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Abstract

We present a generalisation of first-order unification tophectically important case of
equations between terms involvirfgnding operations A substitution of terms for vari-
ables solves such an equation if it makes the equated teretgivalent i.e. equal up to
renaming bound names. For the applications we have in miadpust consider the simple,
textual form of substitution in which names occurring imiermay be captured within the
scope of binders upon substitution. We are able to take aifmdirapproach to binding in
which bound entities are explicitly named (rather than gisiameless, de Bruijn-style rep-
resentations) and yet get a version of this form of subgiituthat respecta-equivalence
and possesses good algorithmic properties. We achievbytladapting two existing ideas.
The first one is terms involving explicit substitutions ofhmes for names, except that here
we only useexplicit permutationgbijective substitutions). The second one is that the uni-
fication algorithm should solve not only equational probdetout also problems about the
freshnes®of names for terms. There is a simple generalisation of iciaisBrst-order uni-
fication problems to this setting which retains the lattptisasant properties: unification
problems involvingx-equivalence and freshness are decidable; and solvatiideprs pos-
sess most general solutions.
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1 Introduction

Decidability of unification for equations between first-erderms and algorithms
for computing most general unifiers form a fundamental tbobonputational logic
with many applications to programming languages and coemngaitled reasoning.
However, very many potential applications fall outsideshepe of first-order uni-
fication, because they involve term languages with bindipgrations where at
the very least we do not wish to distinguish terms differipmta the renaming

of bound names. There is a large body of work studying langsiagth binders
through the use of various-calculi as term representation languages, leading to

Theoretical Computer Science, 2004, Vol. 323(1-3), Pagés497 .



higher-order unificatioralgorithms for solving equations betweerterms mod-
ulo afn-equivalence. However, higher-order unification is techtly complicated
without being completely satisfactory from a pragmaticpaif view. The reason
lies in the difference between substitution for first-orterms and for\-terms.
The former is a simple operation of textual replacement ¢gtones calledyraft-
ing [1], or context substitutiof2, Sect. 2.1]), whereas the latter also involves re-
namings to avoid capture. Capture-avoidance ensuresuhbstitsition respects-
equivalence, but it complicates higher-order unificatilgoathms. Furthermore it
is the simple textual form of substitution rather than theemmmmplicated capture-
avoiding form which occurs in many informal applications‘ohification modulo
a-equivalence”. For example, consider the following schignmale which might
form part of the inductive definition of a binary evaluatiaelation | for the ex-
pressions of an imaginary functional programming language

app(fna.V, X) | V
leta—XinY | V 1)

Here X, Y andV are metavariables standing for unknown programming laggua
expressions. The bindefa a.(—) andlet « = X in (—) may very well capture
free occurrences of the variable namedhen we instantiate the schematic rule
by replacing the metavariablé with an expression. For instance, using the rule
scheme in a bottom-up search for a proof of

leta=1ina | 1 (2)
we would use a substitution that does involve capture, namel
(X =1,V :=qa,V:=1]

in order to unify the goal with the conclusion of the rule (1generating the new
goalapp(fn a.a, 1) | 1 from the hypothesis of (1). The problem with this is that
in informal practice we usually identify terms updeequivalence, whereas textual
substitution does not respeetequivalence. For example, updeequivalence, the
goal

letb=11inb | 1 3)

is the same as (2). We might think (erroneously!) that theckmion of rule (1)

is the same aset b = X inY || V without changing the rule’s hypothesis—
after all, if we are trying to make-equivalence disappear into the infrastructure,
then we must be able to replace grart of what we have with an equivalent part.
So we might be tempted to unify the conclusion with (3) viatésdual substitu-
tion[X :=1,Y := b,V := 1], and then apply this substitution to the hypothesis to
obtain a wrong goakpp(fn a.b, 1) |} 1. Using A-calculus and higher-order unifi-
cation saves us from such sloppy thinking, but at the expehsaving to make
explicit the dependence of metavariables on bindable namadke use of function

474



variables and application. For example, (1) would be reggldny something like

app (fnXa.Fa) X | V
let X (Aa.Fla) | V 4)

or, modulon-equivalence

app(fn F) X | V
letXF | V (5)

Now goal (3) becomeset 1 Ab.b |} 1 and there is no problem unifying it with the
conclusion of (5) via a capture-avoiding substitutionldbr X, Ac.c for F' and1
for V.

This is all very fine, but the situation is not as pleasant adifst-order terms:
higher-order unification problems can be undecidable,dddte but lack most
general unifiers, or have such unifiers only by imposing soestrictions [3];
see [4] for a survey of higher-order unification. We started wanting to com-
pute with binders module-equivalence, and somehow the process of making
possibly-capturing substitution respectable has led natfan variables, applica-
tion, capture-avoiding substitution apg-equivalence. Does it have to be so? No!

For one thing, several authors have already noted that omemezke sense of
possibly-capturing substitution modutaequivalence by usingxplicit substitu-
tionsin the term representation language: see [1,5-9]. Compatadhose works,
we make a number of simplifications. First, we find that we domeed to use
function variables, application giny-equivalence in our representation language—
leaving just binders and-equivalence. Secondly, instead of using explicit substit
tions of names for names, we use only the special casgpiicit permutation®f
names. The idea of using name-permutations, and in patic@me-swappings,
when dealing withn-conversion was described in [10] and there is growing evi-
dence of its usefulness (see [11-13], for example). Whemarsubstitution is
actually a permutation, the function it induces from termserms is a bijection;
this bijectivity gives the operation of permuting namesyvgood logical proper-
ties compared with name substitution. Consider for exartmge-equivalent terms

fn a.b andfn c.b, wherea, b andc are distinct. If we apply the substituti@n-a| (re-
naming all free occurrences bfo bea) to them we getn a.a andfn c.a, which are

no longera-equivalent. Thus renaming substitutions do not respestjuivalence

in general, and any unification algorithm using them needtski® extra precautions
to not inadvertently change the intended meaning of terme tiaditional solution
for this problem is to introduce a more complicated form ofaiming substitution
that avoids capture of names by binders. In contrast, thplsioperation of name-
permutation respects-equivalence; for example, applying the name-permutation
(a b) that swaps all occurrences @fandb (be they free, bound or binding) to the
terms above givesn b.a andfn c.a, which are stilla-equivalent. We exploit such
good properties of name-permutations to give a conceptsathple unification
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algorithm.

In addition to the use of explicit name-permutations, we atsmpute symbolically
with predicates expressirigeshnes®f names for terms. Such predicates certainly
feature in previous work on binding (for example, Qu-Pr&dogot free_i n
predicate [8], the notion of “algebraic independence” i, [Definition 3], and the
“non-occurrence” predicates of [15]). But once again, tee af such a freshness
predicate based upon namswappingrather than renaming, which arises naturally
from the work reported in [10,16], gives us a simpler theorthwgood algorith-
mic properties. It is easy to see why there is a need for camgutith freshness,
given that we take a “nominal” approach to binders. (In otherds we use con-
crete versions of binding ang-equivalence in which bound entities are named ex-
plicitly, rather than using de Bruijn-style representasipas for example in [1,7].)
A basic instance of our generalised formafquivalence identifiesn a.X with

fn b.(a b)- X provideds is fresh for X', where the subterrfu b)- X indicates an ex-
plicit permutation—namely the swapping @andbs—waiting to be applied toX.

We write “b is fresh for X” symbolically asb # X; the intended meaning of this
relation is that) does not occur free in any (ground) term that may be substitut
for X. If we know more abouk” we may be able to eliminate the explicit permuta-
tion in (a b)-X; for example, if we knew that # X holds as well a$ # X, then
(ab)-X can be replaced b .

It should already be clear from these simple examples thatiirsetting the appro-
priate notion of term-equality is not a bare equatios, ¢/, but rather a hypothetical
judgement of the form

VEtat (6)
whereV is afreshness environmenta finite set{a; # Xi,...,a, # X,} of
freshness assumptions. For example

{a# X b# X} Ffna X ~fnb X (7

is a valid judgement of ounominal equational logicSimilarly, judgements about
freshness itself will take the form

Viadt. (8)

Two examples of valid freshness judgementsfare# X} - a # fnb.X and
0Fa# fnaX.

The freshness environmevitin judgements of the form (6) and (8) expresses fresh-
ness conditions that any textual substitution of terms &srables must respect in
order for the right-hand side of the judgement to be validradubstitution. This
explicit use of freshness makes the operation of textuastgubon respect our
generalised form ofi-equivalence. For example, if we were naively to regard the
termsfn a.X andfn b.X asa-equivalent, then applying for example the capturing
substitution X' := a] or [X := b] results into two terms that aret a-equivalent
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anymore. (A similar observation partly motivates the warkli7].) However, if we
assume: # X andb # X asin (7), then all problematic substitutions are ruled out.
In this way we obtain a version ef-equivalence between terms with variables that
is respected by textual substitutions (see Lemma 2.14 helmiike the traditional
notion ofa-equivalence.

Summary

We will represent languages involving binders using thealisation of first-order
terms over a many-sorted signature, but with certain djsished constants and
function symbols. These give us terms with: distinguish&ustants naming bind-
able entities, that we caltoms termsa.t expressing a generic form dinding
of an atoma in a term¢; and termsr- X representing an explicfgermutationr
of atoms waiting to be applied to whatever term is substtdite the variableX .
Section 2 presents this term-language together with asyttacted inductive def-
inition of the provable judgements of the form (6) and (8) ethior groundterms
(i.e. ones with no variables) agrees with the usual notidns-equivalence and
“not a free variable of”. However, on open terms our judgetaeliffer from these
standard notions. Section 3 considers unification in thisnge Solving equalities
between abstractionst ~? «'.t" entails solving both equalities~? (a a')-t' and
freshness problems #7? t'. Therefore our general form afominal unification
problemis a finite collection of individual equality and freshnessldems. Such a
problemP is solved by providing not only a substitution(of terms for variables),
but also a freshness environmént(as above), which together have the property
thatV F o(t) ~ o(t') andV F a # o(¢") hold for each individual equality ~? ¢’
and freshness #7? t" in the problemP. Our main result with respect to unifica-
tion is thatsolvability is decidable and that solvable problems possesst general
solutions(for a reasonably obvious notion of “most general”). Thegbris via a
unification algorithm that is very similar to the first-ordagorithm given in the
now-common transformational style [18]. (See [19, Se@] @r [20, Sect. 4.6] for
expositions of this.) Section 4 considers the relationsifiipur version of “unifi-
cation modulon-equivalence” to existing approaches. Section 5 assedsashas
been achieved and the prospects for applications.

Quiz

To appreciate the kind of problem that nominal unificatiolves, you might like
to try the following quiz about the-calculus [21] before we apply our algorithm
to solve it at the end of Section 3.

Assuming: andb are distinct variablesis it possible to find\-termsif,, . .., M;
that make the following pairs of termsequivalent?
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(1) AaXb. (M b)  and  AbAa.(a M)
) AaAb.(Myb)  and  AbAa.(a Ms)
(3) AaAb.(bM,)  and  AbAa.(a M)
(4) Aa.Xb.(bMg) and Aa.la.(a M)

If it is possible to find a solution for any of these four prabkg can you describe
what all possible solutions for that problem are like? (Theveers are given in
Example 3.8.)

2 Nominal equational logic

We take a concrete approach to the syntax of binders in whocimd entities are
explicitly named. Furthermore we do not assume that the sarhbound entities
are necessarily variables (things that may be substito@dh order to encompass
examples like ther-calculus [22], in which the restriction operator binds hel
names and these are quite different from names of unknowsepses. Names of
bound entities will be calledtoms This is partly for historical reasons (stemming
from the work by the second two authors [10]) and partly tadate that the in-
ternal structure of such names is irrelevant to us: all we ehout is their identity
(i.e. whether or not one atom is the same as another) andhiatpply of atoms
is inexhaustible.

Although there are several general frameworks in the hieeafor specifying lan-
guages with binders, not all of them meet the requirementsioreed in the pre-
vious paragraph. Use of the simply typ&etalculus for this purpose is common,;
but as discussed in the Introduction, it leads to a problemettification theory.
Amongfirst-order frameworks, Plotkin’s notion dbinding signaturg23,24], be-
ing unsorted, equates names used in binding with names iables standing for
unknown terms; so it is not sufficiently general for us. A fiostler framework that
does meet our requirements is the notiomomminal algebrasn [15]. Thenominal
signatureghat we use in this paper are a mild (but practically usefefjegalisation
of nominal algebras in which name-abstraction and pairarglze mixed freely in
arities (rather than insisting as in [15] that the argument sf a function symbol
be normalised to a tuple of abstractions).

Definition 2.1. A nominal signatures specified by: a set &orts of atomstypical
symbolv); a disjoint set ofsorts of data(typical symbols); and a set ofunction
symboldtypical symbolf), each of which has aarity of the formr — 4. Herer
ranges over (compoundprtsgiven by the grammar :=v |6 | 1| 7 x 7 | (v)7 .
Sorts of the form(v) 7 classify terms that are binding abstractions of atoms df sor
v over terms of sort. We will explain the syntax and properties of such termsin a
moment.
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Example 2.2. Here is a nominal signature for expressions in a small fragroe
ML [25]:

sort of atoms: vid
sort of data: exp
function symbols: vr : vid — exp
app : eIp X erp — exp
fn : (vid)exp — exp
1v : exp X (vid)exp — exp
1f : (vid)(((vid) exp) X exp) — exp .

The function symbobr constructs terms of soeizp representing value identifiers
(named by atoms of sortd); app constructs application expressions from pairs of
expressionsfn, 1v and1f construct terms representing respectively function ab-
stractions £n x => e), local value declarations ¢t val x = el in e2 end) and
local recursive function declarationset fun f x = el in e2 end). The arities of
the function symbols specify which are binders and in whiely their arguments
are bound. For example, in the expressipat(fun f x = el in e2 end) there is

a binding occurrence of the value identifiewhose scope is both @ft ande2;

and a binding occurrence of the value identiftewhose scope is jusil. These
binding scopes are reflected by the argument sort of theibtmsymbol1f. This
kind of specification of binding scopes is of course a featrkigher-order ab-
stract syntaX26], using function types—r in simply typedA-calculus where we
use abstraction sortg)7. We shall see that the latter have much more elementary
(indeed, first-order) properties compared with the former.

Definition 2.3. Given a nominal signature, we assume that there are coyntabl
infinite and pairwise disjoint sets atoms(typical symbok:) for each sort of atoms

v, andvariables(typical symbolX) for each sort of atoms and each sort of data

d. Thetermsover a nominal signature and their sorts are inductivelyneefias
follows, where we write¢ : 7 to indicate that a termhas sort-.

Unit value () : 1.

Pairs (t1,ty) : 71 X 1o, if t; : 7y @andty @ 7.

Data ft:4,Iif fisafunction symbol of arity — § and? : 7.

Atoms « : v, if a is an atom of sorb.

Atom-abstraction a.t : (v)7, if a is an atom of sort andt : .

Suspensionr X : 7, if 1 = (a1 by)(az b2) - - - (an, by) is afinite list whose elements
(a; b;) are pairs of atoms, with, andb; of the same sort, and is a variable of
sortr, wherer is either a sort of data or a sort of atoms (i-e:= v | 4).

Recall that every finite permutation can be expressed as pasition of swappings
(a; b;); the listw of pairs of atoms occurring in a suspension ternX specifies a
finite permutation of atoms waiting to be applied once we kmowre about the
variable X (by substituting for it, for example). We represent finiterpatations

in this way because it is really the operation of swappingciipilays a fundamen-
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tal role in the theory. Since, semantically speaking, sswagp commutes with all
term-forming operations, we can normalise terms invohamgexplicit swapping
operation by pushing the swap in as far as it will go, untied&ches a variable (ap-
plying the swapping to atoms that it meets on the way); thegen Definition 2.3
are all normalised in this way, with explicit permutatior@léd up” in front of
variables giving what we have callstispensiondn case the permutationin a
suspension is the empty list, we just writefor 7- X .

Definition 2.4. The permutation actionr-t, of a finite permutation of atoms
on a termt is defined as in Figure 1, making use of the following notatiorhe
composition of a permutation followed by a swap(a b) is given by list-cons,
written (a b) :: 7. (Note that we apply permutations to terms on the left, anttle
the order of the composition is from right to left.) The comajpion of = followed by
another permutation’ is given by list-concatenation, written asa . Theidentity
permutation is given by the empty ligf and theinverseof a permutation is given
by list reversal, written as !.

Permutation actions have excellent logical propertieengsting from the fact that
they are bijections). We exploit these properties in oumikgdn of a-equivalence
for terms over a nominal signature, which is respected bgtgution of terms for
variables even though the latter may involve capture of atbgnbinders. To do
so we will need to make use of an auxiliary relationfreishnesdetween atoms
and terms, whose intended meaning is that the atom does oot tree in any
substitution instance of the term. As discussed in the thiction, our judgements
about term equivalence & t') need to contain hypotheses about the freshness of
atoms with respect to variables ¢+ X); and the same goes for our judgements
about freshness itselfi (# t). Figure 2 gives a syntax-directed inductive definition
of equivalence and freshness using judgements of the form

Vktat and Viha#t

wheret andt' are terms of the same sort over a given nominal signaturs,
an atom, and thé&eshness environment is a finite set offreshness constraints
a # X, each specified by an atom and a variable. Redes(spension) in Figure 2
makes use of the following definition.

Definition 2.5. The disagreement saif two permutationsr and«’ is the set of
atomsds(m, ') gef {a | ma # 7'-a}.

Note that every disagreement s&t(r, ') is a subset of thédinite set of atoms
occurring in either of the lists and~’, because ifi does not occur in those lists,

then from Figure 1 we get-a = a = 7'-a. To illustrate the use of disagreement
sets, consider the judgement

{a# X, c# X} F(ac)(ab)-X = (bc)-X .
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def
[]-a = a 7T-<t1,t2

)
| )
A N2 B A ()
)
)

((arag) =m)a = Qay ifma=a
m-a Otherwise

Fig. 1. Permutation action on termsi.

Vet mt) Vit

(==-unit) (=-pair)

V() =) Vi (t,t2) = (1), 1)

Gt (etunction symbol) SV TEZI (w-abstraction-)
ata V thf a(?i)afl 7 Via#?t (=-abstraction-2)
VFEa~g (aom o4 X)é f:;; il :,‘.;ds(w’ ™) (=-suspension)
Ty e gy e
% (#-function symbol)

a#a Via#i (#-abstraction-2)

(#-abstraction-1)

VFa#at Yradal
afd mla# X)eV .
Via#ad (#-atom) ( YT a7 72X (#-suspension)

Fig. 2. Inductive definition ok and#.

This holds by applying rulex-suspension) in Figure 2, since the disagreement set
of the permutationséa ¢)(a b) and(be) is {a, c}.

Remark 2.6 (Freshness environment$jote that the freshness environment on the
left-hand side of judgements in the rules in Figure 2 doeschange from hy-
potheses to conclusion. So in the same way that we assurablesrhave attached
sorting information, we could dispense with the use of frests environments en-
tirely by attaching the freshness information directly &wigbles. However, we find
the use of freshness environments more elegant (for ong, thithout them two
variables with the same name but different freshness irdoon would have to be
regarded as different). They also make life simpler when @raeon to nominal
unification problems and their solutions in the next section
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Below we sketch a proof that is an equivalence relation. At first sight this prop-
erty might be surprising considering the “unsymmetric” digion of the rule -
abstraction-2). However it holds because of the good lbgicgerties of the rela-
tion ~ with respect to permutation actions. Although reasoninguakr is rather
pleasant once equivalence is proved, establishing it Srsather tricky—mainly
because of the large number of cases, but also becauseldavtsaeeded in the
proof are interdependentWe first show that permutations can be moved from one
side of the freshness relation to the other by forming thens® permutation, and
that the freshness relation is preserved under permutatibons.

Lemma 2.7.

Q) fVEa#ntthenVErla#t.
2 fVEmaf#tthenVia#r ',
@) VFEa#tthenV E m-a # w-t.

PROOF. (1) and (2) are by routine inductions on the structure, efsing the fact
thatm-a = biff a = 7—1-b ; (3) is a consequence of (2) and the fact that permuta-
tions are bijections on atoms. O

According to the definition of the permutation action givarFigure 1, if we push

a permutation inside a term, we need to apply the permutaticdl atoms we
meet on the way. Suppose we apply two distinct permutatisegs and 7', to

a termt, then in generatr-t and«’-t are nota-equivalent—the disagreement set
ds(m, ") characterises all atoms which potentially lead to diffee=n However,

if we assume that all atoms il (7, ©') are fresh fort, then we can infer that the
permutation actions produce equivalent terms. This is maglgse in the following
lemma.

Lemma 2.8. Given anyr and ', if V + a # t holds for alla € ds(w,7’), then
Vkrt~a't.

PROOF. By induction on the structure of for all  andz’ simultaneously, using
the fact about disagreement sets that for all atemsif a € ds(rw, (7-b #'+b) :: 7')
thena € ds(m, 7). O

An example of this lemma is th&t - 7+(ab)-t ~ (7+a 7+b)-n-t is a valid judge-
ment, because the disagreementis¢tr@(a b) , (r-a 7+b) :: 7) is empty.

1'In additon some further simple properties of permutatiorend dis-
agreement sets need to be established first. A machineatheckroof
of all results wusing the theorem prover Isabelle can be found at
http://ww. cl.cam ac. uk/ users/cu200/ Uni ficati on.
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The next lemma shows that respects the freshness relation.

Lemma29.f VEa#tandVEtat,thenVa#t.

PROOF. Routine induction on the definition ef using Lemma 2.7. O

For showing transitivity of the relatios, it will be necessary to define a measure
that counts all term constructors occurring in a term.

Definition 2.10. Thesizeof a term¢ is the natural numbet| defined by:

def
[m X1, lal, [ =1

la.t], | ] €1 + |1

def
[(tr,ta)| = 1+ [t| + [to]

Notice that the size of aterm is preserved under permutatitons (i.e|r-t| = |t|)
and respected by the relatienin the sense that ¥/ I- ¢t ~ ¢’ then|t| = |¢/|.

Theorem 2.11(Equivalence) V  — =~ — is an equivalence relation.

PROOF. Reflexivity is by a simple induction on the structure of termsnsitivity

is by an induction on the size of terms: a slight complicatstinat many subcases
need to be analysed (for example five subcases when dealimglatractions) and
also that transitivity needs to be shown by mutual inductitth the fact thats is
preserved under permutation actions, that is

givenanyr, if VFt~t thenV - 7t ~ 7t . 9)
We illustrate the proof of transitivity for the case whent a,.t; ~ as.ty and
V F ay.ty = as.t3 hold, witha,, a; andas all distinct atoms, and we have to prove

V F ay.t; = as.t3. By the -abstraction-2) rule we can infer from the assumptions
the following facts:

(|) VE tl =~ (a1 a2)°t2 (||) VE ay # t2
(|||) VE ty = (0,2 ag)'tg (|V) VE 9 # t3

Below we give the steps that pro¥ét- a;.t; ~ as.ts.
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(@) VF (a0a)ty = (aras)(agas)-ts by (i) and IH (9)

(b) VFt =~ (aa2)(asaz)-ts by (i), (a) and IH (transitivity)
(©) ds((ajaz)(azaz), (a1 a3)) = {ar,as} by definition
(d) VI a; # (aya3)ts by (ii), (iii) and Lemma 2.9
() Via #t3 by (as az)-a; = aq, (d) and Lemma 2.7(i)
H  VE(a1a2)(asaz)-ts = (a; az)-ts by (c), (iv), (e) and Lemma 2.8
Q) VIt~ (aa3)ts by (b), (f) and IH (transitivity)
(h) VFap .t ~as.ts by (e), (g) and £-abstraction-2)

The other cases are by similar arguments. Symmetry is tharbytine induction
on the definition ok using Lemma 2.8 and transitivity. O

Now it is relatively straightforward to obtain the followgrproperties of our equiv-
alence relation with respect to permutation actions.

Corollary 2.12.

1) Vrtxa 'zt ifandonlyif V-t~ 1t .

(2 VHt=~qxt ifandonlyif VErlt~t.

(3) Given anyr and ', if V + n-t ~ 7't then for alla in ds(7,7") we have
VEad#t.

PROOF. (i) follows immediately from Lemma 2.8 and transitivityj)(follows
from (9) and (i); and (iii) is by a routine induction on the wstture of# using
Lemma 2.9. O

The main reason for using suspensions in the syntax of tesrtsenable a def-
inition of substitution of terms for variablekat allows capture of free atoms by
atom-abstractions while still respectiagequivalence. The following lemma es-
tablishes this. First we give some terminology and notdorerm-substitution.

Definition 2.13. A substitutions is a sort-respecting function from variables to
terms with the property that(X) = X for all but finitely many variabless. We
write dom (o) for the finite set of variableX satisfyingo(X) # X. If dom(o) con-
sists of distinct variabled;, ..., X,, ando(X;) = ¢; for i = 1..n, we sometimes
write o as

o=[X1:=t1,..., X, = t,] (20)
We write o(t) for the result ofapplying a substitutiow to a termt¢; this is the
term obtained front by replacing each suspensianX in t (as X ranges over
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dom/(o)) by the termz-o(X) got by lettingn act on the terms(X) using the
definition in Figure 1. For example, if = [X := (b, Y)] andt = a.(ab)- X, then
o(t) = a.{a, (ab)-Y'). Given substitutions ando’, and freshness environments
andV’, we write

(@ V'ko(V) and (b) Viko=xo (11)

to mean, for (a), thalV’ - a # o(X) holds for eachla # X) € V and, for (b),
thatV - o(X) = ¢'(X) holds for allX € dom (o) U dom(o”).

Lemma 2.14(Substitution) Substitution commutes with the permutation action:
o(n-t) = m-(o(t)). Substitution also preservesand+ in the following sense:

1) fV' Eo(V)andV Ft =t thenV'F o(t) ~ o(t');
(2 V' Eo(V)andV Fa # t, thenV' - a # o(t).

PROOF. The first sentence follows by a routine induction on the stmgcofz. The
second follows by induction on the definitionsfand# using Lemma 2.8. 0O

We claim that the relationz defined in Figure 2 gives the correct notion @f
equivalence for terms over a nominal signature. This isamasle, given Theo-
rem 2.11 and the fact that, by definition, it satisfies rutesapstraction-1) andx{-
abstraction-2). Further evidence is provided by the foil@yproposition, which
shows that for ground terms agrees with the following more traditional defini-
tion of a-equivalence.

Definition 2.15 (Naivea-equivalence) Define the binary relation=,, ¢’ between
terms over a nominal signature to be the least sort-resgectingruence relation
satisfyinga.t =, b.[a—b]t whenever is an atom (of the same sort asnot oc-
curring at all in the termt. Here [a—b]t indicates the result of replacing all free
occurrences of with b in ¢.

Proposition 2.16(Adequacy) If t and#' are ground termgi.e. terms with no vari-
ables and hence no suspensiangr a nominal signature, then the relation-,, #
of Definition 2.15 holds if and only i - ¢ ~ ' is provable from the rules in Fig-
ure 2. Furthermoref) - a # t is provable if and only if; is not in the set’A(¢) of
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free atoms of, defined by:

FA(() <0
FA((h, 12)) = FA() U FA(t,)
FA(f 1) = FA(1)
FA(a) < {a}
FA(a.t) £ FA®t) — {a}.
PROOF. The proof is similar to the proof of [10, Proposition 2.2]. O

For non-ground terms, the relations, and = differ! For examplea. X =, b.X
always holds, wheredst- a. X ~ b.X is not provable unless = b. This disagree-
ment is to be expected, since we noted in the Introductioin=thas not preserved
by substitution, whereas from Lemma 2.14 we know thas.

3 Unification

Given termst andt' of the same sort over a nominal signature, can we decide
whether or not there is a substitution of terms for the vdeisin¢ andt’ that makes
them equal in the sense of the relatisnntroduced in the previous section? Since
instances ot are established modulo freshness constraints, it makes seoise
to ask whether or not there is both a substitutioand a freshness environmevit
for whichV + o(t) ~ o(¢') holds. As for ordinary first-order unification, solving
such an equational problem may throw sgveralequational subproblems; but an
added complication here is that because of red@apstraction-2) in Figure 2, equa-
tional problems may generateeshnesproblems, i.e. ones involving the relation
#. We are thus led to the following definition of unification ptems for nominal
equational logic.

Definition 3.1. A unification problemP over a nominal signature is a finite set of
atomic problems, each of which is either eaguational problent ~? ¢' wheret
andt’ are terms of the same sort over the signature,fogshness problem #7 ¢
wherea is an atom and a term over the signature. golutionfor P consists of a
pair (V, o) whereV is a freshness environment amds a substitution satisfying

e VIEado(t) foreach (a #‘H)eP and
e Vi o(t) = o(t') foreach (t =7 1t') € P.

We writeU( P) for the set of all solutions of a problef. (V, o) € U(P) is amost
generalsolution for P if given any other solutiotV’, o') € U(P), then there is a
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substitutions” satisfyingV'  ¢"(V) andV' - 0" oo &~ ¢'. (Here we are using the
notation of (11); an@” o o denotes thesubstitution compositioaf ¢ followed by
", given by (0" o o) (X) &' 6"(o(X)).) A solution(V, o) € U(P) is idempotent
providedV o oo = 0.

We describe an algorithm which, given any nominal unifiaagooblem, decides
whether or not it has a solution and if it does, returns a mesegal (and idem-
potent) solution. The algorithm uses labelled transforomat directly generalising
the presentation of first-order unification in [19, Sect.] 26ich in turn is based
upon the approach in [18]. (See also [20, Sect. 4.6] for ailddtaxposition, but
not using labels.) We use two types of labelled transforomdbietween unification
problems, namely

P-% P and P-% P
where the substitution is either the identity, or a single replacemepk” := ¢];
and where the freshness environm®nis either empty), or a singleto{a # X}.
The legal transformations are given in Figure 3. This figuesithe notatio® w P’
to indicate the union of problem and P’ that are disjoint P N P’ = ()); and the
notationo P to indicate the problem resulting from applying the sub$itin o to
all the terms occurring in the problefm

Algorithm. Given a unification problen?, the algorithm proceeds in two phases.
In the first phase it applies as man$s transformations as possible (non-determin-
istically). If this results in a problem containing no eqoatl subproblems, then
it proceeds to the second phase; otherwise it halts siggdtilure. In the second

phase it applies as maﬁiyvb transformations as possible (non-deterministically). If
this does not result in the empty problem, then it halts diopggfailure; otherwise
overall it has constructed a transformation sequence dbtine

Pz .. =p X Inyg (12)

(where P’ does not contain any equational subproblems) and the #igoreturns
the solutionV, U ---UV,,, 0,0---007).

To show the correctness of this algorithm, we first estalihsth all sequences of
unification transitions must terminate.

Lemma 3.2. There is no infinite series of unification transitions.

PROOF. Since every reduction sequence consists of two (possibptygsubse-

guences, namely one containing orfe-steps and the other onb;vb)-steps, we
can show termination for both subsequences separatelgvEoy unification prob-
lem P we define a measure of the sizefto be the lexicographically ordered pair

2 See Remark 3.9 for discussion of this use of two phases.
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(=?-unit) {0~ (twP=r
~7-pair) {{t, 1)) =2 (t, )Y w P == {t, 7|, ty =72 th} U P
~?-function symbol) {ft=? ftWP = {t=?1}UP

(=?-abstraction-1) {at~?at’} WP = {t=?t}UP
(=?-abstraction-2) {at=?ad '} WP = {t=? (ad)t, a#?t'}UP
provideda # o
(=?-atom) {ax?a}lwP =P
(=?-suspension) (X =? 7" X}WP = {a#? X |a€ds(m,7)}UP
_ {t=?m-X}WP| , _
(~=?-variable) == oP with 0 =[X =7 ']

{r- X ~?7t}uP providedX does not occur in

(#£7-unit) {a#? VYwP L P

(#7-pair) {a #? (t, ) WP =L {a#7t,a#2 6} U P
(#7-function symbol) {a #? ft}y P N {a #?t}UP
(#7-abstraction-1) {a #?at}lw P L p

(#7-abstraction-2) {a #?d t} WP SN {a #? t} U P provideda # o’
(#7-atom) {a #7d} WP Lp provideda # o
(#7-suspension) {a #? 7 X} WP =1 P WithV = {r 'a# X}

Fig. 3. Labelled transformations.

of natural number$n,, ny), wheren, is the number of different variables used in
P, andn, is the size (see Definition 2.10) of all equational problemBjthat is

ny STt + 7]
(t~?t')eP

In every==>-step this measure decreases: th@-{ariable) transition eliminates
(completely) one variable from the unification problem, #meteforen; decreases;
the (&?-suspension) transition may eliminate a variable andddsoeases the size
ns; all other transitions leave the number of variables ungkdnbut decreass,.

For the:V>-steps the size
> [

(agt?t)eP
decreases in every step. Taking both facts together meanswéry reduction se-
guence must terminate. O

The following lemmas help us to show that the algorithm go@sect results upon
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termination.

Lemma3.3.f VEo(r-X) = o(t)thenV oo [X =7 "-t] ~ 0.

PROOF. We have to prove that both substitutions agree (modyl@n all vari-
ables indom (o) U {X}. The only interesting case is for the substitutions applied
to X, when we need to show that - o(7'+t) =~ o(X). By Lemma 2.14 we
can commute the permutation to the outside and move it to tier side ofx

by Lemma 2.12—this give¥ + o(t) ~ w-0(X). The case then follows from
the assumptions by symmetry and commuting the permutaiside the substitu-
tion. O

Lemma 3.4. Given a unification problen®, (V, o) € U(s'P) holds if and only if
(V,000") € U(P).

PROOF. Simple calculation using the fact thato’(¢)) = (0 o o) (t). O

The following two lemmas show that the unification transfations can be used
to determine whether or not solutions exists and to desatibe them if they do
exist.

Lemma 3.5.

(i) If (V',o') € UW(P)andP == P’ then(V’,¢') € U(P')andV' I o'o 0 =

@)
(i) If (V',0') € U(P) andP =% P',then(V’, ") € U(P') and V' + o’ (V).

PROOF. We just give the details for two unification transitions: tase for £&7-
suspension) follows from Lemma 2.12(iii); and the?¢variable) case is a conse-
guence of Lemmas 3.3 and 3.4. O

Lemma 3.6.

(i) If (V',0') € U(P') and P =% P’ then(V’, o’ o o) € U(P).
(i) If (V',0') € U(P"), P =% P'andV" I ¢'(V),then(V' U V", 0") € U(P).

PROOF. Once again, we just give the details for two unification tramss: the
(=~7-suspension) case follows from Lemma 2.8; and th&-Yariable) case follows
from Lemma 3.4 and the fact thatX := 7~ '-¢] = ¢, which holds by the side-
condition on the£?-variable) transition about the non-occurrenceXoin t. [
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The following theorem establishes the correctness of tineimal unification algo-
rithm and is the central result of the paper.

Theorem 3.7(Correctness)Given a unification problen®

() if the algorithm fails onP, then P has no solution; and
(i1) if the algorithm succeeds of, then the result it produces is an idempotent
most general solution.

PROOF. When failure happens it is because of certain subprobleatsntiani-
festly have no solution (namely in the first phasex? o with ¢ # o, and

m X ~7 ftor ft=? X with X occurring int¢; in the second phase, #7? a).
Therefore part (i) is a consequence of Lemma 3.5. For paubiie gets that a se-
quence like (12) exists, and th(8, o) = (V,U---UV,,, g,0---007) isinU(P)
by Lemma 3.6 and the fact thdt, ) € U(0). Furthermore from Lemma 3.5, we get
that any other solutiofV’, o’) € U(P) satisfiesV’' - ¢'(V) andV' F ¢’ o0 =~ o',
so that(V, o) is indeed a most general solution. Since one of those sokitiothe
most general solutio(\V, o), we also know thaV + ¢ o o ~ o and hence that
(V, o) is idempotent. O

We now apply the nominal unification algorithm to solve thézgguestions from
the Introduction.

Example 3.8. Using the first three function symbols of the nominal sigratof
Example 2.2 to representterms, the Quiz at the end of the Introduction translates
into the following four unification problems over that siguee, wherez andb are
distinct atoms of sortid and X, ..., X; are distinct variables of soetrp:

~7 fnb.fna.app(vr a, X;

P {fna fnb.app(Xy,vrb
b

R {fna fn b.app( Xy, vrb) ~7 fnb.fna.app(vr a, X3

{ ) )}
{ ) '}
P {fna fnb.app(vrb, X;) ~? fnb.fna.app(vra, X;s)},
P {fna fn b.app(vrb, Xg5) ~7 fna.fna.app(vra, X;)}

Applying the nominal unification algorithm described abowe find that

P, has no solution;

P, has a most general solution given®y = () andoy, = [X; := vrb, X3 :=
vral;

P3 has a most general solution given¥y = () ando; = [ X, := (ab)-X5];

P, has a most general solution given By = {b # X7} ando; = [Xs =
(ba)-X7].
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P1 = {fnb.app(X1,vrb) 7 fnb.app(vrb, (ab)-X1), a #? fna.app(vra, X1)} (~:7?-abstraction-2)
== {app(X1,vrb) &7 app(vrb, (a b)-X1), a #? fna.app(vra, X1)} (x~7-abstraction-1)
= {X1 ~?vrh, vrb~? (abh)-X1, a #? fna.app(vra, X1)} (~?-pair)
== {vrbw?vra, a #? fna.app(vra,vrb)} with o = [X1 := vrb] (x?-variable)
= {b~7a, a #? fna.app(vra,vrb)} (~?-function symbol)

FAITL

P4 = {fnb.app(vr b, Xg) ~? fna.app(vra, X7)} (~7-abstraction-1)
= {app(vrb, X¢) 7 app(vr b, (ba)-X7), b #7 app(vra, X7)} (x~7-abstraction-2)
== {ba?b, Xg~? (ba)-X7, b #? app(vra, X7)} ~:7-function symbol)
== {Xe ~? (ba)-X7, b #7? app(vr a, X7)} (~?-atom)
== {b #7 app(vra, X7)} with o = [Xs := (ba)-X7] ~?-variable)

Lo (b #? (vra, X7)) (#?2-function symbol)
:®> {b#7a, b#7? Xr} (# ?-function symbol)
Lo b #7 X7} (#7-atom)

L g with v = {b# X7} (#7-suspension)

Fig. 4. Example derivations

Derivations forP, and P, are sketched in Figure 4. Using the Adequacy property
of Proposition 2.16, one can interpret these solutions @adaltowing statements
about the\-terms mentioned in the quiz.

Quiz answers

(1) There is no\-term M; making the first pair of terms-equivalent.

(2) The only solution for the second problem is to tdie = b andM; = a.

(3) For the third problem we can také; to be any\-term, so long as we tak
M, to be the result of swapping all occurrences @ndb throughout);.

(4) Forthe last problem, we can také to be any\-term thatdoes not contain
free occurrences df, so long as we také/; to be the result of swapping
all occurrences o0b anda throughouti/;, or equivalently (sincé is not
free in M), taking Mg to be the result of replacing all free occurrenceg of
a in My with b.

[1°]

Remark 3.9(Separation of the algorithm into two phaseédje organised the algo-
rithm into two phases: equation-solving followed by fressstsolving. Note that
the second phase is crucial for the soundness of the algori@lonsider for exam-
ple the unification problem consisting of two terms which moéa-equivalent:

{a.b ~? b.a} (13)

After applying the transformatior{(’-abstraction-2) one needs to solve the prob-
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lem{a =7 a,a #7 a}, whose first component is solved by(-atom). Failure is
only signalled by the algorithm in the second phase whemgti@g to solve the
unsolvable freshness problefu #7 a}. The second phase, i. e. solving all fresh-
ness problems, ensures that the unifiers calculated bydbetaim are sound with
respect to our notion af-equivalence.

We used this separation of the algorithm into two phasesderaio make the cor-
rectness proof easier. More efficient algorithms would seekinimise the amount
of redundant calculations before failures are signallgdsdiving freshness prob-
lems more eagerly. However, care needs then to be taken remaot/e freshness
constraints from problems too early. For example, conditerfollowing unifica-
tion problem, which has no solution.

{a #? X, a~7 X} (14)

If one applies first #7-suspension) followed by{(?-variable), then one gets a
wrongresult, namely({a # X}, [X := «]). The problem is that the substitution
[X := a] has not been properly propagated to the freshness constrgnX . If
freshness problems are solved more eagerly, then proppagaton of substitu-
tions into freshness constraints needs to be taken intawatco

Remark 3.10(Atoms are not variablesNominal unification unifies variables, but
it does not unify atoms. Indeed the operation of identifyting atoms by renaming
one of them to be the other does not necessarily preservalidgy of the judge-
ments in Figure 2. For examplé,- a.b ~ c.b holds ifb # «a, c; but renaming) to
bea in this judgement we gét+ a.a ~ c.a, which does not hold so long as# c.
Referring to Definition 2.3, you will see that we do allow \abies ranging over
sorts of atoms; and such variables can be unified like any vtrables. However,
if A is such a variable, then it cannot appear in abstractiortiposi.e. asA.t.
This is because we specifically restricted abstraction ngeaover atoms, rather
than over arbitrary terms of atom sort. Such a restricti@msenecessary to obtain
single, most general, solutions to nominal unification peois. For without such a
restriction, because of rulesfabstraction-2) in Figure 2 we would also have to al-
low variables to appear on the left-hand side of freshndasoas and in suspended
permutations. So then we would get unification problems {iké B)-C ~? C'},
whereA, B andC' are variables of atom sort; this has two incomparable soisti
namely((, [A := B]) and({A # C, B # C},¢).
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4 Related work

Higher-order pattern unification

Most previous work on unification for languages with bindsr&ased on forms
of higher-order unification, i.e. solving equations betweeterms moduloxjn-
equivalence €,54,) by capture-avoiding substitution of terms for functiorriva
ables. Notable among that work is Millefsgher-order pattern unificatiomnised
in his L, logic programming language [3]. This kind of unificationaieis the good
properties of first-order unification: a linear-time decrsprocedure and existence
of most general unifiers. This good behaviour of higher-opgtern unification
is the result of equations being solved only modlgs,,, (where 5;-equivalence
is the restricted form ofi-equivalence that identifigs\x. M)y and M [y /x] with y
being a variable) and of-terms being restricted such that function variables may
only be applied to distinct bound variables. An empiricaldst by Michaylov and
Pfenning [27] suggests that most unifications arising dyioalty in higher-order
logic programming satisfy Miller's restrictions, but thiatrules out some useful
programming idioms.

The main difference between higher-order pattern unibcegéind nominal unifica-
tion is that the former solves a set of equations by calauagicapture-avoiding
substitution, while the latter calculatepassibly-capturingubstitutionrand some
freshness constraints. Moreover, unifiers in higher-opdgtern unification solve
equations with respect te-,g4,,; whereas in nominal unification, unifiers solve
equations with respect to the equivaleneedefined in Figure 2, which agrees
with a-equivalence on ground terms (see Proposition 2.16), lfigrslifrom it on
open terms, since unlike-equivalence, it is respected by possibly-capturing sub-
stitutions (see Lemma 2.14). For us, the main disadvantblgigloer-order pattern
unification is the one common to most approaches based oerhagtier abstract
syntax that was discussed in the Introduction: one caginettly express the com-
mon idiom of possibly-capturing substitution of terms foetawariables. Instead
one has to encode metavariablésas function variables applied to distinct lists of
(bound) variablesX z; ... z,, and use capture-avoiding substitution. At first sight,
there seems to be a simple encoding for doing that. Consadexadmple the purely
equational nominal unification problem

a.X a7 b.b (15)

which is solved by((), [ X := a]). The literal encoding as the higher-order pattern
unification problem\a. X =,4,,7Ab.b does not work of course, because there is no
capture-avoiding substitution that solves this problerawklver, X can be made
dependent on yielding the unification problem

Aa.(Xa) =ap0y? Ab.D (16)
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which is solved by the capture-avoiding substitutiomefc for X . If one further
applies toAc.c the atoma used by the encoding, then one can read back the orig-
inal solution[X := a] by applying somej-reductions. There are however several
problems with this encoding. First, the encoding in genegallts in a quadratic
blow-up in the size of terms. For example the nominal unifecaproblem

a.b.(X,Y) ~? a.b.{a,b) (17)

solved by the unifief(), [ X := a,Y := b]) needs to be encoded so thatandY
depend on both andb. This gives the higher-order pattern problem

AaXb(X ab,Y ab) =,5,,7 Aa.Ab.(a,b) . (18)

In the general case, the encoding needs to make metavariddépendent oall
atoms occurring in a nominal unification problem, regarsitefsvhether they actu-
ally occur in an individual equational problem. For exampleX occurs elsewhere
within the scope of abstractions efd, e and f, then X needs to be encoded as
(X abede f) even though an individual equational problem might contaily
andb. Secondly, and more importantly, we cannot see how to encodigeshness
constraints using this kind of higher-order patterns. @\ibiat in nominal unifi-
cation, freshness constraints do not necessarily comedratysing abstractions,
rather they can be chosen arbitrarily.)

A more promising target for a reduction of nominal unificatim some form of
higher-order pattern unification isr, a A\-calculus with de-Bruijn indices and ex-
plicit substitutions. Dowelet al [28] present a version of higher-order pattern uni-
fication for A\ in which unification problems are solved, as in nominal uatfin,
by textual replacements of terms for variables; howeverra-tooking” operation
ensures that the textual replacements can be faithfultedlto capture-avoiding
substitutions. It seems possible that the freshness (dsasvéie equational) prob-
lems of nominal unification can be encoded into higher-optern unification
problems oveio, using a non-trivial translation involving the use of thétsbper-
ator and the introduction of fresh unification variablese Details of this encoding
still remain to be investigated. Furthermore, it is not cleaus how to translate
solutions obtained via the encoding back into solutionshef driginal nominal
unification problem. But even if it turns out that it is podeilo reduce nominal
unification to the algorithm of Dowedt al, the calculations involved in translating
our terms into\o patterns and then using higher-order pattern unificatiemsar
more intricate than our simple algorithm that solves notumafication problems
directly. The conclusion we draw is that an encoding of n@himification prob-
lems into higher-order pattern unification problems (usiiegBruijn indices and
explicit substitutions) might be possible, but such an eénwpis no substitute in
practice for having the simple, direct algorithm we presdritere.

494



Hamana’sS,-unification ofA\-terms with “holes”

Hamana [5,29] manages to add possibly-capturing substittn a language like
Miller's L,. This is achieved by adding syntax for explicit renamingragiens and

by recording implicit dependencies of variables upon biohelaaames in a typing
context. The mathematical foundation for Hamana'’s syssaime model of binding
syntax of Fioreet al [24]. The mathematical foundation for our work appeared at
the same time (see [10]) and is in a sense complementaryn Famana’s system
the typing context restricts which terms may be substittded variable by giving

a finite set of names thahust containthe free names of such a term; whereas
we give a finite set of names which the term'’s free variabtest avoid Sincea-
conversion is phrased in terms of avoidance, i.e. freshoiasames, our approach
seems more natural if one wants to computequivalences concretely. On top of
that, our use of name permutations, rather than arbitraxgméng functions, leads
to technical simplifications. In any case, the bottom linehet Hamana’s system
seems more complicated than the one presented here and atgasssess most
general unifiers.

Qu-Prolog

The work [8,9] on unification in Qu-Prolog is most closelyateld to that reported
here. Qu-Prolog is a mature logic programming languageesddrg many prob-
lems we set out in the Introduction. To begin with, Qu-Pri&dagnification algo-
rithm unifies terms module--equivalence and may produce solutions that, as in
nominal unification, depend on freshness constraints (kP€@log such constraints
are represented by a predicate cated _f r ee_i n). Furthermore, metavariables
are substituted in a possibly-capturing manner. Howeteretare also a number
of differences between nominal unification and unificatio®@u-Prolog. The most
obvious difference is that the term language in Qu-Prolagctser than our term
language over nominal signatures; for example Qu-Prologvalvariables in bind-
ing position and permits explicit substitutions of termsVariables. This richness
of the term language leads to a number of difficulties. Ringt unification problems
in Qu-Prolog are only semi-decidable (whereas the nomingication problems
are decidable) and as a result the algorithm employed in Qlodp can leave as
unsolved some unification problems that are “too difficulthis means the unifi-
cation transformations in Qu-Prolog, while shown not toetielany solutions nor
to introduce any new ones, do not always lead to problems Wwbroh an explicit
solution can be obtained. Secondly, as we illustrated indkrB.10, the possibil-
ity of forming terms with unification variables in binding giion means that most
general solutions may not exist.

Another difference arises from the fact that in Qu-Prolagders are renamed via
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capture-avoiding substitutions. This means that freshasameed to be introduced
during unification in order to respeetequivalence. This is not necessary in nomi-
nal unification, because the permutation operation alreaslyectsy-equivalence.

In fact the introduction of fresh atoms during unificatioads to a more compli-
cated notion of most general solution. Consider the follmwariant of the £7-
abstraction-2) transformation:

(=7-abstraction-2 {a.t ~? a'.t'}WP = {(ab)-t =7 (a'b)-t',b #7 t,b #? '}UP

which is applicable provided # o' andb is a fresh atom, not occurring elsewhere
in the problem. This rule is essentially the refinement skegt tinifies two ab-
stracted terms in Qu-Prolog (see [8, Page 105]). If we wetséok?-abstraction-
2) instead of &7-abstraction-2) in our nominal unification algorithm, th&hen
applied to the problem

{a.X ~?bY } (19)

it would produce the solutiof{a # Y,c¢ # Y}, [X = (ac)(bc)-Y]). While this
solution solves the problem, it is not a most general saugiccording to Defini-
tion 3.1—we lost the information thatis a completely fresh atom. On the other
hand, applying transformation:(-abstraction-2) to (19) leads t¢a # Y}, [X :=
(ab)-Y])—a most general solution.

Overall, the theory of Qu-Prolog’s unification is more cosxthan that of nomi-
nal unification: in nominal unification we do not need to ré$ola semantic notion
of a-equivalence in order to show the correctness of the noruimécation algo-
rithm; and the use of permutations makes surelation much simpler compared
with Qu-Prolog’s use of the traditional notion afequivalence extended to terms
with metavariables.

5 Conclusion and Future Work

In this paper we have proposed a new solution to the problemroputing possibly-
capturing substitutions that unify terms involving binslap toa-conversion. To do
so we considered a many-sorted first-order term languadedistinguished col-
lections of constants callestomsand withatom-abstractioroperations for bind-
ing atoms in terms. This provides a simple, but flexible, feamrk for specify-
ing binding operations and their scopes, in which the bountdies are explicitly
named. By using variables prefixed with suspended perroagtione can have
substitution of terms for variables both allow capture @ina$ by binders and re-
specta-equivalence (renaming of bound atoms). The definition-@quivalence
for the term language makes use of an auxilim@ghnesselation between atoms
and terms which generalises the “not a free atom of” relaftiom ground terms
to terms with variables; furthermore, because variablasdstor unknown terms,

496



type Gamma (var X) A :- nmem (pair X A) Gammma.

type Gamma (app MN) B :- type Ganma M (arrow A B),
type Ganma N A

type Gamma (lamx. M (arrow A B) / x#Gamma : -
type (pair x A)::Gamma M B.

mem A A::Tail.
memA B::Tail :- memA Tail.

Fig. 5. An examplexProlog program

hence with unknown free atoms, it is necessary to make hggetabout the fresh-
ness of atoms for variables in judgements about term eauneal and freshness.
This reliance on “freshness”, coupled with name-swappather than renaming,
lead to a new notion of unification problem in which instanoé$oth equiva-
lence and freshness have to be solved by giving term-sutistis and (possibly)
freshness conditions on variables in the solution. We shdaWwat this unification
problem is decidable and unitary.

Cheney, Gabbay and Urban [30,31] are investigating thenextewhich nominal
unification can be used in resolution-based proof searcl form of first-order
logic programming for languages with binders (with a viewptoviding better
machine-assistance for structural operational semantegh a logic program-
ming language should permit a concrete, “nominal” apprdadbound entities in
programs while ensuring that computation (which in thisecigsthe computation
of answers to queries) respeectsequivalence between terms. This is illustrated
with the Prolog-like program in Figure 5, which implementsi@ple typing algo-
rithm for A-terms. The third clause is the interesting one. First, tiodderm( | am
x. M, which unifies with any\-abstraction. The bindet, roughly speaking, has
in the “nominal” approach a value which can be used in the luddlye clause, for
example for adding pai r x A) to the contexGanma. Secondly, the freshness
constraintx # Gamra ensures thaGanma cannot be replaced by a term that con-
tainsx freely. Since this clause is intended to implement the usualfor typing
A-abstractions

{z:A}ull' > M:B

> \aM:ADB

its operational behaviour is given by: choose fresh name&dome, x, M A and

B (this is standard in Prolog-like languages), unify the heftthe clause with the
goal formula, apply the resulting unifier to the body of theeude and make sure that
Gama is not replaced by a term that contains freely the fresh naenleave chosen
for x. Similar facilities forfunctional programminglready exist in the FreshML
language, built upon the same foundations: see [13]wmdfreshml.org. We
are also interested in the special case of “nominal mattlang its application to
term-rewriting modulax-equivalence.
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A note on complexity

If these applications show that nominal unification is patly useful, then it be-
comes important to study its complexity. The presentatmifie term language

in Section 2 and of the algorithm in Section 3 were chosenlfortg and to make

the proof of correctnesseasier, rather than for efficiency. One source of increased
efficiency is to delay the application of permutations: &ast of pushing permuta-
tion inside terms until they reach suspension as we do haeesbould just push
them under the first constructor (pairing, function symbaplacation, or atom-
abstraction) in order to proceed with the next step of de@siipn. However, the
main inefficiency of the algorithm presented in Section 3 esrftom the lack of
sharing in terms and substitutions. Thus the unificatiomlerm taken from [32]

{f( X1, X0) =7 Xy, f( X0, Xo) =7 X3, ..., f(Xpo0, X)) =7 X0}

which illustrates that the naive algorithm for classicadtforder unification has
exponential time complexity, also applies to the algorifi@mnominal unification
given here. If one adapts a representation for terms ustlgnigues developed
in [32] or [33], which are based on directed acyclic graphentone easily arrives
at an algorithm with quadratic time complexity. The reasmntiie quadratic, rather
than linear, time-complexity is that permutations needg@pplied to some atoms
when deciding whether the ruless{-abstraction-1) or<£?-abstraction-2) are ap-
plicable, and these permutations (represented as lista/a@bp@ngs) might grow
linearly with the number of nodes. Using a representatiopesimutations that al-
lows for a more efficient calculation of their action on atodwes not improve
the quadratic time complexity, because it makes the operati composing two
permutations become linear, while this can be done in cahstae when using
the list-of-swappings representation. For higher-ordstgons, Qian managed to
developed a unification algorithm with linear time-comgtgX34]. It seems that
adapting Qian’s algorithm to nominal unification via an esiog of nominal terms
into higher-order patterns as discussed in Section 4 wilsotve this problem. For
the encoding makes the resulting higher-order patterndrgtieally longer than
the original nominal terms, so this method would only prevahother algorithm
with quadratic time complexity.

To sum up, there is a version of nominal unification with qadiditime complexity,
butisitis stillan open question whether a version can beld@ed withinear time
complexity.

3 Seehttp://ww. cl.cam ac. uk/ user s/ cu200/ Uni fi cati on for the Is-
abelle proof scripts.
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