) [vallp < llvall, and
V1 <p V2 =

(1) Vg€ Pos vy U Posva. ¢ <iex p — |v1llq = ||v2ll4

The position p in this definition acts as the first distinct position of v, and v,
where both values match strings of different length [2]. Since at p the values
v1 and vy match different strings, the ordering is irreflexive. Derived from the
definition above are the following two orderings:

U1 < Vg o E|p. v1 <p V2
V] X V2 d:dU1'<’l]2\/U1:’U2
While we encountered a number of obstacles for establishing properties
like transitivity for the ordering of Sulzmann and Lu (and which we failed to
overcome), it is relatively straightforward to establish this property for the
orderings _ < _ and _ < _ by Okui and Suzuki.

Lemma 11 (Transitivity) If v1 < vo and vs < vs then vy < vs.

Proof From the assumption we obtain two positions p and ¢, where the values v
and vg (respectively vo and v3) are ‘distinct’. Since <., is trichotomous, we need
to consider three cases, namely p = ¢, p <jer ¢ and q <y, p. Let us look at the first
case. Clearly ||vallp < ||vi]lp and [Jvs]lp < ||v2|lp imply ||v3llp < [|vi]lp. It remains
to show that for a p’ € Pos vy U Pos vz with p’ <., p that lvll,” = [lvs[,” holds.
Suppose p’ € Pos v, then we can infer from the first assumption that Hv1||p/ =

[[v2]l, - But this means that p’ must be in Pos vo too (the norm cannot be —1 given

p’ € Pos v1). Hence we can use the second assumption and infer vzl = llvsll,,
which concludes this case with v1 < v3. The reasoning in the other cases is similar.
|

The proof for < is similar and omitted. It is also straightforward to show that
< and < are partial orders, and < is well-founded over lexical values of a given
regular expression and given string. Okui and Suzuki furthermore show that
they are linear orderings for lexical values [2], but we have not formalised this
in Isabelle. It is not essential for our results. What we are going to show below
is that for a given r and s, the orderings have a unique minimal element on
the set LV r s, which is the POSIX value we defined in the previous section.
We start with two properties that show how the length of a flattened value
relates to the <-ordering.

Proposition 12

(1) If vi < vy then len |va| < len |vi].
(2) If len |va| < len |v1| then vy < va.

18 POSIX Lezing with Derivatives of Regular Expressions

Both properties follow from the definition of the ordering. Note that (2) entails
that a value, say wv,, whose underlying string is a strict prefix of another
flattened value, say v1, then v; must be smaller than v,. For our proofs it will
be useful to have the following properties—in each case the underlying strings
of the compared values are the same:

Proposition 13
(1) If |vi| = |va| then Left vi < Right va.
(2) If |vi| = |va| then Left vy < Left va iff vi < v2
(8) If |vi| = |va2| then Right vi < Right va iff vi < v2
(4) If |ve| = |wa| then Seq v vy < Seq v wa iff vy < wa
(5) If |vi| Q |vg| = |wi| Q |we| and vy < wy then Seq vy vy < Seq w1 wa
(6) If |vs1| = |vsa| then
Stars (vs @ vs1) < Stars (vs @ vsg) iff Stars vs; < Stars vsa
(7) If |v1:vsy| = |vaivsa] and vy < va then
Stars (v1::vs1) < Stars (va :: vsg)

One might prefer that statements (4) and (5) (respectively (6) and (7)) are
combined into a single iff-statement (like the ones for Left and Right). Unfor-
tunately this cannot be done easily: such a single statement would require
an additional assumption about the two values Seq vy vo and Seq wi ws
being inhabited by the same regular expression. The complexity of the proofs
involved seems to not justify such a ‘cleaner’ single statement. The statements
given are just the properties that allow us to establish our theorems without
any difficulty. The proofs for Proposition 13 are routine.

Next we establish how Okui and Suzuki’s orderings relate to our definition
of POSIX values. Given a POSIX value v; for r and s, then any other lexical
value ve in LV 1 s is greater or equal than vy, namely:

Theorem 14 If (s, r) — v1 and va € LV rs then vi < va.

Proof By induction on our POSIX rules. By Theorem 5 and the definition of LV it
is clear that v1 and vg have the same underlying string s. The four base cases are
straightforward: for example for v1 = Empty, we have that vo € LV 1 [] must also
be of the form vo = Empty. Therefore we have v; < vg. The inductive cases for r
being of the form r1 + rg and 71 - ro are as follows:

e Case P+L with (s, 71 + ro) — Left wy: In this case the value vy is either
of the form Left wy or Right ws. In the latter case we can immediately
conclude with v; < vo since a Left-value with the same underlying string
s is always smaller than a Right-value by Proposition 13(1). In the former
case we have wy € LV r1 s and can use the induction hypothesis to infer
wy, < ws. Because wy and ws have the same underlying string s, we can
conclude with Left wy < Left wo using Proposition 13(2).

POSIX Lezing with Derivatives of Regular Expressions 19

e Case P+R with (s, r1 + ra) — Right wq: This case similar to the previous
case, except that we additionally know s ¢ L(r;). This is needed when vs
is of the form Left ws. Since |va| = |wa| = s and - wq : 71, we can derive a
contradiction for s ¢ L(r;) using Proposition 2. So also in this case v1 < va.

e Case PS with (s1 @ s9, 71 - 72) = Seq w; wy: We can assume vy = Seq ug
ug with F uy : 71 and F ug : 7. We have s1 @ sy = |u1]| @ |us|. By the side-
condition of the PS-rule we know that either s; = |uy| or that |uq| is a strict
prefix of s1. In the latter case we can infer w; < wu; by Proposition 12(2)
and from this vy < va by Proposition 13(5) (as noted above v; and vo must
have the same underlying string). In the former case we know u; € LV ry $1
and us € LV ry so. With this we can use the induction hypotheses to infer
w1 < w1 and wy < ug. By Proposition 13(4,5) we can again infer v; < va.

The case for Px is similar to the PS-case and omitted. O

This theorem shows that our POSIX value for a regular expression 7 and string
s is in fact a minimal element of the values in LV r s. By Proposition 12(2) we
also know that any value in LV r s/, with s’ being a strict prefix, cannot be
smaller than v;. The next theorem shows the opposite—namely any minimal
element in LV r s must be a POSIX value. This can be established by induction
on 7, but the proof can be drastically simplified by using the fact from the
previous section about the existence of a POSIX value whenever a string s €
L(r).

Theorem 15 If v1 € LV rs and Yvo € LV rs. vg A v1 then (s, r) = v1.

Proof If vi € LV r s then s € L(r) by Proposition 2. Hence by Theorem 9(2)
there exists a POSIX value vp with (s, r) — vp and by Lemma 6 we also have
vp € LV rs. By Theorem 14 we therefore have vp < v1. If up = v; then we are
done. Otherwise we have vp < v1, which however contradicts the second assumption
about v being the smallest element in LV r s. So we are done in this case too. O

From this we can also show that if LV r s is non-empty (or equivalently s €
L(r)) then it has a unique minimal element:

Corollary 16
If LV rs # @ then Fvmin. vmin € LVrs A (VvELV rs. vmin < v).

To sum up, we have shown that the (unique) minimal elements of the ordering
by Okui and Suzuki are exactly the POSIX values we defined inductively in
Section 3. This provides an independent confirmation that our ternary relation
formalises the informal POSIX rules.

20 POSIX Lezing with Derivatives of Regular Expressions

5 Optimisations

Derivatives as calculated by Brzozowski’s method are usually more complex
regular expressions than the initial one; the result is that the derivative-based
matching and lexing algorithms are often abysmally slow. However, various
optimisations are possible, such as the simplifications of 0 + r, r + 0, 1 - r
and r - 1 to r. These simplifications can speed up the algorithms considerably,
as noted in [4]. One of the advantages of having a simple specification and
correctness proof is that the latter can be refined to prove the correctness
of such simplification steps. While the simplification of regular expressions
according to rules like

O+r=r 0-»=0
r+0=r r-0=20 3)
r+r=r 1-r=r

r-1=r

is well understood, there is an obstacle with the POSIX value calculation algo-
rithm by Sulzmann and Lu: if we build a derivative regular expression and
then simplify it, we will calculate a POSIX value for this simplified deriva-
tive regular expression, not for the original (unsimplified) derivative regular
expression. Sulzmann and Lu [4] overcome this obstacle by not just calculat-
ing a simplified regular expression, but also calculating a rectification function
that “repairs” the incorrect value.

The rectification functions can be (slightly clumsily) implemented in
Isabelle/HOL as follows using some auxiliary functions:

FRright fv = Right (fv)

Frep fo = Left (fv)

Fai f1 f2 (Right v) = Right (f2 v)

F a1t f1 f2 (Left v) = Left (f1v)

Fseqr f1 f2 v = Seq (f1 Empty) (f2 v)
Fseqz f1 f2 v = Seq (f1 v) (f2 Empty)

Fseq f1 f2 (Seq vi v = Seq (f1 v1) (f2 v2)

)

simp i (0, _) (72, f2) = (ro, Frigu f2)
simp oy (r1, f1) (0, _) £ (r1, Frep f1)
simp a (11, f1) (2, f2)

if 1 = ro then (r1, Frep f1) else (r1 + ro, Fau f1 f2)
simpseq (0, _) (r2, _) = (0, undefined)
stmpseq (11, _) (0, _) £ (0, undefined)
simpseq (1, f1) (12, f2) = (r2, Fseqr f1 f2)
simpseq (11, f1) (1, f2) = (71, Foege f1 f2)
SIMP Seq (r1, f1) (r2, f2) = (r1 - ro, Fseq f1 f2)

POSIX Lezing with Derivatives of Regular Expressions 21

The functions simp 4 and simpge, encode the simplification rules in (3) and
compose the rectification functions (simplifications can occur deep inside the
regular expression). In the cases where we simplify regular expressions of the
form 0 - r and r - 0 to just 0, we can use any rectification function because
regular expression 0 will never lead to a successful match and hence the func-
tion will never be called. In Isabelle/HOL it is convenient to use undefined in
such situations. The main simplification function is then

simp (r1 + ro) = simpay (simp 1) (simp r3)

simp (ry - 12) = simpseg (simp 1) (simp 7o)

simp T = (r, id)
where id stands for the identity function. The function simp returns a simpli-
fied regular expression and a corresponding rectification function. Note that
we do not simplify under stars: doing so seems to slow down the algorithm,
rather than speed it up. The optimised lexer is then given by the clauses:

def

lezer™ r || if nullable r then Some (mkeps r) else None

let (rs, fr) = simp (r\c) in
case lexer™ ry s of
None = None
| Some v = Some (inj r ¢ (fr v))

S

lezert r (c:s) =

In the second clause we first calculate the derivative r\ ¢ and then simplify the
result. This gives us a simplified derivative r; and a rectification function f,.
The lexer is then recursively called with the simplified derivative, but before
we inject the character ¢ into the value v, we need to rectify v (that is construct
fr v). Before we can establish the correctness of lexer™, we need to show that
simplification preserves the language and simplification preserves our POSIX
relation once the value is rectified (recall simp generates a (regular expression,
rectification function) pair):

Lemma 17

(1) L(fst (simp 1)) = L(r)
(2) If (s, fst (simp 1)) — v then (s, r) — snd (simp) v.

Proof Both are by induction on r. There is no interesting case for the first statement.
For the second statement, of interest are the » = r1 + ro and r = r1 - ro cases. In
each case we have to analyse subcases whether fst (simp r1) and fst (simp r2) equals
0 (respectively 1). For example for » = r1 + 73, consider the subcase fst (simp r1)
= 0 and fst (simp T2) # 0. By assumption we know (s, fst (simp (r1 + 72))) — v.
From this we can infer (s, fst (simp r2)) — v and by IH also (*) (s, r2) — snd (simp
r9) v. Given fst (simp r1) = 0 we know L(fst (simp r1)) = @. By the first statement
L(r1) is the empty set, meaning (**) s ¢ L(r1). Taking (*) and (**) together gives

22 POSIX Lezing with Derivatives of Regular Expressions

by the P+R-rule (s, r1 + r2) — Right (snd (sitmp r2) v). In turn this gives (s, r1 +
r9) — snd (simp (r1 + 72)) v as we need to show. The other cases are similar. O

We can now prove relatively straightforwardly that the optimised lexer
produces the expected result:

+

Theorem 18 lexer™ r s = lexer r s

Proof By induction on s generalising over r. The case [] is trivial. For the cons-case
suppose the string is of the form c¢:: s. By induction hypothesis we know lezer™ r s
= lezer r s holds for all r (in particular for r being the derivative r\c). Let rs be
the simplified derivative regular expression, that is fst (simp (r\c)), and fr be the
rectification function, that is snd (simp (r\c)). We distinguish the cases whether (*)
s € L(r\c) or not. In the first case we have by Theorem 9(2) a value v so that lezer
(r\¢) s = Some v and (s, r\c¢) — v hold. By Lemma 17(1) we can also infer from (*)
that s € L(rs) holds. Hence we know by Theorem 9(2) that there exists a v’ with
lever rs s = Some v’ and (s, 75) — v’. From the latter we know by Lemma 17(2)
that (s, r\c¢) — fr v’ holds. By the uniqueness of the POSIX relation (Theorem 5)
we can infer that v is equal to f, v’—that is the rectification function applied to v’
produces the original v. Now the case follows by the definitions of lezer and lezer™.

In the second case where s ¢ L(r\c) we have that lezer (r\c) s = None by
Theorem 9(1). We also know by Lemma 17(1) that s ¢ L(rs). Hence lezer rs s =
None by Theorem 9(1) and by IH then also lexer™ rs s = None. With this we can
conclude in this case too. g

6 Extensions

A strong point in favour of Sulzmann and Lu’s algorithm is that it can be
extended in various ways. If we are interested in tokenising a string, then we
need to not just split up the string into tokens, but also “classify” the tokens
(for example whether they are keywords or identifiers and so on). This can
be done with only minor modifications to the algorithm by introducing record
reqular expressions and record values (for example [17]):

ro=..]({:71) vi=..|(l:v)

where [is a label, say a string, r a regular expression and v a value. All func-
tions can be smoothly extended to these regular expressions and values. For
example ([: r) is nullable iff r is, and so on. The purpose of the record regular
expression is to mark certain parts of a regular expression and then record in
the calculated value which parts of the string were matched by this part. The
label can then serve as classification for the tokens. For this recall the regular
expression (7gey + 754)* for keywords and identifiers from the Introduction.
With the record regular expression we can form ((key : rgey) + (id : 75q))*
and then traverse the calculated value and only collect the underlying strings

POSIX Lezing with Derivatives of Regular Expressions 23

in record values. With this we obtain finite sequences of pairs of labels and
strings, for example

(ll : 81), cony (ln : Sn)

from which tokens with classifications (keyword-token, identifier-token and so
on) can be extracted.

In the context of POSIX matching, it is also interesting to study additional
constructors about bounded-repetitions of regular expressions. For this let us
extend the results from the previous sections to the following four additional
regular expression constructors:

rooi= | vt exactly-n-times
| rlnd upto-n-times
| et from-n-times
| plnem} between-nm-times

We will call them bounded regular expressions. They can be used to specify
how many times a regular expression should match. With the help of the power
operator (definition omitted) for sets of strings, the languages recognised by
these regular expression can be defined in Isabelle as follows:

L(rinh) = L)

Lt 2 Uiepny - L0

L) = Uiy L)
(r{n m}) = Uze{nm} : L(,r)z

This definition implies that in the last clause 7{"™} matches no string in case
m < n, because then the interval {n..m} is empty.

While the language recognised by these regular expressions is straightfor-
ward, some care is needed for how to define the corresponding lexical values.
First, with a slight abuse of language, we will (re)use values of the form Stars vs
for values inhabited in bounded regular expressions. Second, we need to intro-
duce inductive rules for extending our inhabitation relation shown in (2), from
which we then derived our notion of lexical values. Given the rule for r*, the
rule for 4"} just requires additionally that the length of the list of values
must be smaller or equal to n, that is:

Yo €wvs. Fourir Al #] lenvs<mn
- Stars vs : r17

Like in the r*-rule, we require with the left-premise that some non-empty
part of the string is ‘chipped’ away by every value in wvs, that means the
corresponding values do not flatten to the empty string.

In the rule for r{™ (that is exactly-n-times r) we will require that the
length of the list of values equals to n. But enforcing in this case that every
of these n values ‘chips’ away some part of a string would be too strong.
Therefore matters are bit more complicated in the rule for 71"}, According to

24 POSIX Lezing with Derivatives of Regular Expressions

the informal POSIX rules we have to allow that there is an “initial segment”
that needs to chip away some parts of the string, but if this segment is too short
for satisfying the exactly-n-times constraint, it can be followed by a segment
where every value flattens to the empty string. One way for expressing this
constraint in Isabelle is by the rule:

Yoewvs;. FoirAlo|#] Ywe€uws FuirAlv|=][len(vsy Qusy) =n

- Stars (vsy @ wsy) = ™}

The wvs; is the initial segment with non-empty flattened values, whereas vs, is
the segment where all values flatten to the empty string. This idea gets even
more complicated for the r{"} regular expression. The reason is that we need
to distinguish the case where we use fewer repetitions than n. In this case
we need to “fill” the end with values that match the empty string to obtain
at least m repetitions. But in case we need more than n repetitions, then all
values should match a non-empty string. This leads to two inhabitation rules
for rin-}:

Yo € vsy. Foir Al #]

Yo € vsy. FoirAlu| =] Yo ewvs. Fo:irAlv| #]
len (vs) Q@ vsy) =n lenvs >n
b Stars (vsy @ wsy) : ™} b Stars vs : i}

Note that these two rules “collapse” in case n = 0 to just the single rule given
for r* in the definition shown in (2). We have similar rules for the between-
nm-times operator (omitted). These rules ensure that our definition for sets
of lexical values LV r s are still finite and also fits with the ordering given by
Okui and Suzuki (which require minimal values over the sets LV rs).

Fortunately, the other definitions extend “smoother” to bounded repeti-
tions. For example the rules for derivatives are:

rinh\e = if n=0 then 0 else (r\c) - ri*=1}
rimh\e = if n=0 then 0 else (r\c) - rt-n=1
rin\c = if n=0 then (r\c) - r* else (r\c) - rin=1-}
rimmie € if m<n then 0
else if n =0 then
if m =0 then 0 else (r\c)-ri-m=1}
else (r\c) - rin—t.m-1}

For mkeps we need to generate the shortest list of values we can get “away
with” given the boundedness constraints. This means for example in the case
r{7} we can return the empty list, like for stars. In the other cases we have to

POSIX Lezing with Derivatives of Regular Expressions 25

generate a list of exactly n copies of the mkeps-value, because n is the smallest
number of repetitions required.

mkeps (r{-m}) = Stars ||
mkeps (r{”}) = Stars (replicate n (mkeps 1))
mkeps (r{m-1) = Stars (replicate n (mkeps 1))

(
mkeps (r{n-m}) Stars (

In this definition we use Isabelle’s replicate-function in order to generate a list
of n copies of a value. The injection function also extends straightforwardly to
the bounded regular expressions as follows:

replicate n (mkeps r))

ing (r{”}) (Seq v (Stars vs)) < Stars
inj (riv) ¢ (Seq v (Stars vs)) = Stars
inj (rtm™) ¢ (Seq v (Stars vs)) < Stars
inj (rin-m}) ¢ (Seq v (Stars vs)) = Stars

mj rcu i us
mj rcu s

mj rCeuus

S~ o~ o~ o~

mj rcvus

Similarly our POSIX definition can be easily extended to the additional
constructors. For example for ™} we have two rules:

Yo ews. ([l,r) > v lenvs=n
([, 7™ — Stars vs

(51, 7) = v (s2, r"") = Starsws || #] 0<n
Ps3 s4. s3#[] As3Qsy =59 A51Qs3€ L(r)Asy€ L(T{"_l})

(51Qsy, ™) = Stars (v :: vs)

The first rule deals with the case when an empty string needs to be recognised.
The second when the string is non-empty. In this case the “initial segment”
must match non-empty strings only. The idea behind this formulation is to
avoid situations where an earlier value matches the empty string, while it is
actually possible to “nibble away” some parts of the string. The rules for the
other bounded regular expressions are similar. We shall omit them here. With
these definitions in place, our proofs given in the previous sections extend to
the bounded repetitions. The main point is that there are no surprises.

What is good about our re-use of the Stars-constructor for the values of
bounded regular expressions is that we did not need to make any changes to
the ordering definitions by Okui and Suzuki. It still holds that our POSIX
values are the minimal elements for the lexical value sets, and vice versa. In
this way we again obtain independent assurance that our definitions capture
correctly the idea behind POSIX matching.

Unfortunately, in our formal proofs in Isabelle/HOL we need to give the
definitions and proofs all over again in a separate theory, since there is no way

26 POSIX Lezing with Derivatives of Regular Expressions

of making Isabelle to accept proofs for the basic regular expressions (defined as
inductive datatype) and then augmenting the datatype with new constructors.
This would be a really “cool” feature for Isabelle, but we have no idea how
this could be achieved elegantly.

7 Conclusion

We have implemented in Isabelle/HOL the POSIX value calculation algorithm
introduced by Sulzmann and Lu [4]. Our implementation is nearly identi-
cal to the original and all modifications we introduced are harmless (like our
char-clause for inj). We have proved this algorithm to be correct, but correct
according to our own specification of what POSIX values are. Our specification
(inspired from work by Vansummeren [13]) appears to be much simpler than
in [4] and our proofs are nearly always straightforward. As we were able to
show, the work extends also to bounded regular expressions, character classes
and records. We have attempted to formalise the original proof by Sulzmann
and Lu [4], but we believe it contains unfillable gaps. In the online version of
[4], the authors already acknowledge some small problems, but our experience
suggests that there are more serious problems. We also showed that our def-
inition for POSIX values is equivalent to a definition of POSIX values given
by Okui and Suzuki [2]. They use a different technique for identifying POSIX
values. This equivalence gives additional weight to our claim that our rules
capture the informal ideas for POSIX lexing given in [11].

Having proved the correctness of the POSIX lexing algorithm in [4], which
lessons have we learned? Well, this is a perfect example for the importance of
the right definitions. We have (on and off) explored mechanisations as soon
as first versions of [4] appeared, but have made little progress with turning
the relatively detailed proof sketch in [4] into a formaliseable proof. Having
seen [13] and adapted the POSIX definition given there for the algorithm
by Sulzmann and Lu made all the difference: the proofs, as said, are nearly
straightforward. The question remains whether the original proof idea of [4],
potentially using our result as a stepping stone, can be made to work? Alas,
we really do not know despite considerable effort.

In the context of formalising lexers in theorem provers, closely related to our
work is an automata-based lexer formalised in Isabelle/HOL by Nipkow [18].
This lexer also splits up strings into longest initial substrings, but Nipkow’s
algorithm is not completely computational. The algorithm by Sulzmann and
Lu, in contrast, can be implemented with ease in any functional language. A
bespoke and executable lexer for the Imp-language is formalised in Coq as part
of the Software Foundations book by Pierce et al [19]. The disadvantage of such
bespoke lexers is that they do not generalise easily to more advanced features.
Asperti et al [20, 21] formalise in the Matita theorem prover the notion of
pointed regular expressions in order to elegantly generate DFAs for regular
expression matching. While this work focuses on lexing using automata, we
find most interesting the connection between the pointed regular expressions

POSIX Lezing with Derivatives of Regular Expressions 27

and Brzozowski derivatives. This might open up further work on calculating
derivatives efficiently. We leave this to future work.

Most closely related to our work is the work by Egolf et al [22] on the Verba-
tim lexer, which is formalised in Coq. They have a similar inductive relation for
specifying what POSIX matching means. What is good about their approach
is that they calculate tokens directly; we in contrast have to use the record
regular expression for this. Our approach is slightly more general, but this gen-
erality might not be wanted in typical applications. The authors of Verbatim
report a good running time with one set of lexing rules, but it is unlikely that
this good running time applies universally to all regular expressions and all
strings. The reason is that they do not simplify derivatives, which means their
sizes can explode. This is the main difference between their work and our work
where we have shown that simplification rules do not affect the correctness
of the algorithm by Sulzmann and Lu. A simple example where simplification
makes a difference is the regular expression (a*)* - b whose derivatives can grow
beyond any finite bound given long enough strings composed of just a’s. In
contrast, all derivatives of this regular expression stay below the size of 8 if they
are simplified after each step. This is important because functions like nullable
and derivative need to traverse regular expressions—if the size of derivatives
is too large, then these functions will be slow, abysmally slow that is. There is
also work by the same authors on Verbatim-++-, which is an improvement of
the Verbatim lexer (using for example memoization) [23]. However, this work
has a different focus than ours: their work uses derivatives in order to generate
DFAs which are then used for lexing. While this might make the process of
lexing faster for the “basic” regular expressions, classic DFAs have problems
with bounded regular expressions. For them one has to connect many copies
of DFAs, which increases their size and thus slows down the lexing process. As
has been shown in this paper, derivatives can easily accomodate the bounded
regular expressions without having to resort to constructing large DFAs.

Most recently the work by Moseley et al [24] has been included in the NET7
regular expression library. They impressively extend Brzozowski derivatives
to various anchors (like start-of-line or end-of-string) and lookarounds (like
what is coming before or after a matched string). The latter has also been
studied by Miyazaki and Minamide [25]. Moseley et al already mention a
difference between their work and the work described here, namely that prop-
erties like L(rq - r2) = L(r1) @ L(r3) do not hold anymore when anchors are
added. Another difference between their work and ours is that POSIX lexing
is an inherently asymmetric problem, in the sense that it generates longest
submatches (recall the Longest Match Rule from the Introduction). This is
important for their matching algorithm where they define a reverse operator
for regular expressions, written 7", such that the following property holds:

L(r) = {rev(s) | s € L(r")}

This means the language of the reverse regular expression is the set of reversed
strings of L(r). This property is useful for finding substring matches as it

28 POSIX Lezing with Derivatives of Regular Expressions

allows Moseley et al to first find the end-location where a substring matches
a regular expression and then use _" in order to find the beginning of the
matched substring. The problem with POSIX lexing is that one cannot use
the POSIX value for " and a string rev(s) in order to generate the POSIX
value for r and s. We leave a full investigation of what we can adopt from their
work to future work.

Our formalisation is available from the Archive of Formal Proofs [26] under
http://www.isa-afp.org/entries /Posix-Lexing.shtml.

Acknowledgements: I am very grateful to Martin Sulzmann for his com-
ments on this work and moreover for patiently explaining the details in [4]. I
am also very grateful to Fahad Ausaf who helped with this work and to Flavio
Melinte Citea who pointed out omissions in the simplification rules.

I am deeply saddened that Roy Dyckhoff, co-author of the original confer-
ence paper [1] and the supervisor of my master thesis in St Andrews, died in
August 2018. This was the last scientific paper he worked on. Roy was a witty,
extremely intelligent and a very pleasant researcher and friend. He is much
missed by me and many colleagues.

References

[1] Ausaf, F., Dyckhoff, R., Urban, C.: POSIX Lexing with Derivatives of
Regular Expressions (Proof Pearl). In: Proc. of the 7th International Con-
ference on Interactive Theorem Proving (ITP). LNCS, vol. 9807, pp. 69-86
(2016)

[2] Okui, S., Suzuki, T.: Disambiguation in Regular Expression Matching
via Position Automata with Augmented Transitions. In: Proc. of the
15th International Conference on Implementation and Application of
Automata (CTAA). LNCS, vol. 6482, pp. 231-240 (2010)

[3] Okui, S., Suzuki, T.: Disambiguation in Regular Expression Matching
via Position Automata with Augmented Transitions. Technical report,
University of Aizu (2013)

[4] Sulzmann, M., Lu, K.: POSIX Regular Expression Parsing with Deriva-
tives. In: Proc. of the 12th International Conference on Functional and
Logic Programming (FLOPS). LNCS, vol. 8475, pp. 203-220 (2014)

[5] Brzozowski, J.A.: Derivatives of Regular Expressions. Journal of the ACM
11(4), 481494 (1964)

[6] Owens, S., Slind, K.: Adapting Functional Programs to Higher Order
Logic. Higher-Order and Symbolic Computation 21(4), 377-409 (2008)

http://www.isa-afp.org/entries/Posix-Lexing.shtml

[7]

8]

[16]

[17]

[18]

POSIX Lezing with Derivatives of Regular Expressions 29

Krauss, A., Nipkow, T.: Proof Pearl: Regular Expression Equivalence and
Relation Algebra. Journal of Automated Reasoning 49, 95-106 (2012)

Coquand, T., Siles, V.: A Decision Procedure for Regular Expression
Equivalence in Type Theory. In: Proc. of the 1st International Conference
on Certified Programs and Proofs (CPP). LNCS, vol. 7086, pp. 119-134
(2011)

Ribeiro, R., Bois, A.D.: Certified Bit-Coded Regular Expression Parsing.
In: Proc. of the 21st Brazilian Symposium on Programming Languages.
Association for Computing Machinery, New York, NY, USA (2017)

Frisch, A., Cardelli, L.: Greedy Regular Expression Matching. In: Proc. of
the 31st International Conference on Automata, Languages and Program-
ming (ICALP). LNCS, vol. 3142, pp. 618-629 (2004)

The Open Group Base Specification Issue 6 IEEE Std 1003.1 2004
Edition. http://pubs.opengroup.org/onlinepubs/009695399 /basedefs/
xbd_chap09.html (2004)

Kuklewicz, C.: Regex Posix. https://wiki.haskell.org/Regex_Posix

Vansummeren, S.: Type Inference for Unique Pattern Matching. ACM
Transactions on Programming Languages and Systems 28(3), 389-428
(2006)

Hosoya, H., Vouillon, J., Pierce, B.C.: Regular Expression Types for XML.
ACM Transactions on Programming Languages and Systems (TOPLAS)
27(1), 46-90 (2005)

Nielsen, L., Henglein, F.: Bit-Coded Regular Expression Parsing. In:
Proc. of the 5th International Conference on Language and Automata
Theory and Applications (LATA). LNCS, vol. 6638, pp. 402-413 (2011)

Grathwohl, N.B.B., Henglein, F., Rasmussen, U.T.: A Crash-Course in
Regular Expression Parsing and Regular Expressions as Types. Technical
report, University of Copenhagen (2014)

Sulzmann, M., van Steenhoven, P.: A Flexible and Efficient ML Lexer
Tool Based on Extended Regular Expression Submatching. In: Proc. of
the 23rd International Conference on Compiler Construction (CC). LNCS,
vol. 8409, pp. 174-191 (2014)

Nipkow, T.: Verified Lexical Analysis. In: Proc. of the 11th Interna-
tional Conference on Theorem Proving in Higher Order Logics (TPHOLS).
LNCS, vol. 1479, pp. 1-15 (1998)

http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
https://wiki.haskell.org/Regex_Posix

30

[19]

[20]

21]

[25]

[26]

POSIX Lezing with Derivatives of Regular Expressions

Pierce, B.C., Casinghino, C., Gaboardi, M., Greenberg, M., Hritcu, C.,
Sjoberg, V., Yorgey, B.: Software Foundations. Electronic textbook, 777
(2015). http://www.cis.upenn.edu/~bcpierce/sf

Asperti, A., Coen, C.S., Tassi, E.: Regular expressions, au point (2010)
https://arxiv.org/abs/1010.2604

Asperti, A.: A Compact Proof of Decidability for Regular Expression
Equivalence. In: Proc. of the 3rd International Conference on Interactive
Theorem Proving (ITP). LNCS, vol. 7406, pp. 283-298 (2012)

Egolf, D., Lasser, S., Fisher, K.: Verbatim: A Verified Lexer Generator. In:
2021 IEEE Security and Privacy Workshops (SPW), pp. 92-100 (2021)

Egolf, D., Lasser, S., Fisher, K.: Verbatim++: Verified, Optimized, and
Semantically Rich Lexing with Derivatives. In: Proc. of the 11th ACM
SIGPLAN Conference on Certified Programs and Proofs (CPP). ACM,
pp. 27-39 (2022)

Moseley, D., Nishio, M., Perez Rodriguez, J., Saarikivi, O., Toub, S.,
Veanes, M., Wan, T., Xu, E.: Derivative Based Nonbacktracking Real-
World Regex Matching with Backtracking Semantics. In: Proc. 44th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) (2023). (To appear.)

Miyazaki, T., Minamide, Y.: Derivatives of Regular Expressions with
Lookahead. Journal of Information Processing 27, 422-430 (2019)

Ausaf, F., Dyckhoff, R., Urban, C.: POSIX Lexing with Derivatives
of Regular Expressions. Archive of Formal Proofs (2016). http://www.
isa-afp.org/entries/Posix-Lexing.shtml, Formal proof development

http://www.cis.upenn.edu/~bcpierce/sf
{1010.2604}
http://www.isa-afp.org/entries/Posix-Lexing.shtml
http://www.isa-afp.org/entries/Posix-Lexing.shtml

	Introduction
	Preliminaries
	POSIX Regular Expression Matching
	Ordering of Values according to Okui and Suzuki
	Optimisations
	Extensions
	Conclusion

