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Abstract. Pitts et al introduced a beautiful theory about names and binding
based on the notions of permutation and support. The engineering challenge is
to smoothly adapt this theory to a theorem prover environment, in our case Is-
abelle/HOL. We present a formalisation of this work that differs from our earlier
approach in two important respects: First, instead of representing permutations
as lists of pairs of atoms, we now use a more abstract representation based on
functions. Second, whereas the earlier work modeled different sorts of atoms us-
ing different types, we now introduce a unified atom type that includes all sorts
of atoms. Interestingly, we allow swappings, that is permutations build up by two
atoms, to be ill-sorted. As a result of these design changes, we can iron out incon-
veniences for the user, considerably simplify proofs and also drastically reduce
the amount of custom ML-code. Furthermore we can extend the capabilities of
Nominal Isabelle to deal with variables that carry additional information. We end
up with a pleasing and formalised theory of permutations and support, on which
we can build an improved and more powerful version of Nominal Isabelle.

1 Introduction

Nominal Isabelle is a definitional extension of the Isabelle/HOL theorem prover provid-
ing a proving infrastructure for convenient reasoning about programming languages.
It has been used to formalise an equivalence checking algorithm for LF [11], Typed
Scheme [10], several calculi for concurrency [1,2] and a strong normalisation result for
cut-elimination in classical logic [13]. It has also been used by Pollack for formalisa-
tions in the locally-nameless approach to binding [9].

At its core Nominal Isabelle is based on the nominal logic work of Pitts et al [6,8].
The most basic notion in this work is a sort-respecting permutation operation defined
over a countably infinite collection of sorted atoms. The atoms are used for representing
variables that might be bound. Multiple sorts are necessary for being able to represent
different kinds of variables. For example, in the language Mini-ML there are bound term
variables and bound type variables; each kind needs to be represented by a different sort
of atoms.

Unfortunately, the type system of Isabelle/HOL is not a good fit for the way atoms
and sorts are used in the original formulation of the nominal logic work. Therefore it
was decided in earlier versions of Nominal Isabelle to use a separate type for each sort
of atoms and let the type system enforce the sort-respecting property of permutations.
Inspired by the work on nominal unification [12], it seemed best at the time to also
implement permutations concretely as list of pairs of atoms. Thus Nominal Isabelle
used the two-place permutation operation with the generic type



2 Brian Huffman and Christian Urban

· :: (α × α) list⇒ β ⇒ β

where α stands for the type of atoms and β for the type of the objects on which the
permutation acts. For atoms of type α the permutation operation is defined over the
length of lists as follows

[] · c = c

(a b)::π · c =


a if π · c = b
b if π · c = a
π · c otherwise

(1)

where we write (a b) for a swapping of atoms a and b. For atoms of different type, the

permutation operation is defined as π · c
def
= c.

With the list representation of permutations it is impossible to state an “ill-sorted”
permutation, since the type system excludes lists containing atoms of different type.
Another advantage of the list representation is that the basic operations on permutations
are already defined in the list library: composition of two permutations (written @ )
is just list append, and inversion of a permutation (written −1) is just list reversal. A
disadvantage is that permutations do not have unique representations as lists; we had to
explicitly identify permutations according to the relation

π1 ∼ π2
def
= ∀ a. π1 · a = π2 · a (2)

When lifting the permutation operation to other types, for example sets, functions
and so on, we needed to ensure that every definition is well-behaved in the sense that it
satisfies the following three permutation properties:

i) [] · x = x
ii) (π1 @ π2) · x = π1 · (π2 · x)

iii) if π1 ∼ π2 then π1 · x = π2 · x
(3)

From these properties we were able to derive most facts about permutations, and the
type classes of Isabelle/HOL allowed us to reason abstractly about these three proper-
ties, and then let the type system automatically enforce these properties for each type.

The major problem with Isabelle/HOL’s type classes, however, is that they support
operations with only a single type parameter and the permutation operations ·
used above in the permutation properties contain two! To work around this obstacle,
Nominal Isabelle required from the user to declare up-front the collection of all atom
types, say α1,. . . ,αn. From this collection it used custom ML-code to generate n type
classes corresponding to the permutation properties, whereby in these type classes the
permutation operation is restricted to

· :: (αi × αi) list⇒ β ⇒ β

This operation has only a single type parameter β (the αi are the atom types given by
the user).
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While the representation of permutations-as-list solved the “sort-respecting” re-
quirement and the declaration of all atom types up-front solved the problem with Is-
abelle/HOL’s type classes, this setup caused several problems for formalising the nom-
inal logic work: First, Nominal Isabelle had to generate n2 definitions for the permuta-
tion operation over n types of atoms. Second, whenever we need to generalise induction
hypotheses by quantifying over permutations, we have to build cumbersome quantifi-
cations like

∀π1 . . . ∀πn. . . .

where the πi are of type (αi × αi) list. The reason is that the permutation operation
behaves differently for every αi. Third, although the notion of support

supp :: β ⇒ α set

which we will define later, has a generic type α set, it cannot be used to express the
support of an object over all atoms. The reason is again that support can behave differ-
ently for each αi. This problem is annoying, because if we need to know in a statement
that an object, say x, is finitely supported we end up with having to state premises of
the form

finite ((supp x) :: α1 set) , . . . , finite ((supp x) :: αn set) (4)

Sometimes we can avoid such premises completely, if x is a member of a finitely sup-
ported type. However, keeping track of finitely supported types requires another n type
classes, and for technical reasons not all types can be shown to be finitely supported.

The real pain of having a separate type for each atom sort arises, however, from
another permutation property

iv) π1 · (π2 · x) = (π1 · π2) · (π1 · x)

where permutation π1 has type (α × α) list, π2 type (α ′ × α ′) list and x type β.
This property is needed in order to derive facts about how permutations of different
types interact, which is not covered by the permutation properties i-iii shown in (3).
The problem is that this property involves three type parameters. In order to use again
Isabelle/HOL’s type class mechanism with only permitting a single type parameter,
we have to instantiate the atom types. Consequently we end up with an additional n2

slightly different type classes for this permutation property.
While the problems and pain can be almost completely hidden from the user in

the existing implementation of Nominal Isabelle, the work is not pretty. It requires a
large amount of custom ML-code and also forces the user to declare up-front all atom-
types that are ever going to be used in a formalisation. In this paper we set out to solve
the problems with multiple type parameters in the permutation operation, and in this
way can dispense with the large amounts of custom ML-code for generating multiple
variants for some basic definitions. The result is that we can implement a pleasingly
simple formalisation of the nominal logic work.
Contributions of the paper: We use a single atom type for representing atoms of
different sorts and use functions for representing permutations. This drastically reduces
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the number of type classes to just two (permutation types and finitely supported types),
which we need in order reason abstractly about properties from the nominal logic work.
The novel technical contribution of this paper is a mechanism for dealing with “Church-
style” lambda-terms [5] and HOL-based languages [7] where variables and variable
binding depend on type annotations.

2 Sorted Atoms and Sort-Respecting Permutations

In the nominal logic work of Pitts, binders and bound variables are represented by
atoms. As stated above, we need to have different sorts of atoms to be able to bind dif-
ferent kinds of variables. A basic requirement is that there must be a countably infinite
number of atoms of each sort. Unlike in our earlier work, where we identified each sort
with a separate type, we implement here atoms to be

datatype atom = Atom string nat

whereby the string argument specifies the sort of the atom. (We use type string merely
for convenience; any countably infinite type would work as well.) We have an auxiliary
function sort that is defined as sort (Atom s i) = s, and we clearly have for every finite
set X of atoms and every sort s the property:

Proposition 1. If finite X then there exists an atom a such that sort a = s and a /∈ X.

For implementing sort-respecting permutations, we use functions of type atom ⇒
atom that i) are bijective; ii) are the identity on all atoms, except a finite number of them;
and iii) map each atom to one of the same sort. These properties can be conveniently
stated for a function π as follows:

i) bij π
ii) finite {a | π a 6= a}

iii) ∀ a. sort (π a) = sort a
(5)

Like all HOL-based theorem provers, Isabelle/HOL allows us to introduce a new type
perm that includes just those functions satisfying all three properties. For example the
identity function, written id, is included in perm. Also function composition, written
◦ , and function inversion, given by Isabelle/HOL’s inverse operator and written

inv , preserve the properties i-iii.
However, a moment of thought is needed about how to construct non-trivial per-

mutations? In the nominal logic work it turned out to be most convenient to work with
swappings, written (a b). In our setting the type of swappings must be

( ) :: atom⇒ atom⇒ perm

but since permutations are required to respect sorts, we must carefully consider what
happens if a user states a swapping of atoms with different sorts. In earlier versions
of Nominal Isabelle, we avoided this problem by using different types for different
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sorts; the type system prevented users from stating ill-sorted swappings. Here, however,
definitions such as3

(a b)
def
= λc. if a = c then b else (if b = c then a else c)

do not work in general, because the type system does not prevent a and b from having
different sorts—in which case the function would violate property iii. We could make
the definition of swappings partial by adding the precondition sort a = sort b, which
would mean that in case a and b have different sorts, the value of (a b) is unspeci-
fied. However, this looked like a cumbersome solution, since sort-related side condi-
tions would be required everywhere, even to unfold the definition. It turned out to be
more convenient to actually allow the user to state “ill-sorted” swappings but limit their
“damage” by defaulting to the identity permutation in the ill-sorted case:

(a b)
def
= if (sort a = sort b)

then λc. if a = c then b else (if b = c then a else c)
else id

(6)

This function is bijective, the identity on all atoms except a and b, and sort respecting.
Therefore it is a function in perm.

One advantage of using functions instead of lists as a representation for permuta-
tions is that for example the swappings

(a b) = (b a) (a a) = id (7)

are equal. We do not have to use the equivalence relation shown in (2) to identify them,
as we would if they had been represented as lists of pairs. Another advantage of the
function representation is that they form an (additive) group provided we define

0
def
= id π1 + π2

def
= π1 ◦ π2 −π def

= inv π π1 − π2
def
= π1 + −π2

and verify the simple properties

π1 + π2 + π3 = π1 + (π2 + π3) 0 + π = π π + 0 = π −π + π = 0

Again this is in contrast to the list-of-pairs representation which does not form a group.
The technical importance of this fact is that for groups we can rely on Isabelle/HOL’s
rich simplification infrastructure. This will come in handy when we have to do calcula-
tions with permutations.

By formalising permutations abstractly as functions, and using a single type for all
atoms, we can now restate the permutation properties from (3) as just the two equations

i) 0 · x = x
ii) (π1 + π2) · x = π1 · π2 · x (8)

3 To increase legibility, we omit here and in what follows the Rep perm and Abs perm wrappers
that are needed in our implementation since we defined permutation not to be the full function
space, but only those functions of type perm satisfying properties i-iii.
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in which the permutation operations are of type perm ⇒ β ⇒ β and so have only
a single type parameter. Consequently, these properties are compatible with the one-
parameter restriction of Isabelle/HOL’s type classes. There is no need to introduce a
separate type class instantiated for each sort, like in the old approach.

We call type β a permutation type if the permutation properties in (8) are satisfied
for every x of type β. This notion allows us to establish generic lemmas, which are
applicable to any permutation type. First, it follows from the laws governing groups
that a permutation and its inverse cancel each other. That is, for any x of a permutation
type:

π · (−π) · x = x (−π) · π · x = x (9)

Consequently, in a permutation type the permutation operation π · is bijective, which
in turn implies the property

π · x = π · y if and only if x = y. (10)

In order to lift the permutation operation to other types, we can define for:

atoms: π · a
def
= π a

functions: π · f
def
= λx. π · (f ((−π) · x))

permutations: π · π ′ def
= π + π ′− π

sets: π · X
def
= {π · x | x ∈ X}

booleans: π · b
def
= b

lists: π · [] def
= []

π · (x::xs)
def
= (π · x)::(π · xs)

products: π · (x, y)
def
= (π · x, π · y)

nats: π · n
def
= n

and then establish:

Theorem 1. If β, β1 and β2 are permutation types, then so are: atom, β1⇒ β2, perm,
β set, β list, β1 × β2, bool and nat.

Proof. All statements are by unfolding the definitions of the permutation operations
and simple calculations involving addition and minus. With permutations for example
we have

0 · π ′ def
= 0 + π ′− 0 = π ′

(π1 + π2) · π ′ def
= (π1 + π2) + π ′− (π1 + π2)
= (π1 + π2) + π ′− π2 − π1

= π1 + (π2 + π ′− π2) − π1
def
= π1 · π2 · π ′ ut

The main point is that the above reasoning blends smoothly with the reasoning in-
frastructure of Isabelle/HOL; no custom ML-code is necessary and a single type class
suffices. We can also show once and for all that the following property—which caused
so many headaches in our earlier setup—holds for any permutation type.

Lemma 1. Given x is of permutation type, then π1 · (π2 · x) = (π1 · π2) · (π1 · x).
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Proof. The proof is as follows:

π1 · π2 · x = π1 · π2 · (−π1) · π1 · x by (9)
= (π1 + π2 − π1) · π1 · x by (8.ii)
def
= (π1 · π2) · (π1 · x) ut

One huge advantage of using bijective permutation functions (as opposed to non-
bijective renaming substitutions) is the property of equivariance and the fact that most
HOL-functions (this includes constants) whose argument and result types are permuta-
tion types satisfy this property:

Definition 1. A function f is equivariant if ∀π. π · f = f.

There are a number of equivalent formulations for the equivariance property. For exam-
ple, assuming f is of type α⇒ β, then equivariance can also be stated as

∀π x. π · (f x) = f (π · x) (11)

To see that this formulation implies the definition, we just unfold the definition of the
permutation operation for functions and simplify with the equation and the cancellation
property shown in (9). To see the other direction, we use the fact

π · (f x) = (π · f ) (π · x) (12)

which follows again directly from the definition of the permutation operation for func-
tions and the cancellation property. Similarly for functions with more than one argu-
ment.

Both formulations of equivariance have their advantages and disadvantages: (11) is
often easier to establish. For example we can easily show that equality is equivariant

π · (x = y) = (π · x = π · y)

using the permutation operation on booleans and property (10). Lemma 1 establishes
that the permutation operation is equivariant. It is also easy to see that the boolean
operators, like ∧, ∨ and −→ are all equivariant. Furthermore a simple calculation will
show that our swapping functions are equivariant, that is

π · (a b) = ((π · a) (π · b)) (13)

for all a, b and π. These equivariance properties are tremendously helpful later on when
we have to push permutations inside terms.

3 Support and Freshness

The most original aspect of the nominal logic work of Pitts et al is a general definition
for “the set of free variables of an object x”. This definition is general in the sense that
it applies not only to lambda-terms, but also to lists, products, sets and even functions.
The definition depends only on the permutation operation and on the notion of equality
defined for the type of x, namely:
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supp x
def
= {a | infinite {b | (a b) · x 6= x}}

(Note that due to the definition of swapping in (6), we do not need to explicitly restrict
a and b to have the same sort.) There is also the derived notion for when an atom a is
fresh for an x, defined as

a # x
def
= a /∈ supp x

A striking consequence of these definitions is that we can prove without knowing any-
thing about the structure of x that swapping two fresh atoms, say a and b, leave x un-
changed. For the proof we use the following lemma about swappings applied to an x:

Lemma 2. Assuming x is of permutation type, and a, b and c have the same sort, then
(a c) · x = x and (b c) · x = x imply (a b) · x = x.

Proof. The cases where a = c and b = c are immediate. For the remaining case it is,
given our assumptions, easy to calculate that the permutations

(a c) + (b c) + (a c) = (a b)

are equal. The lemma is then by application of the second permutation property shown
in (8). ut

Theorem 2. Let x be of permutation type. If a # x and b # x then (a b) · x = x.

Proof. If a and b have different sort, then the swapping is the identity. If they have the
same sort, we know by definition of support that both finite {c | (a c) · x 6= x} and
finite {c | (b c) · x 6= x} hold. So the union of these sets is finite too, and we know
by Proposition 1 that there is an atom c, with the same sort as a and b, that satisfies
(a c) · x = x and (b c) · x = x. Now the theorem follows from Lemma 2. ut

Two important properties that need to be established for later calculations is that supp
and freshness are equivariant. For this we first show that:

Lemma 3. If x is a permutation type, then π · a # π · x if and only if a # x.

Proof. π · a # π · x
⇔ finite {b | ((π · a) b) · π · x 6= π · x} by definition
⇔ finite {b | ((π · a) (π · b)) · π · x 6= π · x} since π · is bijective
⇔ finite {b | π · (a b) · x 6= π · x} by (1) and (13)
⇔ finite {b | (a b) · x 6= x} by (10)
⇔ a # x by definition

ut

Together with the definition of the permutation operation on booleans, we can immedi-
ately infer equivariance of freshness:

π · (a # x) = (π · a # π · x)

Now equivariance of supp, namely
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π · (supp S) = supp (π · S)

is by noting that supp x = {a | ¬ a # x} and that freshness and the logical connectives
are equivariant.

While the abstract properties of support and freshness, particularly Theorem 2, are
useful for developing Nominal Isabelle, one often has to calculate the support of some
concrete object. This is straightforward for example for booleans, nats, products and
lists:

booleans: supp b = ∅
nats: supp n = ∅

products: supp (x, y) = supp x ∪ supp y

lists: supp [] = ∅
supp (x::xs) = supp x ∪ supp xs

But establishing the support of atoms and permutations in our setup here is a bit trickier.
To do so we will use the following notion about a supporting set.

Definition 2. A set S supports x if for all atoms a and b not in S we have (a b) · x = x.

The main motivation for this notion is that we can characterise supp x as the smallest
finite set that supports x. For this we prove:

Lemma 4. Let x be of permutation type.

i) If S supports x and finite S then supp x ⊆ S.
ii) (supp x) supports x

iii) supp x = S provided S supports x, finite S and S is the least such set,
that means formally:

for all S ′, if finite S ′ and S ′ supports x then S ⊆ S ′.

Proof. For i) we derive a contradiction by assuming there is an atom a with a ∈ supp
x and a /∈ S. Using the second fact, the assumption that S supports x gives us that S is
a superset of {b | (a b) · x 6= x}, which is finite by the assumption of S being finite.
But this means a /∈ supp x, contradicting our assumption. Property ii) is by a direct
application of Theorem 2. For the last property, part i) proves one “half” of the claimed
equation. The other “half” is by property ii) and the fact that supp x is finite by i). ut

These are all relatively straightforward proofs adapted from the existing nominal logic
work. However for establishing the support of atoms and permutations we found the
following “optimised” variant of iii) more useful:

Lemma 5. Let x be of permutation type. Then supp x = S provided S supports x, finite
S, and for all a ∈ S and all b /∈ S, with a and b having the same sort, then (a b) · x 6= x

Proof. By Lemma 4.iii) we have to show that for every finite set S ′ that supports x,
S ⊆ S ′ holds. We will assume that there is an atom a that is element of S, but not S ′ and
derive a contradiction. Since both S and S ′ are finite, we can by Proposition 1 obtain an
atom b, which has the same sort as a and for which we know b /∈ S and b /∈ S ′. Since
we assumed a /∈ S ′ and we have that S ′ supports x, we have on one hand (a b) · x =
x. On the other hand, the fact a ∈ S and b /∈ S imply (a b) · x 6= x using the assumed
implication. This gives us the contradiction. ut
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Using this lemma we only have to show the following three proof-obligations

i) {c} supports c
ii) finite {c}

iii) ∀ a ∈ {c} b /∈ {c}. sort a = sort b −→ (a b) · c 6= c

in order to establish that supp c = {c} holds. In Isabelle/HOL these proof-obligations
can be discharged by easy simplifications. Similar proof-obligations arise for the sup-
port of permutations, which is

supp π = {a | π · a 6= a}

The only proof-obligation that is interesting is the one where we have to show that

If π · a 6= a, π · b = b and sort a = sort b, then (a b) · π 6= π.

For this we observe that

(a b) · π = π if and only if π · (a b) = (a b)

holds by a simple calculation using the group properties of permutations. The proof-
obligation can then be discharged by analysing the inequality between the permutations
((p · a) b) and (a b).

The main point about support is that whenever an object x has finite support, then
Proposition 1 allows us to choose for x a fresh atom with arbitrary sort. This is an im-
portant operation in Nominal Isabelle in situations where, for example, a bound variable
needs to be renamed. To allow such a choice, we only have to assume one premise of
the form

finite (supp x)

for each x. Compare that with the sequence of premises in our earlier version of Nominal
Isabelle (see (4)). For more convenience we can define a type class for types where
every element has finite support, and prove that the types atom, perm, lists, products and
booleans are instances of this type class. Then no premise is needed, as the type system
of Isabelle/HOL can figure out automatically when an object is finitely supported.

Unfortunately, this does not work for sets or Isabelle/HOL’s function type. There
are functions and sets definable in Isabelle/HOL for which the finite support property
does not hold. A simple example of a function with infinite support is the function that
returns the natural number of an atom

nat of (Atom s i)
def
= i

This function’s support is the set of all atoms. To establish this we show ¬ a # nat of.
This is equivalent to assuming the set {b | (a b) · nat of 6= nat of} is finite and deriving
a contradiction. From the assumption we also know that {a} ∪ {b | (a b) · nat of 6=
nat of} is finite. Then we can use Proposition 1 to choose an atom c such that c 6= a,
sort c = sort a and (a c) · nat of = nat of. Now we can reason as follows:
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nat of a = (a c) · (nat of a) by def. of permutations on nats
= ((a c) · nat of ) ((a c) · a) by (12)
= nat of c by assumptions on c ut

But this means we have that nat of a = nat of c and sort a = sort c. This implies that
atoms a and c must be equal, which clashes with our assumption c 6= a about how we
chose c. Similar examples for constructions that have infinite support are given in [4].

4 Concrete Atom Types

So far, we have presented a system that uses only a single multi-sorted atom type. This
design gives us the flexibility to define operations and prove theorems that are generic
with respect to atom sorts. For example, as illustrated above the supp function returns
a set that includes the free atoms of all sorts together; the flexibility offered by the new
atom type makes this possible.

However, the single multi-sorted atom type does not make an ideal interface for end-
users of Nominal Isabelle. If sorts are not distinguished by Isabelle’s type system, users
must reason about atom sorts manually. That means subgoals involving sorts must be
discharged explicitly within proof scripts, instead of being inferred by Isabelle/HOL’s
type checker. In other cases, lemmas might require additional side conditions about
sorts to be true. For example, swapping a and b in the pair (a, b) will only produce the
expected result if we state the lemma in Isabelle/HOL as:

lemma
fixes a b :: atom
assumes asm: sort a = sort b
shows (a b) · (a, b) = (b, a)

using asm by simp

Fortunately, it is possible to regain most of the type-checking automation that is lost by
moving to a single atom type. We accomplish this by defining subtypes of the generic
atom type that only include atoms of a single specific sort. We call such subtypes con-
crete atom types.

The following Isabelle/HOL command defines a concrete atom type called name,
which consists of atoms whose sort equals the string ′′name ′′.

typedef name = {a | sort a = ′′name ′′}

This command automatically generates injective functions that map from the concrete
atom type into the generic atom type and back, called representation and abstraction
functions, respectively. We will write these functions as follows:

b c :: name⇒ atom d e :: atom⇒ name

With the definition π · a
def
= dπ · bace, it is straightforward to verify that the type name

is a permutation type.
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In order to reason uniformly about arbitrary concrete atom types, we define a type
class that characterises type name and other similarly-defined types. The definition of
the concrete atom type class is as follows: First, every concrete atom type must be a
permutation type. In addition, the class defines an overloaded function that maps from
the concrete type into the generic atom type, which we will write | |. For each class
instance, this function must be injective and equivariant, and its outputs must all have
the same sort.

i) if |a| = |b| then a = b
ii) π · |a| = |π · a|

iii) sort |a| = sort |b|
(14)

With the definition |a| def
= bac we can show that name satisfies all the above require-

ments of a concrete atom type.
The whole point of defining the concrete atom type class was to let users avoid

explicit reasoning about sorts. This benefit is realised by defining a special swapping
operation of type α⇒ α⇒ perm, where α is a concrete atom type:

(a↔ b)
def
= (|a| |b|)

As a consequence of its type, the ↔-swapping operation works just like the generic
swapping operation, but it does not require any sort-checking side conditions—the sort-
correctness is ensured by the types! For↔we can establish the following simplification
rule:

(a↔ b) · c = (if c = a then b else if c = b then a else c)

If we now want to swap the concrete atoms a and b in the pair (a, b) we can establish
the lemma as follows:

lemma
fixes a b :: name
shows (a↔ b) · (a, b) = (b, a)

by simp

There is no need to state an explicit premise involving sorts.
We can automate the process of creating concrete atom types, so that users can

define a new one simply by issuing the command

atom decl name

This command can be implemented using less than 100 lines of custom ML-code. In
comparison, the old version of Nominal Isabelle included more than 1000 lines of ML-
code for creating concrete atom types, and for defining various type classes and in-
stantiating generic lemmas for them. In addition to simplifying the ML-code, the setup
here also offers user-visible improvements: Now concrete atoms can be declared at any
point of a formalisation, and theories that separately declare different atom types can be
merged together—it is no longer required to collect all atom declarations in one place.
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5 Multi-Sorted Concrete Atoms

The formalisation presented so far allows us to streamline proofs and reduce the amount
of custom ML-code in the existing implementation of Nominal Isabelle. In this section
we describe a mechanism that extends the capabilities of Nominal Isabelle. This mech-
anism is about variables with additional information, for example typing constraints.
While we leave a detailed treatment of binders and binding of variables for a later pa-
per, we will have a look here at how such variables can be represented by concrete
atoms.

In the previous section we considered concrete atoms that can be used in simple
binders like λx. x. Such concrete atoms do not carry any information beyond their
identities—comparing for equality is really the only way to analyse ordinary concrete
atoms. However, in “Church-style” lambda-terms [5] and in the terms underlying HOL-
systems [7] binders and bound variables have a more complicated structure. For exam-
ple in the “Church-style” lambda-term

λxα. xα xβ (15)

both variables and binders include typing information indicated by α and β. In this
setting, we treat xα and xβ as distinct variables (assuming α 6= β) so that the variable
xα is bound by the lambda-abstraction, but not xβ .

To illustrate how we can deal with this phenomenon, let us represent object types
like α and β by the datatype

datatype ty = TVar string | ty→ ty

If we attempt to encode a variable naively as a pair of a name and a ty, we have the
problem that a swapping, say (x↔ y), applied to the pair

((x, α), (x, β))

will always permute both occurrences of x, even if the types α and β are different. This
is unwanted, because it will eventually mean that both occurrences of x will become
bound by a corresponding binder.

Another attempt might be to define variables as an instance of the concrete atom
type class, where a ty is somehow encoded within each variable. Remember we defined
atoms as the datatype:

datatype atom = Atom string nat

Considering our method of defining concrete atom types, the usage of a string for the
sort of atoms seems a natural choice. However, none of the results so far depend on
this choice and we are free to change it. One possibility is to encode types or any other
information by making the sort argument parametric as follows:

datatype ′a atom = Atom ′a nat

The problem with this possibility is that we are then back in the old situation where
our permutation operation is parametric in two types and this would require to work
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around Isabelle/HOL’s restriction on type classes. Fortunately, encoding the types in a
separate parameter is not necessary for what we want to achieve, as we only have to
know when two types are equal or not. The solution is to use a different sort for each
object type. Then we can use the fact that permutations respect sorts to ensure that
permutations also respect object types. In order to do this, we must define an injective
function sort ty mapping from object types to sorts. For defining functions like sort ty,
it is more convenient to use a tree datatype for sorts. Therefore we define

datatype sort = Sort string (sort list)
datatype atom = Atom sort nat

With this definition, the sorts we considered so far can be encoded just as Sort s []. The
point, however, is that we can now define the function sort ty simply as

sort ty (TVar s) = Sort ′′TVar ′′ [Sort s []]
sort ty (τ1→ τ2) = Sort ′′Fun ′′ [sort ty τ1, sort ty τ2]

(16)

which can easily be shown to be injective.
Having settled on what the the sorts should be for “Church-like” atoms, we have to

give a subtype definition for concrete atoms. Previously we identified a subtype consist-
ing of atoms of only one specified sort. This must be generalised to all sorts the function
sort ty might produce, i.e. the range of sort ty. Therefore we define

typedef var = {a | sort a ∈ range sort ty}

This command gives us again injective representation and abstraction functions. We
will write them also as b c :: var⇒ atom and d e :: atom⇒ var, respectively.

We can define the permutation operation for var as π · a
def
= dπ · bace and the in-

jective function to type atom as |a| def
= bac. Finally, we can define a constructor function

that makes a var from a variable name and an object type:

Var x α
def
= dAtom (sort ty α) xe

With these definitions we can verify all the properties for concrete atom types except
Property 14.iii), which requires every atom to have the same sort. This last property is
clearly not true for type var. This fact is slightly unfortunate since this property allowed
us to use the type-checker in order to shield the user from all sort-constraints. But this
failure is expected here, because we cannot burden the type-system of Isabelle/HOL
with the task of deciding when two object types are equal. This means we sometimes
need to explicitly state sort constraints or explicitly discharge them, but as we will see
in the lemma below this seems a natural price to pay in these circumstances.

To sum up this section, the encoding of type-information into atoms allows us to
form the swapping (Var x α↔ Var y α) and to prove the following lemma

lemma
assumes asm: α 6= β
shows (Var x α↔ Var y α) · (Var x α, Var x β) = (Var y α, Var x β)
using asm by simp
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As we expect, the atom Var x β is left unchanged by the swapping. With this we can
faithfully represent bindings in languages involving “Church-style” terms and bindings
as shown in (15). We expect that the creation of such atoms can be easily automated so
that the user just needs to specify

atom decl var (ty)

where the argument, or arguments, are datatypes for which we can automatically de-
fine an injective function like sort ty (see (16)). Our hope is that with this approach
the authors of [3] can make headway with formalising their results about simple type
theory. Because of its limitations, they did not attempt this with the old version of Nom-
inal Isabelle. We also hope we can make progress with formalisations of HOL-based
languages.

6 Conclusion

This proof pearl describes a new formalisation of the nominal logic work by Pitts et al.
With the definitions we presented here, the formal reasoning blends smoothly with the
infrastructure of the Isabelle/HOL theorem prover. Therefore the formalisation will be
the underlying theory for a new version of Nominal Isabelle.

The main difference of this paper with respect to existing work on Nominal Isabelle
is the representation of atoms and permutations. First, we used a single type for sorted
atoms. This design choice means for a term t, say, that its support is completely char-
acterised by supp t, even if the term contains different kinds of atoms. Also, whenever
we have to generalise an induction so that a property P is not just established for all
t, but for all t and under all permutations π, then we only have to state ∀π. P (π · t).
The reason is that permutations can now consist of multiple swapping each of which
can swap different kinds of atoms. This simplifies considerably the reasoning involved
in building Nominal Isabelle.

Second, we represented permutation as functions so that the associated permutation
operation has only a single type parameter. From this we derive most benefits because
the abstract reasoning about permutations fit cleanly with Isabelle/HOL’s type classes.
No custom ML-code is required to work around rough edges. Moreover, by establishing
that our permutations-as-functions representation satisfy the group properties, we were
able to use extensively Isabelle/HOL’s reasoning infrastructure for groups. This often
reduced proofs to simple calculations over +, − and 0. An interesting point is that we
defined the swapping operation so that a swapping of two atoms with different sorts is
not excluded, like in our older work on Nominal Isabelle, but there is no “effect” of
such a swapping (it is defined as the identity). This is a crucial insight in order to make
the approach based on a single type of sorted atoms to work.

We noticed only one disadvantage of the permutations-as-functions: Over lists we
can easily perform inductions. For permutation made up from functions, we have to
manually derive an appropriate induction principle. We can establish such a principle,
but we have no experience yet whether ours is the most useful principle: such an induc-
tion principle was not needed in any of the reasoning we ported from the old Nominal
Isabelle.
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Finally, our implementation of sorted atoms turned out powerful enough to use it
for representing variables that carry additional information, for example typing anno-
tations. This information is encoded into the sorts. With this we can represent conve-
niently binding in “Church-style” lambda-terms and HOL-based languages. We are not
aware of any other approach proposed for language formalisations that can deal conve-
niently with such binders.

The formalisation presented here will eventually become part of the Isabelle distri-
bution, but for the moment it can be downloaded from the Mercurial repository linked
at http://isabelle.in.tum.de/nominal/download.

Acknowledgements: We are very grateful to Jesper Bengtson, Stefan Berghofer and
Cezary Kaliszyk for their comments on earlier versions of this paper.
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