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Abstract This paper describes a formalisation of the lambda-calculus in a HOL-based the-
orem prover using nominal techniques. Central to the formalisation is an inductive set that is
bijective with the alpha-equated lambda-terms. Unlike de-Bruijn indices, however, this in-
ductive set includes names and reasoning about it is very similar to informal reasoning with
“pencil and paper”. To show this we provide a structural induction principle that requires to
prove the lambda-case for fresh binders only. Furthermore,we adapt work by Pitts providing
a recursion combinator for the inductive set. The main technical novelty of this work is that
it is compatible with the axiom of choice (unlike earlier nominal logic work by Pittset al);
thus we were able to implement all results in Isabelle/HOL and use them to formalise the
standard proofs for Church-Rosser, strong-normalisationof beta-reduction, the correctness
of the type-inference algorithm W, typical proofs from SOS and much more.

Keywords Lambda-calculus� nominal logic work� theorem provers.

1 Introduction

We thank T. Thacher Robinson for showing us on August 19, 1962by a
counterexample the existence of an error in our handling of bound vari-
ables.

S. C. Kleene [17, Page 16]

When reasoning informally about syntax, issues with binders and alpha-equivalence are
almost universally perceived as unimportant and thus mostly ignored. However, errorsdo
arise from these issues as the quotation from Kleene shows. It is therefore desirable to have
convenient techniques for formalising informal proofs. Inthis paper such a technique is
described in the context of the lambda-calculus and the theorem prover Isabelle/HOL. How-
ever, the techniques generalise to more complex calculi andparts have already been adapted
in HOL4, HOL-light and Coq.? This paper is a revised and much extended version of Urban andBerghofer [32], and Urban and Tasson
[36].
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Substitution Lemma: If x 6� y andx 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.
Proof: By induction on the structure ofM .
Case 1:M is a variable.

Case 1.1.M � x. Then both sides equalN [y := L℄ sincex 6� y.
Case 1.2.M � y. Then both sides equalL, for x 62 FV (L) impliesL[x := : : :℄ � L.
Case 1.3.M � z 6� x; y. Then both sides equalz.

Case 2:M � �z:M1. By the variable convention we may assume thatz 6� x; y andz is not free
in N;L. Then by induction hypothesis(�z:M1)[x := N ℄[y := L℄ � �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.
Case 3:M �M1M2. The statement follows again from the induction hypothesis. �

Fig. 1 An informal proof of the substitution lemma taken from Barendregt’s book [5]. In second case, the
variable convention allows him to move the substitutions under the binder, to apply the induction hypothesis
and finally to pull the substitutions back out from under the binder.

The main point of this paper is to give a representation foralpha-equatedlambda-terms
that is based on names, is inductive and comes with a structural induction principle where
the lambda-case needs to be proved for only fresh binders. Furthermore, we give a structural
recursion combinator for defining functions over this set. In practice this will mean that
we come quite close to the informal reasoning using Barendregt’s variable convention [5].
An illustrative example of such informal reasoning is Barendregt’s proof of the substitution
lemma shown in Fig. 1. In this paper we describe a reasoning infrastructure for formalis-
ing such informal proofs with ease. This reasoning infrastructure has been implemented in
Isabelle/HOL as part of the nominal datatype package.1

Our work is based on the nominal logic work by Pittset al [11,26]. The main technical
novelty is that our work is compatible with the axiom of choice. This is important, because
otherwise we would not be able to built in a HOL-based theoremprover a framework for
reasoning based on nominal techniques. The reason why the original nominal logic work is
incompatible with the axiom of choice has to do with the way how the finite support property
is enforced: FM-set theory is defined in [11] so that every setin the FM-set-universe has
finite support. In nominal logic [26], the axioms (E3) and (E4) imply that every function
symbol and proposition has finite support. However, there are notions in HOL that donot
have finite support, most notably choice functions (see [27,Example 3.4, Page 470]). Here,
we will avoid the incompatibility with the axiom of choice bynot a priory restricting our
discourse to only finitely supported entities as done previously, rather we will explicitly
assume this property whenever it is needed in proofs. One consequence is that we state our
basic definitions not in terms of nominal sets (as done for example in [27]), but in terms of
the weaker notion of permutation types—essentially sets equipped with a “sensible” notion
of permutation operation.

The paper is organised as follow: Sec. 2 introduces the basicnotions of the nominal logic
work adapted to our Isabelle/HOL setting. Sec. 3 first reviews alpha-equivalence for lambda-
terms and then gives a construction of an inductive set that is bijective with the alpha-equated
lambda-terms. Two structural induction principles for this set are derived in Sec. 4. Recent
work by Pitts [27] is adapted in Sec. 5 to give a structural recursion combinator for defining

1 Available fromhttp://isabelle.in.tum.de/nominal.
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functions over the bijective set. Sec. 6 gives examples; related work is mentioned in Sec. 7
and Sec. 8 concludes.

2 Atoms, Permutations and Support

In the lambda-calculus there is a single type of bindable names, here denoted byname, whose
elements in the tradition of the nominal logic work we callatoms. While the structure of
atoms is immaterial, two properties need to hold for the typename: one has to be able to
distinguishing different atoms and one needs to know that there are countably infinitely
many of them. This can be achieved in Isabelle/HOL by implementing the typename as
natural numbers or strings.

Permutations are finite bijective mappings fromname to name. They can be represented
as finite lists whose elements are swappings (i.e. pairs of atoms). In what follows the type-
abbreviationname prm will stand for the type of permutations, that is(name � name) list,
and we will write permutations as(a1 b1)(a2 b2) � � � (an bn)
with the empty list[℄ standing for the identity permutation. The operation of a permutation� actingon an atoma is defined as: [℄�a def= a((a1 a2) :: �)�a def= 8<: a2 if ��a = a1a1 if ��a = a2��a otherwise

(1)

where(a b) :: � is the composition of a permutation followed by the swapping(a b). The
composition of� followed by another permutation�0 is given by list-concatenation, written
as�0��, and the inverse of a permutation is given by list reversal, written as��1.

Our representation of permutations as lists does not give unique representatives: for
example, the permutation(a a) is “equal” to the identity permutation. We equate the repre-
sentations of permutations with a relation�:

Definition 1 (Permutation Equality) Two permutations areequal, written�1 � �2, pro-
vided�1�a = �2�a for all atomsa.

To generalise the notion given in (1) of a permutation actingon an atom, we take ad-
vantage of the overloading mechanism in Isabelle by declaring a constant, written infix as(�)�(�), with the polymorphic typename prm) �) �. A definition of the permutation
operation can then be given separately for each type-constructor; for lists, products, unit,
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sets, functions, options and booleans the definitions are asfollows:� list : ��[℄ def= [℄��(x :: t) def= (��x) :: (��t)�1 � �2 : ��(x1; x2) def= (��x1; ��x2)unit : ��() def= ()� set : ��X def= f��x j x 2 Xg�1 ) �2 : ��fn def= �x:��(fn (��1�x))� option : ��None def= None��Some(x) def= Some(��x)bool : ��b def= b (2)

It will save much work later on tonot establish properties for each of these permutation
operations individually, but reason abstractly over them by requiring that every permutation
operation satisfies three basic properties:

Definition 2 (Permutation Type) A type� will be referred to aspermutation type, writtenpt�, provided the permutation operation satisfies the following three properties:

(i) [℄�x = x
(ii) (�1��2)�x = �1�(�2�x)

(iii) �1 � �2 implies �1�x = �2�x
These properties entail that the permutations operation behaves over permutation types as
one expects:

Lemma 1 Assumingx andy are of permutation type then:

(i) ��1�(��x) = x,
(ii) ��x = y if and only ifx = ��1�y,

(iii) ��x = ��y if and only ifx = y, and
(iv) ��x 2 ��X if and only ifx 2 X.

Proof The first property holds by Def. 2(i-iii) since(��1��) � [℄, which can be shown by
an induction over the length of�. The second property follows from the first. The third is a
consequence of the first and second. For the fourth one has to unwind the definition of the
permutation operation for sets and apply the third property. ut

Using Isabelle’saxiomatic type-classes[37], it is very convenient to ensure that a type is
a permutation type because most of the routine work can be performed by the type-checking
algorithm of Isabelle: one only has to establish that some “base” types, such asname andunit, are permutation types and that type-constructors, such asproducts and lists, preserve
the property of being a permutation type. More formally we have:

Lemma 2 Given pt�, pt�1 and pt�2 , the typesname, unit, � list, � set, � option,�1 � �2, �1 ) �2 andbool are also permutation types.

Proof All properties follow by unwinding the definition of the corresponding permutation
operation and routine inductions. The propertypt�1)�2 uses the fact that�1 � �2 implies��11 � ��12 .
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Note that the permutation operation over a function-type, say�1 ) �2 with �1 being a
permutation type, is defined so that for every functionfn we have the equation��(fn x) = (��fn)(��x) (3)

in Isabelle/HOL; this is because we have��1�(��x) = x by Lem. 1(i) and ��fn =�x:��(fn (��1�x)) by definition of permutations acting on functions.
The most interesting feature of the nominal logic work is that as soon as one fixes a

“sensible” permutation operation for a type, then thesupportfor the elements of this type,
very roughly speaking their set of free atoms, is fixed as well. The definition of support and
the derived notion of freshness is:

Definition 3 (Support and Freshness)The supportof x, written supp(x), is the set of
atoms defined as: supp(x) def= fa j in�nitefb j (a b)�x 6= xgg
wherein�nite(�) means that the set is infinite.2 An atoma is said to befresh for an x,
writtena # x, provideda 62 supp(x).
Intuitively, this definition says thata is fresh forx if and only if (a b)�x = x holds for all
but finitely manyb. Unwinding this definition and the permutation operations given in (2),
one can often easily calculate the support for “finitary” permutation types such as:name : supp(a) = fag� list : supp([℄) = ?supp(x :: xs) = supp(x) [ supp(xs)�1 � �2 : supp((x1; x2)) = supp(x1) [ supp(x2)unit : supp(()) = ?� option : supp(None) = ?supp(Some(x)) = supp(x)bool : supp(b) = ? (4)

More subtle is the calculation of the support for “infinitary” permutation types such as func-
tions and infinite sets. However, the use of the notion of support, as opposed to the usual
notion of free atoms, is crucial for this work: the bijectiveset we describe in the next section
includes some functions, and for those it is far from obviouswhat the definition of the set
of free atoms should be (the obstacle is to find an appropriatedefinition for free variables of
functions with type, say�1 ) �2, in terms of the free variables for elements of the type�1
and�2). Contrast this with the definition of permutation for functions given in (2), which
is defined in terms of the permutation acting on the domain andco-domain of functions. It
will turn out that, albeit slightly unwieldy, Def. 3 coincides exactly with what one intuitively
associates with the set of free atoms for the functions we shall use.

For permutation types the notion of support and freshness have good properties: we first
show that the support and the permutation operation commuteand that permutation preserve
freshness.3

2 In Isabelle/HOL the predicatein�nite is defined as “not a finite set” with the predicate for a set being
finite defined inductively starting with the empty set and by adding elements.

3 Pitts gives in [27] a simpler proof for(i), but in a more restricted setting, namely wherex has finite
support. Our lemma is more general as we only requirex to be of permutation type.
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Lemma 3 For all x of permutation type:

(i) ��supp(x) = supp(��x),
(ii) a # ��x if and only if ��1�a # x, and

(iii) ��a # ��x if and only ifa # x .

Proof The first property follows from the calculation:��supp(x) def= ��fa j in�nitefb j (a b)�x 6= xgg
def= f��a j in�nitefb j (a b)�x 6= xgg= f��a j in�nitef��b j (a b)�x 6= xgg (�1)= fa j in�nitefb j (��1�a ��1�b)�x 6= xgg= fa j in�nitefb j��(��1�a ��1�b)�x 6= ��xgg (�2)= fa j in�nitefb j (a b)���x 6= ��xgg def= supp(��x) (�3)

where(�1) holds because the setsfbj : : :g andf��bj : : :g have the same number of elements,
and where(�2) holds because permutations preserve by Lem. 1(ii) (in)equalities;(�3) holds
because� commutes with the swapping, that is��(
 d) � (��
 ��d)�� for all atoms
 andd. For the second and third property we have by Lem. 1(iv) thata 2 supp(x) if and only if��a 2 ��supp(x); they then follow from(i) and Lem. 1(i). ut

Another important property of freshness is the fact that if two atoms are fresh w.r.t. an el-
ement of a permutation type then the permutation swapping those two atoms in this element
has no effect:

Lemma 4 For all x of permutation type, ifa # x andb # x then(a b)�x = x.

Proof The casea = b is clear by Def. 2(i,iii) and the fact that(aa) � [℄. In the other
case, the assumption implies that both setsf
 j (
 a)�x 6= xg and f
 j (
 b)�x 6= xg are
finite, and therefore also their union must be finite. Hence the corresponding co-set, that isf
 j (
 a)�x = x^(
 b)�x = xg, is infinite (recall that there are infinitely many atoms). Ifone
picks from this co-set one element, say
, which can be assumed to be different froma andb,
one has(
 a)�x = x and(
 b)�x = x. Thus(
 a)�(
 b)�(
 a)�x = x. Under the assumptionsa 6= 
, b 6= 
 a 6= b, the permutations(
 a)(
 b)(
 a) and(a b) are equal. Therefore one can
conclude with(a b)�x = x by using Def. 2(ii,iii) . ut

A further restriction on permutation types filters out all those that contain elements with
infinite support:

Definition 4 (Finitely Supported Permutation Types)A permutation type� is said to be
finitely supported, written fs�, if every element of� has finite support.

We shall writefinite(supp(x)) to indicate that an elementx from a permutation type has
finite support. The following holds:

Lemma 5 Given fs�, fs�1 and fs�2 , the typesname, unit, � list, � option, �1 � �2 andbool are also finitely supported permutation types.

Proof Routine proofs using the calculations given in (4).
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The crucial property entailed by Def. 4 is that if an element,sayx, of a permutation
type has finite support, then there must be a fresh atom forx, since there are infinitely many
atoms. Therefore we have:

Proposition 1 If x of permutation type has finite support, then there exists an atoma witha # x.

As a result, whenever we need to have a fresh atom for anx of permutation type, we have to
make sure thatx has finite support. This task can be automatically performedby Isabelle’s
axiomatic type-classes for most constructions occurring in informal proofs: Isabelle has to
just examine the types of the construction using Lem. 5.

Prop 1 also implies that for every finitely supported function a fresh atom exists. How-
ever, to determine whether a function has finite support is more subtle, because not all func-
tions are finitely supported, even if their domain and codomain are finitely supported per-
mutation types (see [27, Example 3.4, Page 470]). Introducing a finitely supported function
space and blending it well into Isabelle’s reasoning infrastructure seems impractical for rea-
sons how Isabelle is implemented. So for functions one has to“manually” ensure finite
support, which we shall do in Sec. 5 by introducing a weaker notion that approximates the
support of an element from “above”.

3 Constructing a Representation for Alpha-Equated Lambda-Terms

In this section we define an inductive set that is bijective with the set of alpha-equated
lambda-terms. In doing so our goal is to give in Isabelle/HOLa formal implementation of
the usual convention (from Barendregt [5, Page 26]) employed explicitly or implicitly in
many informal proofs:

CONVENTION. Terms that are�-congruent are identified. So now we
write �x:x � �y:y, etcetera.

We begin with defining “raw” lambda-terms. They can be definedin Isabelle/HOL with
the datatype declaration:datatypelam = Var "name"j App "lam � lam"j Lam "name � lam" (5)

Given the following permutation operation for lambda-terms��Var(a) def= Var(��a)��App(t1; t2) def= App(��t1; ��t2)��Lam(a; t) def= Lam(��a; ��t) (6)

the datatypelam is a permutation type (routine proof by structural induction). As mentioned
earlier, fixing the permutation operation also fixes the notion of support, which in case oflam coincides with the set ofall atoms occurring in a lambda-term. Hencelam is a finitely
supported permutation type.

The notion of alpha-equivalence forlam is usually defined as the least congruence of
the equationLam(a; t) =� Lam(b; t[a := b℄) involving a renaming substitution and a side-
condition, namely thatb does not occur freely int. In the nominal logic work, however,



8 Var(a) � Var(a) �Var t1 � s1 t2 � s2App(t1; t2) � App(s1; s2) �Appt � sLam(a; t) � Lam(a; s) �Lam1 a 6= b t � (a b)�s a 62fv(s)Lam(a; t) � Lam(b; s) �Lam2a 6= ba 62fv(Var(b)) fvVar a 62fv(t1) a 62fv(t2)a 62fv(App(t1; t2)) fvAppa 62fv(Lam(a; t)) fvLam1 a 6= b a 62fv(t)a 62fv(Lam(b; t)) fvLam2
Fig. 2 Inductive definitions for(�) � (�) and(�) 62fv(�).
atoms are manipulated not by renaming substitutions, but bypermutations. This has a num-
ber of technical advantages (compare the technical subtleties of Doweket al [9] with the
approach in Urbanet al [35]), because permutations are bijections on atoms, whilerenam-
ing substitution might identify some atoms. As a consequence of the bijectivity, a renaming
based on permutations preserves the binding structure. In contrast, applying naı̈vely a re-
naming substitution one might identify an atom that is boundwith one that is free.

Using the permutation operation given in (6), alpha-equivalence forlam can be defined
in a simple and syntax directed fashion using the relations(�) � (�) and (�) 62 fv(�)
whose rules are given in Fig. 2. Because of the “asymmetric” rule�Lam2, it might be sur-
prising, but:

Proposition 2 The relation� is an equivalence relation.

The proof of this proposition is omitted: it can be found in a more general setting in Urban
et al [35]. (We also omit a proof showing that� and=� coincide). In the following,[t℄�
will stand for the alpha-equivalence class of the lambda-term t, that is[t℄� def= f t0 j t0 � t g,
andlam=� for the set of lambda-terms quotient by�.

Next we will define a setphi; inside this set we will subsequently identify (inductively)
a subset, calledlam�, that is in bijection withlam=�. Since Isabelle/HOL supports sub-
set types, we can later turnlam� into a new type. In order to obtain the bijection,phi
needs to be defined so that it contains elements corresponding, roughly speaking, to alpha-
equated variables, applications and lambda-abstractions—that is to[Var(a)℄�, [App(t1; t2)℄�
and[Lam(a; t)℄�. Whereas this is straightforward for variables and applications, the lambda-
abstractions are non-trivial: for them we shall use somespecific“partial” functions fromname to phi (by “partial” we mean here functions that returnNone for undefined values andSome(x) for defined ones4). We therefore definephi as the Isabelle/HOL datatype:datatype phi = Am "name"j Pr "phi � phi"j Se "name) (phi option)" (7)

whereAm will be used to encode atoms;Pr to encode applications, which are built up by
a pair of terms; andSe to encode an alpha-equivalence class (that is a set) of terms. The

4 In Urban and Tasson [36] a special error-element was used to stand for undefinedness. However, the
approach based on the option-type turned out to be more convenient for building a nominal datatype package
in Isabelle/HOL.
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permutation operation forphi is defined over the structure as follows:��Am(a) def= Am(��a)��Pr(t1; t2) def= Pr(��t1; ��t2)��Se(fn) def= Se(��fn) (8)

using in the last clause the permutations operation for functions given in (2). It is not hard
to show thatphi is a permutation type (routine induction over the structureof phi-terms).

We mentioned earlier that we are not going to use all functions fromname tophi option
for representing alpha-equated lambda-abstractions, butsome specific functions.5 These
functions are of the form:[a℄:t def= �b: if a = b then Some(t)else if b # t then Some((a b)�t) else None (9)

and we will refer to them asabstraction functions; their parameters are an atom and aphi-
term.

We claim that these functions represent alpha-equivalenceclasses. To see this, consider[Lam(a; App(Var(a); Var(b)))℄� and the correspondingphi-term Se([a℄:Pr(Am(a); Am(b))).
The graph of the abstraction function is as follows: the atoma is mapped to the termSome(Pr(Am(a); Am(b))) since the firstif-condition is true. Forb, the firstif-condition obvi-
ously fails, but also the second one fails, becausesupp(Pr(Am(a); Am(b))) = fa; bg; thereforeb is mapped toNone. For all other atoms
, we havea 6= 
 and
 # Pr(Am(a); Am(b)); conse-
quently these
’s are mapped by the abstraction function toSome((a 
)�Pr(Am(a); Am(b))),
which is Some(Pr(Am(
); Am(b))). Clearly, the abstraction function returnsNone when-
ever the corresponding lambda-term isnot in the alpha-equivalence class—in this example
the lambda-termLam(b; App(Var(b); Var(b))) 62 [Lam(a; App(Var(a); Var(b)))℄�; in all other
cases, however, it returns an appropriately “renamed” version of Pr(Am(a); Am(b)).

To show formally that abstraction functions represent alpha-equivalence classes, we first
establish how the permutation operation behaves on those functions and then establish the
conditions under which two such functions are equal:

Lemma 6 All abstraction functions satisfy:

(i) ��([a℄:t) = [��a℄:(��t), and
(ii) [a℄:t1 = [b℄:t2 if and only if either:a = b ^ t1 = t2 or a 6= b ^ t1 = (a b)�t2 ^ a # t2 :

Proof The first property follows from the following calculation:

5 This is in contrast to “weak” and “full” HOAS [8,25] which usethe full function space for representing
lambda-abstractions.



10 ��[a℄:t
def= ���b: if a = b then Some(t)else if b # t then Some((a b)�t) else None
def= �b: ��if a = ��1�b then Some(t)else if ��1�b # t then Some((a ��1�b)�t) else None= �b: if ��(a = ��1�b) then Some(��t)else if ��(��1�b # t) then Some(��(a ��1�b)�t) else None(�1)= �b: if ��(a = ��1�b) then Some(��t)else if ��(��1�b # t) then Some((��a b)���t) else None (�2)= �b: if ��a = b then Some(��t)else if b # ��t then Some((��a b)���t) else None (�3)

def= [��a℄:(��t)
where we use in (�1) the fact that��if:::then:::else::: = if��:::then ��:::else ��::: (10)

and in(�2) that ��(a ��1�b) � (��a b)��; for (�3) the facts that��(a = ��1�b) iff��a = b and��(��1�b # t) iff b # ��t, which can be easily derived from Lemmas 1(ii)
and 3(ii) and the permutation operation onbool.

For the second property the casea = b is by a simple calculation using extensionality of
functions. In casea 6= b we show first the)-direction: the following formula holds then by
extensionality of functions:8
: if a = 
 then Some(t1)else if 
 # t1 then Some((a 
)�t1) else None= if b = 
 then Some(t2)else if 
 # t2 then Some((b 
)�t2) else None
Instantiating this formula witha yields the equationSome(t1) = if a # t2 then Some((b a)�t2) else None :
Next, one distinguishes the cases wherea # t2 and: a # t2, respectively. In the first case,Some(t1) = Some((b a)�t2), which by Def. 2(iii) impliest1 = (a b)�t2 since(a b)� (b a);
and obviouslya # t2 by assumption. In the second caseSome(t1) = None which gives
a contradiction. The(-direction for the casea 6= b is similarly by extensionality and a
case-analysis. ut
Note that, ingeneral, one cannot decide whether two functions fromname to phi option
are equal; however for the abstraction functions Lem. 6(ii) provides the means to decide
whether[a℄:t1 = [b℄:t2 holds: one just has to consider whethera = b, which is just like
deciding the alpha-equivalence of two lambda-terms using the relation(�)� (�) given in
Fig. 2. Now it is also clear why abstraction functions represent alpha-equivalence classes:
the condition we derived for the equality between abstraction functions paraphrase the rules�Lam1 and�Lam2 defining alpha-equivalence forlam.

The properties in Lem. 6 also help us to calculate the supportfor abstraction functions,
provided they “abstract” over a finitely supportedphi-term.

Lemma 7 Givena 6= b andt being finitely supported, then

(i) a # [b℄:t if and only ifa # t, and
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(ii) a # [a℄:t
Proof By a simple calculations we have thatsupp([b℄:t) � supp(b; t) because for all
 andd we havefd j (
 d)�[b℄:t 6= [b℄:tg � fd j (
 d)�(b; t) 6= (b; t)g. Sinceb and t are finitely
supported,[b℄:t must be finitely supported. Hence(a; b; t; [b℄:t) is finitely supported and by
Prop. 1 there exists an atom
 with (�) 
 # (a; b; t; [b℄:t).

Now we show the direction(i )): using the assumptiona # [b℄:t and the fact that
 # [b℄:t (from �), Lem. 4 and 6(i) give [b℄:t = (
 a)�[b℄:t = [(
 a)�b℄:((
 a)�t). The right-
hand side is[b℄:((
 a)�t) because
 6= b (from �) and a 6= b by assumption. Hence by
Lem. 6(ii) we can infer thatt = (
 a)�t. Now 
 # t (from �) implies that
 # (
 a)�t;
and moving the permutation to the other side by Lem. 3(ii) gives a # t. The direction
(i () is as follows: from (�), we have that
 # [b℄:t and therefore by Lem. 3(iii) also(a 
)�
 # (a 
)�([b℄:t), which implies by Lem. 6(i) thata # [b℄:((a 
)�t). From (�) we also
have
 # t and from the assumptiona # t; then Lem. 4 implies thatt = (a 
)�t, and we can
conclude witha # [b℄:t.

The second property follows from the first: we have
 # t and
 6= a (both from�), and
can use(i) to infer
 # [a℄:t. Further, from Lem. 3(iii) it holds that(
 a)�
 # (
 a)�[a℄:t. This
is a # [
℄:(
 a)�t by Lem. 6(i). Since
 6= a and
 # t, Lem. 6(ii) implies that[
℄:(
 a)�t =[a℄:t. Therefore,a # [a℄:t. ut
Note that taking both facts of Lem. 7 together implies the following equation for the support
of abstraction functions supp([a℄:t) = supp(t)� fag (11)

providedt is finitely supported.
Now everything is in place for defining the subsetlam�. It is defined inductively by the

three rules:Am(a) 2 lam� t1 2 lam� t2 2 lam�Pr(t1; t2) 2 lam� t 2 lam�Se([a℄:t) 2 lam� (12)

using in the third rule the abstraction functions given in (9). We note:

Lemma 8 For the setlam� we have that:

(i) all its elements are finitely supported, and
(ii) it is closed under permutations, that ist 2 lam� implies��t 2 lam�.

Proof Both properties follow by routine inductions over the definition of lam�. For the first
induction we use the equationssupp(Am(a)) = fagsupp(Pr(t1; t2)) = supp(t1) [ supp(t2)supp(Se([a℄:t)) = supp(t)� fag (13)

where the last follows from (11)—t is finitely supported by induction hypothesis; for the
second we use Lem. 6(i). ut
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Next, one of the main points of this paper: there is a bijection betweenlam=� andlam�.
This is shown using the following mapping fromlam to lam�:q(Var(a)) def= Am(a)q(App(t1; t2)) def= Pr(q(t1); q(t2))q(Lam(a; t)) def= Se([a℄:q(t))
and the lemma:

Lemma 9 t1 � t2 if and only ifq(t1) = q(t2).
Proof By routine induction over definition oflam�. ut
Theorem 1 There is a bijection betweenlam=� andlam�.

Proof The mappingq needs to be lifted to alpha-equivalence classes (see Paulson [24]). For
this defineq0([t℄�) as follows: applyq to every element of the set[t℄� and build the union
of the results. By Lem. 9 this must yield a singleton set. The result ofq0([t℄�) is then the
singleton. Surjectivity ofq0 is shown by a routine induction over the definition oflam�.
Injectivity of q0 follows from Lem. 9 since[t1℄� = [t2℄� for all t1 � t2. ut

We definedlam� as an inductive subset ofphi and showed that there is a bijection withlam=�. We can now apply standard HOL-techniques and turn thesetlam� into a typelam�
of HOL (see for example the Isabelle tutorial [21, Sec. 8.5.2] or Melham [19,20] for more
details). The construction we can perform in HOL is illustrated by the following picture:philam� existing

type
new
type

non-empty
subset

lam� isomorphism

We are allowed to introduce the typelam� by means of identifying a non-empty subset in
the existing typephi (this type was introduced by the datatype declaration in (7)) and an
isomorphism, which we write here asp�q. The properties of the typelam� are then given
by the isomorphism and how the subsetlam� is defined. For example we can characterise
term-constructors of the typelam� as follows:pVar�(a)q 7! Am(a)pApp�(t1; t2)q 7! Pr(pt1q; pt2q)pLam�(a; t)q 7! Se([a℄:ptq) (14)

with the following “injection” principlesVar�(a) = Var�(b) iff a = bApp�(t1; t2) = App�(s1; s2) iff t1 = s1 ^ t2 = s2Lam�(a; t1) = Lam�(b; t2) iff [a℄:t1 = [b℄:t2 (15)

and the support behaving as follows:



13supp(Var�(a)) = fagsupp(App�(t1; t2)) = supp(t1) [ supp(t2)supp(Lam�(a; t)) = supp(t)� fag (16)

Since by Lem. 8(ii) the permutation operation is closed on the setlam�, we can also lift
the permutation operation defined overphi to the new type so that the following properties
hold: ��Var�(a) = Var�(��a)��App�(t1; t2) = App�(��t1; ��t2)��Lam�(a; t) = Lam�(��a; ��t) (17)

We can further show that:

Lemma 10 The typelam� is a (i) permutation type and (ii) all its elements are finitely
supported.

Proof By routine induction the over definition oflam�. For (i) we lift the property ofphi
being a permutation type tolam� using Lem. 8(ii) ; for (ii) we use (16). ut
The crux of constructing the new typelam� is that we now have an Isabelle/HOL-type where
lambdas are equal providedLam�(a; t1) = Lam�(b; t2) if and only if eithera = b ^ t1 = t2 or a 6= b ^ t1 = (a b)�t2 ^ a # t2 : (18)

and freshness of a lambda is given by:a # Lam�(b; t) if and only if eithera = b or a 6= b ^ a # t : (19)

In effect we have achieved what we set out at the beginning of this section: we have a for-
mal implementation of Barendregt’s convention about identifying alpha-equivalent lambda-
terms.

4 Structural Induction Principles

The inductive definition of the setlam� given in (12) comes with an induction principle.
From this induction principle we can derive the following structural induction principle for
the typelam�: 8a: P (Var�(a))8t1 t2: P t1 ^ P t2 ) P (App�(t1; t2))8a t1: P t1 ) P (Lam�(a; t1))P t (20)

However, this structural induction principle is not very convenient in practice. Consider
again Fig. 1 showing a typical informal proof involving lambda-terms. This informal proof
establishes the substitution lemma by considering in the lambda-case only bindersz that
have suitable properties (namely being fresh forx, y, N andL). If one would use for this
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proof the induction principle given above, then one would need to show the lambda-case for
all z, not just the ones being suitably fresh. This would mean one has to rename binders and
establish a number of auxiliary lemmas concerning such renamings.

In this section we will derive an induction principle which allows a similar convenient
reasoning as in Barendregt’s informal proof. This induction principle is as follows:8
 a: P (Var�(a)) 
8
 t1 t2: (8d: P t1 d) ^ (8d: P t2 d) ) P (App�(t1; t2)) 
8
 a t1: a # 
 ^ (8d: P t1 d) ) P (Lam�(a; t1)) 
P t 
 (21)

where the variablet in the conclusion stands for alam�-term over which the induction is
done and the variable
 stands for thecontextof the induction. By the context of an induction
we mean all free variables of the lemma to be shown by induction, except the variable over
which the induction is performed. We also assume that the context is of finitely supported
type. In case of the substitution lemma from Fig. 1, for example, we haveM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄
with M being the variable over which the induction is done. So in this case, the con-
text 
 would be instantiated with the other free variables in this lemma, namely the tuple(x; y;N; L)—which is of finitely supported type. When it comes to prove the lambda-case,
that is P (Lam�(z;M1)) (x; y;N; L)
one can assume in (21) that the binderz is fresh for(x; y;N; L)—which is equivalent toz
not being equal tox andy, and not free inN andL. As we shall see later, with this induction
principle one can formalise Barendregt’s slick informal proof without difficulties.

In the following we shall establish a slightly more general version of the induction prin-
ciple given in (21). In the generalised version we require that the induction context is finitely
supported, but not necessarily has finitely supported type.

Theorem 2 (Strong Induction Principle) A propertyP t 
 holds for all t terms of typelam�, provided for a givenf
(i) 8
: �nite(supp(f 
)),

(ii) 8
 a: P (Var�(a)) 
,
(iii) 8
 t1 t2: (8d: P t1 d) ^ (8d: P t2 d) ) P (App�(t1; t2)) 
, and
(iv) 8
 a t1: a # f 
 ^ (8d: P t1 d) ) P (Lam�(a; t1)) 

hold.

Proof By induction overt using (20). We strengthen the induction hypothesis by aiming
to prove8� 
: P (��t) 
. The cases forVar� andApp� are routine. The interesting case isLam�: we need to show thatP (��Lam�(a; t1)) 
, where��Lam�(a; t1) = Lam�(��a; ��t1)
by (17). Since by(i) f
 is finitely supported, and by Lemmas 4 and 10 also��a and��t1, we can use Prop. 1 to obtain ab with b # (f 
; ��a; ��t1). From this we can infer
that b 6= ��a andb # ��t1, which implies by (18) that(�) Lam�(b; (b ��a)�(��t1)) =Lam�(��a; ��t1). From the induction hypothesis, which is8� 
: P (��t1) 
, we obtain the
fact 8
: P (((b ��a)��)�t1) 
. Then we can use the factb # f 
 and (iv), and infer thatP (Lam�(b; ((b ��a)��)�t1)) 
 holds. Moreover this is by Definition 2(ii) equal to the factP (Lam�(b; (b ��a)�(��t1))) 
. By (�) we can conclude withP (Lam�(��a; ��t1)) 
. ut
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If we set in Thm. 2f to the identity-function and require that
 has finitely supported type,
we can discharge condition(i) in and obtain the structural induction principle stated in (21).
The advantage of (21) is that Isabelle’s axiomatic type classes can be used to ensure that the
induction context is a finitely supported type, while the induction principle proved in Thm. 2
requires manual reasoning to ensure the finite support property. However, we will need the
more general induction principle in the next section where we derive a recursion combinator
for lam�.

5 A Recursion Combinator

Before we can formalise Barendregt’s proof of the substitution lemma, we need to be able
to define the function of capture-avoiding substitution. This can be done by first considering
an appropriately defined relation and then showing that thisrelation behaves like a function.
This has been done in Urban and Tasson [36]. However, this wayis rather inelegant. More
elegant is a definition by structural recursion.

It turns out that defining functions by recursion over the structure of alpha-equated
lambda-terms is rather subtle. Let us assume we want to definecapture-avoiding substitution
by the following three clausesVar�(x)[y := t0℄ = (if x = y thent0 elseVar�(x))App�(t1; t2)[y := t0℄ = App�(t1[y := t0℄; t2[y := t0℄)Lam�(x; t)[y := t0℄ = Lam�(x; t[y := t0℄) providedx # (y; t0)
where the side-condition in the lambda-case amounts to the usual condition aboutx 6= y andx not being a free atom int0. Then defining it overlam� results in a total function, while
defining it over “raw” lambda-terms of typelam results in a partial function. Furthermore,
attempting to define the functions that return the set of bound names and the immediate
subterms by the clauses

bn(Var�(x)) = ?
bn(App�(t1; t2)) = bn(t1)[bn(t2)

bn(Lam�(x; t)) = bn(t)[fxg ist(Var�(x)) = ?
ist(App�(t1; t2)) = ft1; t2g

ist(Lam�(x; t)) = ftg (22)

results in an inconsistency when defined overlam�, while it can be defined without problems
over lam. The inconsistency withbn and ist arises by the principle of HOL stating that a
function has to return the “same ouput” for the “same input”.Since by (18) we haveLam�(x; Var�(x)) = Lam�(y; Var�(y))
for all x andy, we can assume that this equation holds forx 6= y. Thenbn(Lam�(x; Var�(x)))
must be equal tobn(Lam�(y; Var�(y))), which implies by the clauses in (22) thatx must be
equal toy giving a contradiction with the assumptionx 6= y—similar with the functionist.

One way around the problem with the inconsistencies is to derive a recursion combinator
for lam� that includes certain preconditions for binders ensuring no inconsistency can be
derived. For this we will adapt work by Pitts [27] who introduced such preconditions. We
will also adapt his proof establishing the existence of a structural recursion combinator forlam�. The main difference of our proof is that we give here a directproof for the existence,
because in our implementation we do not use anywhere the typelam (Pitts useslam to
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derive a structural induction principle). Another difference is that we derive the recursion
combinator without deriving an iteration combinator first.6

While in “every-day” formalisation, Lem. 4 is sufficient in nearly all situations to find
out when an object has finite support, the reasoning for the recursion combinator includes in
several places proof obligations about ensuring that functions have finite support. And for
functions one cannot find out whether they have finite supportby just looking at their type.
In order to automate such proof obligations we use the auxiliary notion ofsupports[11].

Definition 5 A setS of atomssupportsan x of permutation type, writtenS supports x,
provided: 8a b: a 62 S ^ b 62 S ) (a b)�x = x :
This notion allows us to approximate the support of anx from “above”, because we can
show that:

Lemma 11 If a setS is finite andS supports x, thensupp(x) � S.

Proof By contradiction we assumesupp(x) 6� S, then there exists an atoma 2 supp(x)
anda 62 S. FromS supports x follows that for allb 62 S we have(a b)�x = x. Hence the setfb j (a b)�x 6= xg is a subset ofS, and sinceS is finite by assumption, alsofb j (a b)�x 6= xg
must be finite. But this implies thata 62 supp(x) which gives the contradiction.ut
Lem. 11 gives us some means to decide relatively easily whether a function has finite sup-
port: one only needs to find a finite set of atoms and then verifywhether this set supports
the function.

If the function is given as a lambda-term on the HOL-level, then for finding a finite
set we use the heuristic of considering the support of the free variables of this functions.
This is a heuristic, because it cannot be established as a lemma inside Isabelle/HOL—it is a
property about HOL-functions. Nevertheless the heuristicis extremely helpful for deciding
whether a function has finite support. Consider the following two examples:

Example 1Given a functionfn def= f1 
 wheref1 is a function of typename ) �. We
also assume thatf1 has finite support. The question is whetherfn has finite support? The
free variables offn are f1 and 
. According to our heuristic we have to verify whethersupp(f1; 
) supports fn, which amounts to showing that8a b: a 62 supp(f1; 
) ^ b 62 supp(f1; 
) ) (a b)�fn = fn
To do so we can assume by the definition of freshness (Def. 3) that a # (f1; 
) andb #(f1; 
) and show that(a b)�fn = fn. This equation follows from the calculation that pushes
the swapping(a b) insidefn:(a b)�fn def= (a b)�(f1 
) by (3)= ((a b)�f1) ((a b)�
) (�)= f1 
 def= fn
where(�) follows because we know thata # f1 andb # f1, and therefore by Lem. 4 that(a b)�f1 = f1 (similarly for 
).

We can conclude thatsupp(fn) is a subset ofsupp(f1; 
), because the latter is finite
(sincef1 has finite support by assumption and
 is finitely supported because the typename
is a finitely supported type). So by Lem. 11,fn must have finite support.ut

6 The difference between a recursion and an iteration combinator is that in the former we can use directly
the arguments of the term constructor, while in the latter this can only be achieved via an encoding of the
recursion.
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Example 2Let fn0 def= �x: if x = y thent0 else(Var�(x))—wherex andy are of typename
andt0 alam�-term. The free variables of this HOL-function arey andt0; so by our heuristic
we need to verify whethersupp(y; t0) supports fn 0. This holds by the following calculation:(a b)�(�x: if x = y thent0 elseVar�(x))

def= �x: (a b)�(if (a b)�1�x = y thent0 elseVar�((a b)�1�x))= �x: if x = (a b)�y then(a b)�t0 thenVar�(x) by (10)= �x: if x = y thent0 elseVar�(x) (�)
where(�) follows by Lem. 4 and the assumption thata # (y; t0) andb # (y; t0). Sincey
andt0 are finitely supported types,fn 0 must then have finite support.ut

As the examples indicate, by using the heuristic, one can infer from a decision problem
involving permutations whether or not a function has finite support. The important point
here is that the decision procedure involving permutationscan be relatively easily automated
with a special purpose tactic analysing permutations. Thisseems much more convenient than
analysing the support of a function directly.

A definition by structural recursion involves in case of the lambda-terms three functions
(one for each term-constructor) that specify the behaviourof the function to be defined—let
us call these functionsf1, f2, f3 for the variable-, application- and lambda-case, respec-
tively, and let us assume they have the types:f1 : name) �f2 : lam� ) lam� ) �) �) �f3 : name) lam� ) �) �
with � being a permutation type. Then the first condition Pitts introduced in [27] states thatf3—the function for the lambda case—needs to satisfy thefreshness condition for binders,
or shortFCB. We formulate this condition as:7

Definition 6 (Freshness Condition for Binders)
A functionf with typename) lam� ) �) � satisfies theFCBprovided:8a t r: a # f ^ �nite(supp(r)) ) a # fa t r :
As we shall see later on, this condition ensures that the result of f3 is independent of which
particular fresh name one chooses for the bindera. The second condition states that the
functionsf1, f2 andf3 all must have finite support. This condition ensures that we can use
Prop. 1 when choosing a fresh name for thefs.

With these two conditions we can derive a recursion combinator, we call itrfunf1f2f3 ,
with the following properties:

Theorem 3 (Recursion Combinator) If f1, f2 andf3 have finite support andf3 satisfies
the FCB, then there exists a recursion combinatorrfunf1f2f3 with the properties:rfunf1f2f3 (Var�(a)) = f1 arfunf1f2f3 (App�(t1; t2)) = f2 t1 t2 (rfunf1f2f3 t1) (rfunf1f2f3 t2)rfunf1f2f3 (Lam�(a; t)) = f3 a t (rfunf1f2f3 t)

provideda # (f1; f2; f3)
7 We use a different version of the FCB than actually introduced by Pitts. We shall show later that our

version and one that closely resembles his are interderivable.
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To give a proof of this theorem we start with the following inductive relation, calledre
f1f2f3
and which has type(lam���) set where, like above,� is assumed to be a permutation type:(Var�(a); f1 a) 2 re
f1f2f3 (t1; r1) 2 re
f1f2f3 (t2; r2) 2 re
f1f2f3(App�(t1; t2); f2 t1 t2 r1 r2) 2 re
f1f2f3a # (f1; f2; f3) (t; r) 2 re
f1f2f3(Lam�(a; t); f3 a t r) 2 re
f1f2f3 (23)

We shall show next that the relationre
f1f2f3 defines a function in the sense that for
all lambda-termst there exists a uniquer so that(t; r) 2 re
f1f2f3 . From this we can
again use standard techniques of HOL to obtain a function from lam� to� (see for example
Slind [28]). We first show that inre
f1f2f3 the “result” r has finite support provided the
functionsf1, f2 andf3 have finite support.

Lemma 12 (Finite Support) If f1, f2 and f3 have finite support, then(t; r) 2 re
f1f2f3
implies thatr has finite support.

Proof By induction over the relation defined in (23). In the variable-case we have to show
thatf1 a has finite support, which we inferred in Example 1 using our heuristic. The appli-
cation and lambda-case are by similar calculations.ut
In the proof of Thm 3, we need the following lemma establishing thatre
f1f2f3 is equivari-
ant (see Pitts [26]).

Lemma 13 (Equivariance) If (t; r) 2 re
f1f2f3 holds then for all�, also (��t; ��r) 2re
(��f1)(��f2)(��f3) holds.

Proof By induction over the rules given in (23). All cases are routine by pushing the permu-
tation� into t andr, except in the lambda-case where we have to apply Lem. 3(iii) in order
to infer��a # (��f1; ��f2; ��f3) from a # (f1; f2; f3). ut
Next we can show the crucial lemma aboutre
f1f2f3 being a “function”.

Lemma 14 (Existence and Uniqueness)If f1, f2 andf3 have finite support andf3 satisfies
the FCB, then9!r: (t; r) 2 re
f1f2f3 .

Proof By the induction principle given in Thm. 2, where we set the functionf to the constant
function� :(f1; f2; f3) and the induction context
 to unit.8 Condition(i) of Thm. 2 holds
because by assumptionf1, f2 andf3 have finite support. The only non-routine case then is
the lambda-case with showing that9!r: (Lam�(a; t); r) 2 re
f1f2f3 holds. This is difficult,
because for lambdas we do not have injectivity (see (18)). The proof in this case proceeds
as follows.

The induction principle allows us to assume thata # (f1; f2; f3), therefore the “ex-
istential” part of the lemma is immediate. In the “uniqueness” part we have to show that
if (Lam�(a; t); f3 a t r) 2 re
f1f2f3 and also(Lam�(b; t0); f3 b t0 r0) 2 re
f1f2f3 with the
equationLam�(a; t) = Lam�(b; t0), thenf3 a t r = f3 b t0 r0 holds. By rule inversion we can
assume thatb # (f1; f2; f3) and that there exists anr0 such that(t0; r0) 2 re
f1f2f3 ; further
by the induction we know there is a uniquer such that(t; r) 2 re
f1f2f3 . Now we show the
following 6 facts:

8 For this induction we cannot use the more convenient induction principle shown in (21), because func-
tions do not have finitely supported type.



19

(i) From (t; r) 2 re
f1f2f3 and (t0; r0) 2 re
f1f2f3 we can infer by Lem. 12 thatr
andr0 are finitely supported. Therefore we can apply Prop. 1 to obtain a 
 with 
 #(f1; f2; f3; t; t0; r; r0; a; b)—all variables in the tuple have finite support.

(ii) From (19) we have thata # Lam�(a; t) andb # Lam�(b; t0). With (i) we can further
infer that 
 # Lam�(a; t) and 
 # Lam�(b; t0). From the assumptionLam�(a; t) =Lam�(b; t0), we can then use Lem. 4 to derive(a 
)�Lam�(a; t) = (b 
)�Lam�(b; t0),
which implies thatLam�(
; (a 
)�t) = Lam�(
; (a 
)�t0); hence by (18) that(a 
)�t =(b 
)�t0.

(iii) From (t; r) 2 re
f1f2f3 , (t0; r0) 2 re
f1f2f3 a # (f1; f2; f3) andb # (f1; f2; f3), we
can infer by Lem. 4 and 13 that((a 
)�t; (a 
)�r) 2 re
f1f2f3 and((b 
)�t0; (b 
)�r0) 2re
f1f2f3 . Since by induction hypothesis9!r: (t; r) 2 re
f1f2f3 we also have the fact
that9!r: ((a 
)�t; r) 2 re
f1f2f3 . Thus we can use (ii) to infer that(a 
)�r = (b 
)�r0.

(iv) Using the FCB forf3 and knowing thata # f3 andb # f3 as well asr andr0 are
finitely supported (from (i)), we can infer thata # f3 a t r andb # f3 b t0 r0 hold.

(v) Sincesupp(f3; a; t; r)supports(f3 a t r) and since
 # (f3; a; t; r) (from (i)), we know
by Lem. 11 that
 # f3 a t r holds. Similarly we can infer that
 # f3 b t0 r0 holds.

(vi) Finally, in order to show thatf3 a t r = f3 b t0 r0 holds, it suffices by Lem. 4 and the
facts derived in (iv) and (v) to show that(a 
)�(f3 a t r) = (b 
)�(f3 b t0 r0) holds. This
in turn is by (3) equivalent tof3 
 ((a 
)�t) ((a 
)�r) = f3 
 ((b 
)�t0) ((b 
)�r0). By the
facts derived in (ii) and (iii) we have that these terms are indeed equal. ut

To prove our theorem about structural recursion we definerfunf1f2f3 t to be the uniquer so
that(t; r) 2 re
f1f2f3 . This is a standard construction in HOL-based theorem provers; it in-
volves the HOL’s definite description operator (see Isabelle’s tutorial [21, Sec. 5.10.1]). The
characteristic equations forrfunf1f2f3 are then determined by the definition ofre
f1f2f3
given in (23). This completes the proof of Thm. 3.

As mentioned earlier, the FCB we use differs from the one introduced by Pitts. He
defines this notion as follows:9

Definition 7 (FCB’) A functionf with typename) lam� ) �) � satisfies theFCB’ pro-
vided: 9a: a # f ^ (8t r: �nite(supp(r)) ) a # fa t r) :
It can be shown that in all cases where the recursion combinator is applied both versions of
the FCB are interderivable.

Lemma 15 Providedf is finitely supported, then the FCB holds if an only if the FCB’holds.

Proof ()) Sincef is finitely supported, we can choose using Prop. 1 an atoma such thata # f . With this we can instantiate the FCB and obtain8t r: �nite(supp(r)) ) a # fa t r
as we have to show.(() We have thata # f and�nite(supp(r)) and need to show thata # fa t r. By the FCB’ we have an atoma0 such thata0 # f and8t r: �nite(supp(r)) )a0 # fa0 t r. Since�nite(supp((aa0)�1�r)) if an only if �nite(supp(r)), we can infera0 # fa0 ((aa0)�1�t) ((a a0)�1�r). By Lemma 3(iii) we can apply on both sides of# the
swapping(a a0) and obtaina # fa ((aa0)�(aa0)�1�t) ((a a0)�(aa0)�1�r)
which by Lem. 1(i) is equivalent toa # fa t r—the fact we had to show.ut

9 His definition of the FCB does not actually include�nite(supp(r)), because he considers only finitely
supported objects, and also does not include the quantification overt as he derives an iteration, rather than a
recursion combinator.
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The reason that we prefer our version of the FCB is that when establishing a universal
quantified formula, Isabelle/HOL will just introduce an eigen-variable and then proceed to
prove the “rest”. This is in practice easier than generatinga fresh atom and then instantiate
the existential quantifier in the FCB’.

6 Examples

Finally, we can start to formalise Barendregt’s informal proof of the substitution lemma
(Fig. 1). All the constructions of the previous 3 sections would, due to their complexity, be
of only academic value,if we can not automate them and hide the complexities from the
user. However, we can! We shall illustrate this next.

The typelam� can be defined in Isabelle/HOL using the nominal datatype package by
the two declarations:atom de
l namenominal datatype lam� = Var� "name"j App� "lam� � lam�"j Lam� "hhnameiilam�"
where the first declaration establishes the typename with the properties described in Sec. 2;
in the second declarationhh : : : ii indicates that a name is bound inLam�. With this informa-
tion the nominal datatype package performs automatically the construction we described in
Sec. 3 and also automatically derives the structural induction principles from Sec. 4 and the
recursion combinator from Sec. 5withoutany user interference. Furthermore, this package
derives this reasoning infrastructure even for more complicated term-calculi that have more
than one binder and binders may have different types.

After the declaration, we can then use the recursion combinator to define the capture-
avoiding substitution function by stating the following characteristic equations:Var�(x)[y := t0℄ = (if x = y then t0 else Var�(x))App�(t1; t2)[y := t0℄ = App�(t1[y := t0℄; t2[y := t0℄)x # (y; t0) =) Lam�(x; t)[y := t0℄ = Lam�(x; t[y := t0℄) (24)

where in the clause forLam� the preconditionx # (y; t0) corresponds to the usual condition
that x 6= y andx is not free int0. Internally the nominal datatype package extracts the
following functions for capture-avoiding substitution:s1 y t0 def= �x: if x = y then t0 else Var�(x)s2 y t0 def= �t1 t2 r1 r2: App�(r2; r1)s3 y t0 def= �x t r: Lam�(x; r)
In order to apply Thm. 3 with the instantiationrfun(s1 y t0) (s2 y t0) (s3 y t0), Isabelle first
needs to determine whether the result type of the function isa permutation type. Since
substitution returns alam�-term, it can use Lem. 10(i) and automatically determine this
fact. Next Isabelle asks the user to verify the preconditions of Thm. 3 about the functions(s1 y t0), (s2 y t0) and(s3 y t0) having finite support. It turns out that all of them are supported
by the setsupp(y; t0), which is finitely supported because of Lem. 5 (this can be determined
automatically by Isabelle). To verify whethersupp(y; t0) supports (s1 y t0) holds, the tacticfinite guess does automatically the calculations shown in Example 2 and similar ones for
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the cases(s2 y t0) and(s3 y t0). Next Isabelle asks the user to verify the FCB for(s3 y t0)
which amounts to showing that8a t r: a # (s3 y t0) ^ �nite(supp(r)) ) a # Lam�(a; r)
holds. This can be done by a simple application of the property given in (19). Last, Isabelle
asks the user to verify that the precondition of the recursion combinator in the lambda-case,
namely thatx # (s1 y t0; s2 y t0; s3 y t0) is implied by the preconditionx # (y; t0) given
in (24). Since, as indicated earlier, all these functions are supported bysupp(y; t0), Isabelle
can determine this automatically with the help of a tactic. This completes the definition of
capture-avoiding substitution. The Isabelle code for thisis:

constssubst :: "lam� ) name ) lam� ) lam�" ("_[_:=_℄" [100,100,100℄ 100)
nominal primrec"Var�(x)[y:=t'℄ = (if x=y then t' else Var�(x))""App�(t1,t2)[y:=t'℄ = App�(t1[y:=t'℄,t2[y:=t'℄)""x# (y,t') =) Lam�(x,t)[y:=t'℄ = Lam�(x,t[y:=t'℄)"
by (finite_guess+,(rule TrueI)+, simp add: abs_fresh, fresh_guess+)

where in the first two lines we declare the type of the substitution function and introduce
nicer syntax for writing this function. The line starting with by contains the proof for show-
ing that the characteristic functions of substitution are finitely supported, that the FCB is
satisfied and that the preconditionx # (y; t0) is sufficient for instantiating the recursion
combinator.

Having the substitution function at our disposal, we can nowformalise Barendregt’s
proof of the substitution lemma. First we have to formalise the fact thatx 62 FV (L) impliesL[x := P ℄ = L whose proof is omitted by Barendregt.

Lemma 16 (Forget)If x # L thenL[x := P ℄ = P .

Proof The proof proceeds by induction overL using (21) with
 instantiated to(x;P ). In
the variable case we have to show thatVar�(y)[x := P ℄ = Var�(y) under the assumption
thatx # Var�(y). This assumption is equivalent tox # y, which is in turn equivalent tox 6= y, allowing us to apply (24) to prove this case. In the lambda-case we have the induction
hypothesis8xP: x # L1 ) L1[x := P ℄ = L1 and have to show thatLam�(y; L1)[x :=P ℄ = Lam�(y; L1) under the assumption thatx # Lam�(y;L1) holds. The induction in
allows us further to assume thaty # (x;P )—(x;P ) is the induction context and the point
of (21) is that we can assume the binder is fresh w.r.t. this context. Therefore we can move
the substitution under the binder, namelyLam�(y; L1)[x := P ℄ = Lam�(y; L1[x := P ℄), and
also infer by (19) thatx # L1. This allows us to apply the induction hypothesis and we are
done. The application case is trivial.ut
Using Isabelle’s automatic proof-tools one can formalise this proof with:

lemma forget:
assumesa: "x# L"
shows "L[x:=P℄ = L"

using a by (nominal_indu
t L avoiding: x P rule: lam�.indu
t)(auto simp add: abs_fresh fresh_atm)
whereabs fresh corresponds to the property given in (19) and the lemmafresh atm to the
fact that for atomsx andy, x # y holds if and only ifx 6= y. The methodnominal indu
t
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(see Wenzel [38]) brings the induction principle, calledlam�.indu
t, automatically to the
form needed in (21)—we only have to state over which variablethe induction is done and
what the induction context is, that is the variables to avoid.

Next we need to show a lemma whose need is not immediately apparent by looking
at Barendregt’s informal proof. However, in the lambda-case where Barendregt pulls out a
substitution from under the binder, namely in the step�z:(M1[y := L℄[x := N [y := L℄℄) � (�z:M1)[y := L℄[x := N [y := L℄℄
we need to know thatz is not free inN [y := L℄. But by the variable convention we only
know thatz is not free inNandL. In a formalisation, this fact needs to be established
explicitly. It can be done in Isabelle with

lemma fresh_fa
t:
fixes z::"name"
assumesa: "z# N" "z# L"
shows "z# N[y:=L℄"

using a by (nominal_indu
t N avoiding: z y L rule: lam�.indu
t)(auto simp add: abs_fresh fresh_atm)
wherez needs to be given an explicit type-annotation so that Isabelle can determine its type.
The substitution lemma can now be formalised with:

lemma substitution_lemma:
assumesa: "x6=y" "x# L"
shows "M[x:=N℄[y:=L℄ = M[y:=L℄[x:=N[y:=L℄℄"

using a by (nominal_indu
t M avoiding: x y N L rule: lam�.indu
t)(auto simp add: fresh_fa
t forget) (25)

A formalised proof of this lemma mentioning much more details is shown in Fig. 3.
Other proofs we formalised in a similar fashion are the Church-Rosser proof from

Barendregt [5, pp. 60–62] and [29], the strong normalisation proof given in Girardet al [12,
pp. 42–46], the strong normalisation proof for cut-elimination from Urban [31], the correct-
ness proof of the type-inference algorithm W from Leroy [18,pp. 26–31] and the logical re-
lation proof for algorithmic equality between simply-typed lambda-terms given in Crary [7,
pp. 223–244] and between LF-terms given by Harper and Pfenning in [15]. These proofs are
more complicated than the proofs we have given above and needsome manual reasoning.
All proofs are included in the distribution of the nominal datatype package available fromhttp://isabelle.in.tum.de/nominal/
7 Related Work

There are many approaches to formal treatments of binders; this section describes the ones
from which we have drawn inspiration and also work reported in Ambleret al [1], Aydemir
et al [2] and Homeier [16].

Our work uses many ideas from the nominal logic work by Pittset al [26,11,27]. The
main difference is that by constructing, so to say, an explicit model of the�-equated lambda-
terms based on functions, we have no problem with the axiom ofchoice. This is important.
For consider the alternative: if the axiom-of-choice causes inconsistencies, then one cannot
build a framework for binding on top of Isabelle/HOL with itsrich reasoning infrastructure.
One would have to base the implementation on a lower level andwould have to redo the
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lemma substitution_lemma:
assumesa: "x6=y" "x# L"
shows "M[x:=N℄[y:=L℄ = M[y:=L℄[x:=N[y:=L℄℄"

using a
proof (nominal_indu
t M avoiding: x y N L rule: lam�.indu
t)

case (Var� z) (Case 1: variables)
show "Var�(z)[x:=N℄[y:=L℄ = Var�(z)[y:=L℄[x:=N[y:=L℄℄" (is "?lhs=?rhs")
proof -f assume "z=x" (Case 1.1)

have 1: "?lhs = N[y:=L℄" using `z=x` by simp
have 2: "?rhs = N[y:=L℄" using `z=x` `x6=y` by simp
from 1 2 have "?lhs = ?rhs" by simpg

moreoverf assume"z=y" and "z6=x" (Case 1.2)
have 1: "?lhs = L" using `z6=x` `z=y` by simp
have 2: "?rhs = L[x:=N[y:=L℄℄" using `z=y` by simp
have 3: "L[x:=N[y:=L℄℄ = L" using `x# L` by (simp add: forget)
from 1 2 3 have "?lhs = ?rhs" by simpg

moreoverf assume"z6=x" and "z6=y" (Case 1.3)
have 1: "?lhs = Var� z" using `z6=x` `z6=y` by simp
have 2: "?rhs = Var� z" using `z6=x` `z6=y` by simp
from 1 2 have "?lhs = ?rhs" by simpg

ultimately show "?lhs = ?rhs" by blast
qed

next
case (Lam� z M1) (Case 2: lambdas)
have ih: "[[x6=y; x# L℄℄ =) M1[x:=N℄[y:=L℄ = M1[y:=L℄[x:=N[y:=L℄℄" by fa
t
have v
: "z# x" "z# y" "z# N" "z# L" by fa
t (variable convention)
hence "z# N[y:=L℄" by (simp add: fresh_fa
t)
show "Lam�(z,M1)[x:=N℄[y:=L℄ = Lam�(z,M1)[y:=L℄[x:=N[y:=L℄℄" (is "?lhs=?rhs")
proof -

have "?lhs = Lam�(z,M1[x:=N℄[y:=L℄)" using v
 by simp
also have ": : : = Lam�(z,M1[y:=L℄[x:=N[y:=L℄℄)" using ih `x6=y` `x# L` by simp
also have ": : : = Lam�(z,M1[y:=L℄)[x:=N[y:=L℄℄" using v
 `z# N[y:=L℄` by simp
also have ": : : = ?rhs" using v
 by simp
finally show "?lhs = ?rhs" by simp

qed
next

case (App� M1 M2) (Case 3: applications)
thus "App�(M1,M2)[x:=N℄[y:=L℄ = App�(M1,M2)[y:=L℄[x:=N[y:=L℄℄" by simp

qed

Fig. 3 A formalised proof of Barendregt’s substitution lemma using the Isabelle’s Isar language. This proof
contains all reasoning steps given in extreme detail. An automated version of this proof, given in (25), is only
5 lines long. The crucial point in both proofs, however, is that in the lambda-case we have the assumptions
labelled withv
 available. They allow us to easily formalise Barendregt’s slick informal proof, shown in
Fig. 1, which uses the variable convention.

effort that has been spend to develop Isabelle/HOL. This wasattempted in Gabbay [10], but
the attempt was quickly abandoned.

Closely related to our work is Gordon and Melham [14], which has been applied and
much further developed by Norrish [22,23]. Gordon and Melham’s work states five axioms
characterising�-equivalence and then shows that a model based on de-Bruijn indices satis-
fies these axioms. This is somewhat similar to our approach where we construct explicitly
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the setlam�. In [14] Gordon and Melham give an induction principle that requires in the
lambda-case to prove (using their notation)8x t: (8 v: P (t[x := VAR v℄)) =) P (LAM x t)
That means they have to proveP (LAM x t) for a variablex for which nothing can be
assumed; explicit�-renamings are then often necessary in order to get proofs through. This
inconvenience has been alleviated by the version of structural induction given in [13] and
[23], where the lambda-case is as follows9X: FINITE X ^ (8 x t: x 62 X ^ P t =) P (LAM x t))
For this principle one has to provide a finite setX and then has to show the lambda-case
for all binders not in this set. This is very similar to our induction principle where we have
to specify an induction context, but we claim that our version based on freshness fits better
with informal practice (recall Fig. 1 where Barendregt states thatz is fresh w.r.t.x, y,N andL) and can make better use of the automatic infrastructure of Isabelle (namely the axiomatic
type-classes enforce the finite-support property).

Gordon and Melham [14] do not consider the case of rule inductions over inductively
defined predicates. This has been done in [33,34]. It turns out that while the variable conven-
tion can be built into every structural induction principle, like our Thm. 2, this is not the case
for rule induction principles. In [33] the authors give an example where the variable conven-
tion can lead to faulty reasoning. The nominal datatype package prevents this by introducing
conditions for when an inductive definition is compatible with the variable convention and
only derives a strong rule induction principle for those that satisfy these conditions.

Like our lam�, HOAS uses functions to encode lambda-abstractions; it comes in two
flavours:weakHOAS [8] andfull HOAS [25]. The advantage of full HOAS over our work
is that notions such as capture-avoiding substitution comefor free. We, on the other hand,
load the work of making such definitions onto the user. The advantage of our work is that we
have no difficulties with notions such as simultaneous-substitution (a crucial notion in the
usual strong normalisation proofs based on logical relation arguments), which in full HOAS
seem rather difficult to encode when one at the same time wantsto reap the benefits of a
HOAS-representation. Another advantage we see is that by inductively defininglam�, one
has induction for “free”, whereas induction requires considerable effort in full HOAS. The
work by Ambleret al [1] on the Hybrid-system provides full HOAS on top of Isabelle/HOL.
For this they use a de-Bruijn encoding and construct a type corresponding to full HOAS.
This construction is somewhat similar to our subset-construction from Sect. 3. However,
their construction is done manually and only for one datatype, while we have automatic
support to do the subset construction for any nominal datatype.

The main difference of our work with weak HOAS is that we usesomespecific functions
to represent lambda-abstractions; in contrast, weak HOAS uses thefull function space. This
causes problems known by the term “exotic terms”—essentially junk in the model.

Recently, Homeier [16] introduced a quotient package for HOL4 that helps with defining
alpha-equivalence classes (this package supports quotients by any equivalence relation) and
with lifting theorems from the “raw” version of the datatypeto the quotient. Norrish makes
use of this package in [23]. This package would help us with the construction oflam�, but
would have only little impact on obtaining the strong induction principles and the recursion
combinator. Nevertheless we look forward to a port of Homeier’s package to Isabelle/HOL.
It will simplify our work when we consider more complicated binding structures.
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Aydemiret al [2] reported work in progress for providing nominal reasoning techniques
in Coq. Essentially, they derive more or less automaticallyfrom a specification of a nominal
datatype an axiomatisation of nominal concepts in Coq and incase of the lambda-calculus
use a Gordon-Melham representation to justify their axiomatisation. However, this justifi-
cation needs to be done manually, while with our constructions we provide the justification
completely automatically. Judging from recent work, the authors seem to have “abandoned”
this work in favour of working with a locally nameless representation of�-equated lambda-
terms [3].

8 Conclusion

The paper [4], which sets out some challenges for automated proof assistants, claims that
theorem proving technologies have almost reached the threshold where they can be usedby
the massesfor formal reasoning about programming languages. We hope to have pushed
with this paper the boundary of the state-of-the-art in formal reasoning closer to this thresh-
old. We showed all our results for the lambda-calculus. But the lambda-calculus is onlyone
example. The nominal datatype package has no problems with generalising the results re-
ported here to more complicated term-calculi. For example,there is already work by Bengt-
son using the nominal datatype package for formalising the�-calculus [6]; Tobin-Hochstadt
and Felleisen used it to verify their work on Typed Scheme [30].

There has also been work on extending strong induction principles to rule inductions
[33,34]. The real challenge has been and still is to generalise all the necessary reasoning
infrastructure to more general binding structures. While there is no problem in the nominal
datatype package with iterated binders, as inFoo hhnameiihhnameii , and binders of different
type, as inBar hhnameii hhconameii , it is not yet possible to have, for example, a finite
set of binders in a term-constructor. A typical example where such a generalisation is very
helpful is the Hindley-Milner typing-algorithm where one has type-schemes of the form8fa1; : : : ; ang:ty. Such type-schemes can at the moment only be represented by encoding
them as an iterated list of single binders. To work out the details for the generalisation of
binding structures and to implement them is future work. Future work also includes the
generalisation of our recursion combinator to work with varying parameters. This has been
treated in [23,27], but it seems difficult to adapt their results to our setting.
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