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Abstract This paper describes a formalisation of the lambda-cadcul@ HOL-based the-
orem prover using nominal techniques. Central to the fagagbn is an inductive set that is
bijective with the alpha-equated lambda-terms. UnlikeBdein indices, however, this in-
ductive set includes names and reasoning about it is vefijesito informal reasoning with
“pencil and paper”. To show this we provide a structural irtthn principle that requires to
prove the lambda-case for fresh binders only. Furthermeeegdapt work by Pitts providing
a recursion combinator for the inductive set. The main teathmovelty of this work is that
it is compatible with the axiom of choice (unlike earlier niomd logic work by Pittset al);
thus we were able to implement all results in Isabelle/HOH ase them to formalise the
standard proofs for Church-Rosser, strong-normalisaifdreta-reduction, the correctness
of the type-inference algorithm W, typical proofs from SQfslanuch more.

Keywords Lambda-calculus nominal logic work- theorem provers.

1 Introduction

We thank T. Thacher Robinson for showing us on August 19, 1862
counterexample the existence of an error in our handlingoahd vari-
ables.

S. C. Kleene [17, Page 16]

When reasoning informally about syntax, issues with bisderd alpha-equivalence are
almost universally perceived as unimportant and thus yagtiored. However, errordo
arise from these issues as the quotation from Kleene shoisghkerefore desirable to have
convenient techniques for formalising informal proofs.this paper such a technique is
described in the context of the lambda-calculus and the¢neprover Isabelle/HOL. How-
ever, the techniques generalise to more complex calculpartd have already been adapted
in HOL4, HOL-light and Coqg.

* This paper is a revised and much extended version of UrbarBarghofer [32], and Urban and Tasson
[36].
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Substitution Lemma: If x Z y andz ¢ F'V(L), then
Mz := N]ly := L] = M[y := L][z := Ny := L]].

Proof: By induction on the structure a¥/.
Case 1:M is a variable.

Case 1.1M = z. Then both sides equdV [y := L] sincez Z y.

Case 1.2M = y. Then both sides equdl, forz ¢ FV (L) impliesL[z :=...] = L.

Case 1.3M = z Z z,y. Then both sides equal
Case 2:M = \z.M;. By the variable convention we may assume tha x,y andz is not free
in N, L. Then by induction hypothesis

(Az.My)[z := N[y := L] Az.(My[z := N][y := L))
Az.(Miy := L][x := N[y := L]])

(Az.M1)[y := L][z := Ny := L]].
Case 3:M = M; M>. The statement follows again from the induction hypothesis O

Fig. 1 An informal proof of the substitution lemma taken from Batesgt's book [5]. In second case, the
variable convention allows him to move the substitutionderrthe binder, to apply the induction hypothesis
and finally to pull the substitutions back out from under tivedbr.

The main point of this paper is to give a representatiorafpha-equatedambda-terms
that is based on names, is inductive and comes with a staléhgtuction principle where
the lambda-case needs to be proved for only fresh binderthdfmore, we give a structural
recursion combinator for defining functions over this satptactice this will mean that
we come quite close to the informal reasoning using Bargtdreariable convention [5].
An illustrative example of such informal reasoning is Bahegt's proof of the substitution
lemma shown in Fig. 1. In this paper we describe a reasoniingsiinucture for formalis-
ing such informal proofs with ease. This reasoning infladtire has been implemented in
Isabelle/HOL as part of the nominal datatype package.

Our work is based on the nominal logic work by P#tsal [11, 26]. The main technical
novelty is that our work is compatible with the axiom of chaid@ his is important, because
otherwise we would not be able to built in a HOL-based theopeover a framework for
reasoning based on nominal techniques. The reason whyigieabmominal logic work is
incompatible with the axiom of choice has to do with the waw ltloe finite support property
is enforced: FM-set theory is defined in [11] so that everyis¢he FM-set-universe has
finite support. In nominal logic [26], the axioms (E3) and YHE#ply that every function
symbol and proposition has finite support. However, theeenations in HOL that dmot
have finite support, most notably choice functions (see EXample 3.4, Page 470]). Here,
we will avoid the incompatibility with the axiom of choice ot a priory restricting our
discourse to only finitely supported entities as done preshg rather we will explicitly
assume this property whenever it is needed in proofs. Ongecprence is that we state our
basic definitions not in terms of nhominal sets (as done fomgta in [27]), but in terms of
the weaker notion of permutation types—essentially saigppgd with a “sensible” notion
of permutation operation.

The paper is organised as follow: Sec. 2 introduces the basians of the nominal logic
work adapted to our Isabelle/HOL setting. Sec. 3 first resialpha-equivalence for lambda-
terms and then gives a construction of an inductive setshajdctive with the alpha-equated
lambda-terms. Two structural induction principles forsteet are derived in Sec. 4. Recent
work by Pitts [27] is adapted in Sec. 5 to give a structuralirsion combinator for defining

1 Available fromhttp://isabelle.in.tum.de/nominal.



functions over the bijective set. Sec. 6 gives exampleatedlwork is mentioned in Sec. 7
and Sec. 8 concludes.

2 Atoms, Permutations and Support

In the lambda-calculus there is a single type of bindablegwimere denoted byame, whose
elements in the tradition of the nominal logic work we catibms While the structure of
atoms is immaterial, two properties need to hold for the typee: one has to be able to
distinguishing different atoms and one needs to know thatettare countably infinitely
many of them. This can be achieved in Isabelle/HOL by implaing the typename as
natural numbers or strings.

Permutations are finite bijective mappings fraame to name. They can be represented
as finite lists whose elements are swappings (i.e. pairsoafigt In what follows the type-
abbreviationname prm will stand for the type of permutations, that(isame x name) 1list,
and we will write permutations as

(al bl)(a2 b2) ce (an bn)

with the empty list]] standing for the identity permutation. The operation of erpéation
m actingon an atorm is defined as:

def

- a
*a=al 1
((a1 a2) )ea gef If Tea = as (1)
mea Otherwise

where(ab) :: 7 is the composition of a permutation followed by the swapgiag). The
composition ofr followed by another permutatios! is given by list-concatenation, written
asw'@r, and the inverse of a permutation is given by list reversatten asr 1.

Our representation of permutations as lists does not givguanrepresentatives: for
example, the permutatidfa ) is “equal” to the identity permutation. We equate the repre-
sentations of permutations with a relatien

Definition 1 (Permutation Equality) Two permutations arequa) written 7; ~ w2, pro-
videdr; «a = ma+a for all atomsa.

To generalise the notion given in (1) of a permutation actingan atom, we take ad-
vantage of the overloading mechanism in Isabelle by dexjaai constant, written infix as
(=)+(—), with the polymorphic typaame prm = a = «. A definition of the permutation
operation can then be given separately for each type-emtstr for lists, products, unit,



sets, functions, options and booleans the definitions aialaw/s:

d

0]

a list : o[l
me(z : t) def (mex) :: (mot)
def
ai Xxag: we(r,x2) = (Wew1, woT2)
. def
unit : me() = ()
a set : reX & {mez |z € X} (2)
al = as: wefn def Ae.me(fn (r7tex))
« option : we None def None

weSome(x) gef Some(mex)
bool : web def b
It will save much work later on toot establish properties for each of these permutation
operations individually, but reason abstractly over thgmeguiring that every permutation
operation satisfies three basic properties:

Definition 2 (Permutation Type) A typea will be referred to apermutation typewritten
pto, provided the permutation operation satisfies the follagatiree properties:

M) Oz =2
(II) (Trl@ﬂ'z)'I = 7T1°(Tr2°1')
(III) T ~ T ImplleS T1*T = To°T

These properties entail that the permutations operatibaves over permutation types as
one expects:

Lemma 1 Assuminge andy are of permutation type then:

() m te(mez) =2z,

(i) 7oz =yifandonly ifz = 7 1ey,
(iif) wex = weyifand only ifz = y, and
(iv) mez € e X ifand only ifz € X.

Proof The first property holds by Def.(Riii) since(r @) ~ [}, which can be shown by
an induction over the length af. The second property follows from the first. The third is a
consequence of the first and second. For the fourth one hasniodi the definition of the
permutation operation for sets and apply the third propernty

Using Isabelle’saxiomatic type-classd87], it is very convenient to ensure that a type is
a permutation type because most of the routine work can lberperd by the type-checking
algorithm of Isabelle: one only has to establish that somaséb types, such asame and
unit, are permutation types and that type-constructors, suphoasicts and lists, preserve
the property of being a permutation type. More formally weéa

Lemma 2 Givenptq, pta, and ptq,, the typesname, unit, o list, a set, a option,
a1 X az, a1 = as andbool are also permutation types.

Proof All properties follow by unwinding the definition of the cesponding permutation

operation and routine inductions. The propesty, ., Uses the fact that; ~ m» implies
—1 —1
7T1 ~ 7T2 .



Note that the permutation operation over a function-typg,c§ = «» with «; being a
permutation type, is defined so that for every functierwe have the equation

me(fnz) = (wefn)(mwez) ©)

in Isabelle/HOL; this is because we hawgle(rez) = = by Lem. Xi) andwefn =
Az.me(fn (x~Lex)) by definition of permutations acting on functions.

The most interesting feature of the nominal logic work ist the soon as one fixes a
“sensible” permutation operation for a type, then slupportfor the elements of this type,
very roughly speaking their set of free atoms, is fixed as.Wélé definition of support and
the derived notion of freshness is:

Definition 3 (Support and Freshness)The supportof z, written supp(z), is the set of
atoms defined as:

supp(z) d:ef{a | infinite{b | (ab)ex # x}}
where infinite(—) means that the set is infinifeAn atoma is said to befreshfor an z,
writtena # z, provideda ¢ supp(z).

Intuitively, this definition says that is fresh forz if and only if (ab)+z = z holds for all
but finitely manyb. Unwinding this definition and the permutation operationgg in (2),
one can often easily calculate the support for “finitary’rpetation types such as:

name : supp(a) = {a}
alist: supp([]) = @
supp(z :: xs) = supp(x) U supp(zs)

oy X oy supp((z1,22)) = supp(r1) U supp(r2) @)
unit : supp(()) = @
« option : supp(None) = @

(

(

bool : supp(b) = @

More subtle is the calculation of the support for “infinitapermutation types such as func-
tions and infinite sets. However, the use of the notion of stp@as opposed to the usual
notion of free atoms, is crucial for this work: the bijectset we describe in the next section
includes some functions, and for those it is far from obviadmt the definition of the set
of free atoms should be (the obstacle is to find an appropifiaition for free variables of
functions with type, say; = a2, in terms of the free variables for elements of the type
andas). Contrast this with the definition of permutation for fuiotts given in (2), which
is defined in terms of the permutation acting on the domaincaadomain of functions. It
will turn out that, albeit slightly unwieldy, Def. 3 coinad exactly with what one intuitively
associates with the set of free atoms for the functions wk séa

For permutation types the notion of support and freshnegs ¢n@od properties: we first
show thaé the support and the permutation operation comamat¢hat permutation preserve
freshness.

2 In Isabelle/HOL the predicaténfinite is defined as “not a finite set” with the predicate for a setdpein
finite defined inductively starting with the empty set and tyiag elements.

3 Pitts gives in [27] a simpler proof fofi), but in a more restricted setting, namely wheréas finite
support. Our lemma is more general as we only requite be of permutation type.



Lemma 3 For all z of permutation type:

(i) wesupp(z) = supp(mwez),
(i) a# wez ifand only if 7~'eq # z, and
(i) wea # wexifandonlyifa # = .

Proof The first property follows from the calculation:

e supp(z) dzefﬂ"-{a | infinite{b | (ab)ex # x}}
def {mea|infinite{b| (ab)ex # x}}
= {mea|infinite{mb| (ab)ex # z}} (+1)
= {a|infinite{b|(x Lea mteb)ex # x}}
= {a|infinite{b|me (7" oa nLteb)ex # wox}} (+%)
= {a|infinite{b| (ab)emex # wex}} def supp(mez)  (¥3)

where(x!) holds because the seig . ..} and{=+b|. ..} have the same number of elements,
and wherg*?) holds because permutations preserve by Léii). (In)equalities;(+®) holds
becauser commutes with the swapping, thati®(cd) ~ (rec w+d)Qn for all atomsc and

d. For the second and third property we have by Le(v)Xhata € supp(z) if and only if
mea € wesupp(x); they then follow from(i) and Lem. {i). O

Another important property of freshness is the fact thatdf atoms are fresh w.r.t. an el-
ement of a permutation type then the permutation swappiogettwo atoms in this element
has no effect:

Lemma 4 For all z of permutation type, if # = andb # z then(ab)sz = z.

Proof The casex = b is clear by Def. #,iii)) and the fact thataa) ~ []. In the other
case, the assumption implies that both Sgis(ca)ex # z} and {c|(cb)sz # z} are
finite, and therefore also their union must be finite. Heneectbrresponding co-set, that is
{c|(ca)ex =z A(cb)ex = x},is infinite (recall that there are infinitely many atoms)oitfe
picks from this co-set one element, sayhich can be assumed to be different frarandb,
one hagca)sx = x and(cb)sx = x. Thus(ca)+(cb)*(ca)+x = z. Under the assumptions
a # ¢, b # ca # b, the permutationgca)(cb)(ca) and(a b) are equal. Therefore one can

conclude with(a b)ez = z by using Def. Zii,iii) . O

A further restriction on permutation types filters out ath$le that contain elements with
infinite support:

Definition 4 (Finitely Supported Permutation Types)A permutation typex is said to be
finitely supportedwritten fs,, if every element af has finite support.

We shall writefinite(supp(z)) to indicate that an elementfrom a permutation type has
finite support. The following holds:

Lemmas Givenfs, fs, andfs,, the typesiame, unit, o list, @ option, ay X a2 and
bool are also finitely supported permutation types.

Proof Routine proofs using the calculations given in (4).



The crucial property entailed by Def. 4 is that if an elemealy z, of a permutation
type has finite support, then there must be a fresh atom, feince there are infinitely many
atoms. Therefore we have:

Proposition 1 If z of permutation type has finite support, then there existstama with
a # x.

As a result, whenever we need to have a fresh atom ferafrpermutation type, we have to
make sure that has finite support. This task can be automatically perfortmetsabelle’s
axiomatic type-classes for most constructions occurnmnigifiormal proofs: Isabelle has to
just examine the types of the construction using Lem. 5.

Prop 1 also implies that for every finitely supported funetéfresh atom exists. How-
ever, to determine whether a function has finite support iseraabtle, because not all func-
tions are finitely supported, even if their domain and codanaze finitely supported per-
mutation types (see [27, Example 3.4, Page 470]). Introdpaifinitely supported function
space and blending it well into Isabelle’s reasoning infrtagure seems impractical for rea-
sons how Isabelle is implemented. So for functions one hdstmually” ensure finite
support, which we shall do in Sec. 5 by introducing a weakeéionahat approximates the
support of an element from “above”.

3 Constructing a Representation for Alpha-Equated LambdaTerms

In this section we define an inductive set that is bijectivéhvthe set of alpha-equated
lambda-terms. In doing so our goal is to give in Isabelle/HDlormal implementation of
the usual convention (from Barendregt [5, Page 26]) emplaeplicitly or implicitly in
many informal proofs:

CONVENTION. Terms that arex-congruent are identified. So now we
write Az.z = A\y.y, etcetera.

We begin with defining “raw” lambda-terms. They can be defiimedabelle/HOL with
the datatype declaration:

datatypelam = Var ”name”
| App 7lam X lam” (5)
| Lam ”"name X lam’

Given the following permutation operation for lambda-term

meVar(a) def Var(mea)
meApp(t1,t2) def App(mety, weta) (6)
meLam(a,t) def Lam(mea, wet)

the datatypaam is a permutation type (routine proof by structural inducjicAs mentioned
earlier, fixing the permutation operation also fixes theortf support, which in case of
lam coincides with the set dall atoms occurring in a lambda-term. Hernes is a finitely
supported permutation type.

The notion of alpha-equivalence foam is usually defined as the least congruence of
the equatiorLam(a,t) =~ Lam(b,t[a := b]) involving a renaming substitution and a side-
condition, namely thab does not occur freely im. In the nominal logic work, however,



- t1 R sy 12 RS2 ~
Var(a) ~ Var(a) e App(t1,t2) ~ App(s1,s2) hee
L~ s N a#b tm(ab)es agfv(s)
Lam(a,t) ~ Lam(a,s) Lam(a,t) ~ Lam(b, )
a#b agfv(ty) adfv(ts)

———— fvyar £Vapp
a g fv(Var(b)) a ¢ fv(App(t1,t2))
oty FbeEnO)
a¢fv(Lam(a,t)) a & fv(Lam(b,t))

Fig. 2 Inductive definitions fo—) ~ (—) and(—) ¢ fv(—).

atoms are manipulated not by renaming substitutions, bpebyutations. This has a num-
ber of technical advantages (compare the technical sigstletf Doweket al [9] with the
approach in Urbaet al [35]), because permutations are bijections on atoms, weitlam-
ing substitution might identify some atoms. As a consegeafdthe bijectivity, a renaming
based on permutations preserves the binding structureoritrast, applying naively a re-
naming substitution one might identify an atom that is bowitt one that is free.

Using the permutation operation given in (6), alpha-edaivee foriam can be defined
in a simple and syntax directed fashion using the relatierns~ (—) and(—) ¢ fv(—)
whose rules are given in Fig. 2. Because of the "asymmetul& 1 .,.2, it might be sur-
prising, but:

Proposition 2 The relation is an equivalence relation.

The proof of this proposition is omitted: it can be found in arsmgeneral setting in Urban
et al [35]. (We also omit a proof showing that and=, coincide). In the following|t]a
will stand for the alpha-equivalence class of the lambdar-te that is[t] d:ef{ |t =t}
andlam/, for the set of lambda-terms quotient ky

Next we will define a sephi; inside this set we will subsequently identify (inductiyel
a subset, calledam,, that is in bijection withlam,.,. Since Isabelle/HOL supports sub-
set types, we can later tumem, into a new type. In order to obtain the bijectioshi
needs to be defined so that it contains elements corresgpmdughly speaking, to alpha-
equated variables, applications and lambda-abstraetitimat is to[Var (a)]a, [App(t1, t2)]a
and[Lam(a, t)]«. Whereas this is straightforward for variables and appboa, the lambda-
abstractions are non-trivial: for them we shall use s@pecific“partial” functions from
name O phi (by “partial” we mean here functions that retusfane for undefined values and
Some(z) for defined oneY. We therefore definghi as the Isabelle/HOL datatype:

datatype phi = Am ”name”
| Pr ”phi x phi” @)
| Se ”"name = (phi option)”

whereAm will be used to encode atomBi to encode applications, which are built up by
a pair of terms; ande to encode an alpha-equivalence class (that is a set) of .tdines

4 In Urban and Tasson [36] a special error-element was usetita $or undefinedness. However, the
approach based on the option-type turned out to be more e@mtdor building a nominal datatype package
in Isabelle/HOL.



permutation operation fgri is defined over the structure as follows:

meAm(a) def Am(7ea)
mePr(t1,t2) def Pr(mety, wets) (8)
meSe(fn) def Se(mwefn)

using in the last clause the permutations operation fortfons given in (2). It is not hard
to show thaphi is a permutation type (routine induction over the strucbfrghi-terms).

We mentioned earlier that we are not going to use all funstfodmname to phi option
for representing alpha-equated lambda-abstractionssdmie specific functions.These
functions are of the form:

[a].t %' \b. if @ = b then Some(t)

else if b # t then Some((ab)+t) else None

9)

and we will refer to them aabstraction functionstheir parameters are an atom angha-
term.

We claim that these functions represent alpha-equivalelasses. To see this, consider
[Lam(a, App(Var(a), Var(b)))]o and the correspondinghi-term Se([a].Pr(Am(a), Am(b))).
The graph of the abstraction function is as follows: the atoris mapped to the term
Some(Pr(Am(a), Am(b))) since the firsif-condition is true. Fob, the firstif-condition obvi-
ously fails, but also the second one fails, becauge (Pr(Am(a), Am(b))) = {a, b}; therefore
b is mapped tQVone. For all other atoms, we haven # c andc # Pr(Am(a), Am(b)); conse-
quently these’s are mapped by the abstraction functionS@ne((a c)«Pr(Am(a), Am(b))),
which is Some(Pr(Am(c), Am(b))). Clearly, the abstraction function returid&ne when-
ever the corresponding lambda-terrmi in the alpha-equivalence class—in this example
the lambda-ternbam(b, App(Var(b), Var(b))) ¢ [Lam(a, App(Var(a), Var(b)))]«; in all other
cases, however, it returns an appropriately “renamed’iweis Pr(Am(a), Am(b)).

To show formally that abstraction functions representa@lpuivalence classes, we first
establish how the permutation operation behaves on thostidns and then establish the
conditions under which two such functions are equal:

Lemma 6 All abstraction functions satisfy:

(i) me([a].t) = [rea].(met), and
(i) [a].t; = [b].t2 if and only if either:

a=bAt; =1t or a;éb/\tlz(ab)-tg/\a#tz.

Proof The first property follows from the following calculation:

5 This is in contrast to “weak” and “full” HOAS [8, 25] which ugke full function space for representing
lambda-abstractions.
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we[a].t

e reAb.if a = b then Some(t)

else if b # t then Some((ab)+t) else None

% \b. 7+if a = 7L eb then Some(t)
else if m leb # t then Some((a 7~ t+b)+t) else None

= A\b.if 7e(a = 71 +b) then Some(met) (+h)
else if we(mLeb # t) then Some(me(a 7~ tob)+t) else None

= A\b.if 7e(a = 71 +b) then Some(met) (*?)
else if we(n~Leb # t) then Some((wea b)em+t) else None

= A\b.if wea = b then Some(m+t) (+)
else if b # wet then Some((mwea b)*met) else None

def

= [mea].(mwet)
where we use in«{) the fact that
meif...then...else... = if 7we...then 7e...else 7e... (20)

and in(+?) thatw@(a m Leb) ~ (wea b)@r; for (+*) the facts thatrs(a = = Leb) iff
mea = bandme(r~teb # t) iff b # m-¢t, which can be easily derived from Lemmafi)l
and Jii) and the permutation operation ®bo1.

For the second property the case- b is by a simple calculation using extensionality of
functions. In case # b we show first the=--direction: the following formula holds then by
extensionality of functions:

Ve. if a = c then Some(t1)
else if ¢ # t1 then Some((ac)=t1) else None

= if b = c then Some(t2)
else if ¢ # to then Some((bc)sta) else None

Instantiating this formula witla yields the equation
Some(t1) = if a # to then Some((ba)+t2) else None .

Next, one distinguishes the cases whekg t, and—a # to, respectively. In the first case,
Some(t1) = Some((ba)e=ts), which by Def. Ziii) impliest; = (ab)sts since(ab)~(ba);
and obviouslya # t» by assumption. In the second ca%ene(t;) = None which gives
a contradiction. The=-direction for the case # b is similarly by extensionality and a
case-analysis. O

Note that, ingenera) one cannot decide whether two functions frasme to phi option
are equal; however for the abstraction functions Lefii) @rovides the means to decide
whether[a].t; = [b].t> holds: one just has to consider whetlere b, which is just like
deciding the alpha-equivalence of two lambda-terms udiege¢lation(—)~ (—) given in
Fig. 2. Now it is also clear why abstraction functions represalpha-equivalence classes:
the condition we derived for the equality between abstoadiinctions paraphrase the rules
RrLan1 aNd~Lan2 defining alpha-equivalence faam.

The properties in Lem. 6 also help us to calculate the sugpoethstraction functions,
provided they “abstract” over a finitely supportgihi -term.

Lemma 7 Givena # b andt being finitely supported, then

(i) a # [b].t if and only ifa # ¢, and
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(i) a # [a].t

Proof By a simple calculations we have thatpp([b].t) C supp(b,t) because for akt and
d we have{d|(cd)-[b].t # [b].t} C {d]|(cd)=(b,t) # (b,t)}. Sinceb andt are finitely
supported[b].¢ must be finitely supported. Hence, b, ¢, [b].t) is finitely supported and by
Prop. 1 there exists an atanwith () ¢ # (a, b, ¢, [b].t).

Now we show the directioffi =-): using the assumption # [b].t and the fact that
¢ # [b].t (from x), Lem. 4 and @) give [b].t = (ca)+[b].t = [(ca)+b].((ca)st). The right-
hand side igb].((ca)+t) because: # b (from %) anda # b by assumption. Hence by
Lem. i) we can infer that = (ca)st. Now ¢ # t (from =) implies thatc # (ca)-t;
and moving the permutation to the other side by Lefi) 3jivesa # t. The direction
(i <) is as follows: from €), we have that # [b].t and therefore by Lem.(Bi) also
(ac)ec # (ac)+(b].t), which implies by Lem. @) thata # [b].((a c)+t). From ) we also
havec # t and from the assumptian+# ¢; then Lem. 4 implies that= (a c)+t, and we can
conclude witha # [b].t.

The second property follows from the first: we havg t andc # a (both fromx), and
can usdi) to inferc # [a].t. Further, from Lem. @ii) it holds that(ca)sc # (ca)e[a].t. This
iSa # [c].(ca)+t by Lem. ). Sincec # a andc # ¢, Lem. §ii) implies that[c].(ca)t =
[a].t. Thereforea # [a].t. O

Note that taking both facts of Lem. 7 together implies théofeing equation for the support
of abstraction functions

supp([a].t) = supp(t) — {a} (11)

providedt is finitely supported.
Now everything is in place for defining the subgeh, . It is defined inductively by the
three rules:

tl € lamg t2 € lamg t € lamy
Am(a) € lamq Pr(t1,t2) € lamqy Se([a]-.t) € lamq

12)

using in the third rule the abstraction functions given in @e note:

Lemma 8 For the setlam, we have that:

(i) allits elements are finitely supported, and
(ii) itis closed under permutations, thatise lam, implieswst € lam,.

Proof Both properties follow by routine inductions over the defom of 1am, . For the first
induction we use the equations

supp (Am(a)) = {a}
supp(Pr(t1,t2)) = supp(t1) U supp(ta) (13)
supp(Se([a].t)) = supp(t) — {a}

where the last follows from (11)+ds finitely supported by induction hypothesis; for the
second we use Lem(ip. O
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Next, one of the main points of this paper: there is a bijeckietweerLam ., andlamq.
This is shown using the following mapping froram to 1amg,:

¢(Var(a)) £ am(a)
g(App(ti, t2)) L Pr(g(t1),q(t2))
g(Lan(a, ) £’ se((al.q(t)

and the lemma:

Lemma9 t; ~ ty if and only ifq(t1) = q(t2).

Proof By routine induction over definition dfam,. 0O

Theorem 1 There is a bijection betweerum, ., andlam,.

Proof The mapping; needs to be lifted to alpha-equivalence classes (see Rdakp. For
this defineg’([t]«) as follows: applyy to every element of the séf, and build the union
of the results. By Lem. 9 this must yield a singleton set. Témult of¢’([t]) is then the
singleton. Surjectivity ofy’ is shown by a routine induction over the definition 1afn,, .
Injectivity of ¢’ follows from Lem. 9 sincét]o = [t2]o forallty ~t2. O

We definedLam,, as an inductive subset pfii and showed that there is a bijection with
lam/,,. We can now apply standard HOL-techniques and turrséteam, into atypelamy
of HOL (see for example the Isabelle tutorial [21, Sec. §.6r2Melham [19, 20] for more
details). The construction we can perform in HOL is illugtchby the following picture:

isomorphism
pyepvg lamgy — Gam)

nop-empt:
SUESGT Pty

phi ] existin
type g

We are allowed to introduce the typem, by means of identifying a non-empty subset in
the existing typephi (this type was introduced by the datatype declaration ihgAll an
isomorphism, which we write here &s-7. The properties of the typeam, are then given
by the isomorphism and how the subzeh, is defined. For example we can characterise
term-constructors of the typiem, as follows:

"Varq(a)™ — Am(a)
'_Appa (t17t2)_| = Pr(l—tl_‘) I—tz_‘) (14)
FLama(a, )" — Se([a].7t7)

with the following “injection” principles

Vary (a) = Varq (b) iff a=0b
Appa(tl)tZ) = Appa(sl7 82) Iff tl = S1 A t2 = 52 (15)
Lama(a, tl) = Lamy (b, tz) iff [a].t1 = [b].tz

and the support behaving as follows:
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supp(Vara(a)) = {a}
supp (App, (t1,t2)) = supp(t1) U supp(t2) (16)
supp(Lama(a, t)) = supp(t) — {a}
Since by Lem. @i) the permutation operation is closed on the s&t,, we can also lift
the permutation operation defined oyt to the new type so that the following properties
hold:
meVary(a) = Varg(mwea)
meApp, (t1,t2) = App, (mety, mot2) (17)
meLama(a,t) = Lamg (7wea, wot)

We can further show that:

Lemma 10 The typelam, is a (i) permutation type and (ii) all its elements are finjtel
supported.

Proof By routine induction the over definition afam,. For (i) we lift the property ofphi
being a permutation type tam,, using Lem. &ii); for (ii) we use (16). O

The crux of constructing the new typem,, is that we now have an Isabelle/HOL-type where
lambdas are equal provided

Lamq (a,t1) = Lamq (b,t2) if and only if either

(18)
a=bAt; =t or a;éb/\tlz(ab)-tg/\a#tz.
and freshness of a lambda is given by:
a # Lamy (b, t) if and only if either
a(b,t) (19)

a=1» or aFbNaF#t.

In effect we have achieved what we set out at the beginningisfsection: we have a for-
mal implementation of Barendregt’'s convention about iiging alpha-equivalent lambda-
terms.

4 Structural Induction Principles

The inductive definition of the satam, given in (12) comes with an induction principle.
From this induction principle we can derive the followingusttural induction principle for
the typelamy:

Va. P (Varq(a))
Viity. Pty A Pty = P (App,(t1,t2))
Vat;. Pt; = P (Lamg(a,t1))
Pt (20)

However, this structural induction principle is not veryngenient in practice. Consider
again Fig. 1 showing a typical informal proof involving lad@terms. This informal proof
establishes the substitution lemma by considering in thébtka-case only binders that
have suitable properties (namely being freshafpy, N and L). If one would use for this
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proof the induction principle given above, then one wouldd® show the lambda-case for
all z, not just the ones being suitably fresh. This would mean asgd rename binders and
establish a number of auxiliary lemmas concerning suchmergs.

In this section we will derive an induction principle whictioavs a similar convenient
reasoning as in Barendregt's informal proof. This induttminciple is as follows:

Vca. P (Vary(a)) c
Vetits., (Vd. Pty d) A (Vd. Pty d) = P (App,(t1,t2))
Veaty. a#c A (Vd. Pty d) = P (Lamp(a,ti))c
Ptc (21)

where the variable in the conclusion stands forlam,-term over which the induction is
done and the variablestands for theontextof the induction. By the context of an induction
we mean all free variables of the lemma to be shown by indagcéacept the variable over
which the induction is performed. We also assume that théegors of finitely supported
type. In case of the substitution lemma from Fig. 1, for exemywe have

Mz := N]ly := L] = M[y := L][x := N[y := L]]

with M being the variable over which the induction is done. So iis tase, the con-
text ¢ would be instantiated with the other free variables in tei®iina, namely the tuple
(z,y, N, L)—which is of finitely supported type. When it comes to prove limbda-case,
that is

P (Lama(z, M1)) (x,y,N, L)

one can assume in (21) that the bindes fresh for(z, y, N, L)—which is equivalent ta
not being equal ta andy, and not free iV and L. As we shall see later, with this induction
principle one can formalise Barendregt’s slick informadgdrwithout difficulties.

In the following we shall establish a slightly more genermailsion of the induction prin-
ciple givenin (21). In the generalised version we requied the induction context is finitely
supported, but not necessarily has finitely supported type.

Theorem 2 (Strong Induction Principle) A property P ¢ ¢ holds for allt terms of type
lam, provided for a givery

(i) Ve. finite(supp(fc)),

(i) Vca. P (Vara(a))c,
(iii) Vetite. (Vd. Pt1d) A (Vd. Ptad) = P (App, (t1,t2)) ¢, and
(iv) Vcati. a# fc A (Vd. Pt; d) = P (Lamp(a,t1)) c

hold.

Proof By induction overt using (20). We strengthen the induction hypothesis by amin
to proveVrc. P (wet)c. The cases fovar, andApp,, are routine. The interesting case is
Lam,: We need to show tha® (reLamq(a,t1)) ¢, wherersLamq (a,t;) = Lamg (7ea, wot1)

by (17). Since by(i) fc is finitely supported, and by Lemmas 4 and 10 aisa and
wet1, We can use Prop. 1 to obtainbavith b # (f ¢, wea,wt1). From this we can infer
thatb # mea andb # wet;, which implies by (18) thatx) Lama (b, (b mwea)=(7wet1)) =
Lamq (mea, wet1). From the induction hypothesis, whichV& c. P (7+t1) ¢, we obtain the
factVe. P (((b wea)@m)st1)c. Then we can use the fadt# fc and(iv), and infer that
P (Lamq (b, ((b wea)@mr)«t1)) c holds. Moreover this is by Definition(&) equal to the fact
P (Lamy (b, (b wea)+(met1))) c. By (x) we can conclude witl® (Lamy (rea,wet1))c. O
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If we setin Thm. 2f to the identity-function and require thahas finitely supported type,
we can discharge conditidi) in and obtain the structural induction principle statedh)(
The advantage of (21) is that Isabelle’s axiomatic typesdasan be used to ensure that the
induction context is a finitely supported type, while theuation principle proved in Thm. 2
requires manual reasoning to ensure the finite support pyoptowever, we will need the
more general induction principle in the next section wheeederive a recursion combinator
for 1amg.

5 A Recursion Combinator

Before we can formalise Barendregt's proof of the substitulemma, we need to be able
to define the function of capture-avoiding substitutionisidan be done by first considering
an appropriately defined relation and then showing thatééion behaves like a function.
This has been done in Urban and Tasson [36]. However, thissvagher inelegant. More
elegant is a definition by structural recursion.

It turns out that defining functions by recursion over theictiire of alpha-equated
lambda-terms is rather subtle. Let us assume we want to defptare-avoiding substitution
by the following three clauses

Vary (z)[y := t'] = (if = = y thent' elsevarqy(z))
App,, (t1,t2)ly := t'] = App, (t1[y := ] taly :=#])
Lamq (z,t)[y := t'] = Lamq (x, t[y := t]) providedz # (y,t')

where the side-condition in the lambda-case amounts tostii@ gondition about # y and

x not being a free atom itl. Then defining it oveflam, results in a total function, while
defining it over “raw” lambda-terms of typeam results in a partial function. Furthermore,
attempting to define the functions that return the set of Hoteimes and the immediate
subterms by the clauses

bn(var.(z)) = @ ist(Varq(z)) = @
bn(App,, (t1,t2)) = bn(t1)ubn(tz) ist(App,(t1,t2)) = {t1,t2} (22)
br(Lama (z,£)) = bn(t)U{z} ist(Lama (2,1) = {t}

results in an inconsistency when defined avet, , while it can be defined without problems
over lam. The inconsistency witlon andist arises by the principle of HOL stating that a
function has to return the “same ouput” for the “same inp8ihce by (18) we have

Lamy (z,Varq(z)) = Lamy (y, Varqe(y))

for all x andy, we can assume that this equation holdsifef y. Thenbn(Lamy (z, Varq(z)))
must be equal tbn(Lam, (y, Var« (y))), which implies by the clauses in (22) thatnust be
equal toy giving a contradiction with the assumptien# y—similar with the functionist.
One way around the problem with the inconsistencies is twelarecursion combinator
for 1am, that includes certain preconditions for binders ensuriogneconsistency can be
derived. For this we will adapt work by Pitts [27] who intrashd such preconditions. We
will also adapt his proof establishing the existence of acstrral recursion combinator for
lam,. The main difference of our proof is that we give here a dipgobf for the existence,
because in our implementation we do not use anywhere thelypégPitts useslam to
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derive a structural induction principle). Another diffaoe is that we derive the recursion
combinator without deriving an iteration combinator fftst.

While in “every-day” formalisation, Lem. 4 is sufficient irearly all situations to find
out when an object has finite support, the reasoning for the&sen combinator includes in
several places proof obligations about ensuring that fansthave finite support. And for
functions one cannot find out whether they have finite sugppjtist looking at their type.
In order to automate such proof obligations we use the auyitiotion ofsupportg11].

Definition 5 A setS of atomssupportsan z of permutation type, writter$ supports x,
provided:
Vab.ag SADES = (ab)ex==z.

This notion allows us to approximate the support ofraftom “above”, because we can
show that:

Lemma 11 If a setS is finite andS supports x, thensupp(z) C S.

Proof By contradiction we assumeipp(z) € S, then there exists an atome supp(x)
anda ¢ S. FromS supports x follows that for allb ¢ S we have(a b)sx = z. Hence the set
{b| (ab)ex # z}is a subset of, and sinces is finite by assumption, als@ | (ab)ex # =}
must be finite. But this implies that¢ supp(z) which gives the contradiction.O

Lem. 11 gives us some means to decide relatively easily whethunction has finite sup-
port: one only needs to find a finite set of atoms and then verifgther this set supports
the function.

If the function is given as a lambda-term on the HOL-levegritor finding a finite
set we use the heuristic of considering the support of the ¥egiables of this functions.
This is a heuristic, because it cannot be established asradenside Isabelle/HOL—it is a
property about HOL-functions. Nevertheless the heuristextremely helpful for deciding
whether a function has finite support. Consider the foll@nino examples:

Example 1Given a functionfn def f1 ¢ where f; is a function of typename = a. We

also assume thay has finite support. The question is whetlferhas finite support? The
free variables offn are f; andc. According to our heuristic we have to verify whether
supp(f1,c) supports fn, which amounts to showing that

Vab. a & supp(fi,c) A b ¢ supp(fi,c) = (ab)efn = fn

To do so we can assume by the definition of freshness (Def.@)tht (f1,c) andb #
(f1, c¢) and show thata b)«fn = fn. This equation follows from the calculation that pushes
the swappinda b) inside fn:

(@b)+fn & (@b)+ (£ o) "2 (ab)+ £1) ((ab)oc) 2 1 c & fa

where(x) follows because we know that# f; andb # f1, and therefore by Lem. 4 that
(ab)e f1 = f1 (similarly for ¢).

We can conclude thatupp(fn) is a subset obupp(f1,c), because the latter is finite
(sincef1 has finite support by assumption anis finitely supported because the tyipene
is a finitely supported type). So by Lem. I, must have finite support.0

6 The difference between a recursion and an iteration corttifgthat in the former we can use directly
the arguments of the term constructor, while in the lattes tian only be achieved via an encoding of the
recursion.
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Example 2Let fn' e N if & = y thent' else(Varq (z))—wherex andy are of typename
andt’ alam,-term. The free variables of this HOL-function ayandt’; so by our heuristic
we need to verify whethetupp (y,t') supports fn'. This holds by the following calculation:

(ab)s(\z. if z = y thent' elseVarq(z))

Az. (ab)e«(if (ab)"Lex =y thent’ elseVar, ((ab) tex))

z.if z = (ab)ey then(ab)-t' thenvar, (z) by (10)
Az. if z =y thent’ elseVarq (z) (%)

Q.
I lle
)

where(x) follows by Lem. 4 and the assumption that# (y,t') andb # (y,t'). Sincey
andt’ are finitely supported typeg;’ must then have finite supportD

As the examples indicate, by using the heuristic, one can inbm a decision problem
involving permutations whether or not a function has fini@ggort. The important point
here is that the decision procedure involving permutattamsbe relatively easily automated
with a special purpose tactic analysing permutations. 3éésns much more convenient than
analysing the support of a function directly.

A definition by structural recursion involves in case of tambda-terms three functions
(one for each term-constructor) that specify the behawbtine function to be defined—Iet
us call these functiong;, f», f3 for the variable-, application- and lambda-case, respec-
tively, and let us assume they have the types:

f1 : name = «
f2 :lamy = lamy > a=> a = «
f3 : name = lamy, = a = «

with o being a permutation type. Then the first condition Pittsdtrced in [27] states that
f3—the function for the lambda case—needs to satisfyfrbghness condition for binders
or shortFCB. We formulate this condition &s:

Definition 6 (Freshness Condition for Binders)
A functionf with typename = lam, = a = « satisfies thé-CB provided:

VYatr.a # f A finite(supp(r)) = a # fatr.

As we shall see later on, this condition ensures that thdtresy; is independent of which
particular fresh name one chooses for the bindefhe second condition states that the
functionsfy, fo and f3 all must have finite support. This condition ensures that aveuse
Prop. 1 when choosing a fresh name for fise

With these two conditions we can derive a recursion combmate call itrfun ¢, 1, ¢,
with the following properties:

Theorem 3 (Recursion Combinator) If f1, fo and f3 have finite support angs satisfies
the FCB, then there exists a recursion combinatfan f, r, r, With the properties:

rfung, r, r; (Vara(a)) = fia
Tfunflfzfs (App, (t1,t2)) = fatita (Tfunflfzfa t1) (rfunf1f2f3 t2)
Tfun g, . 1 (Lama(a,t)) = fsat (7‘funf1 fofs t)

provideda # (f1, f2, f3)

7 We use a different version of the FCB than actually introdubg Pitts. We shall show later that our
version and one that closely resembles his are interdégivab
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To give a proof of this theorem we start with the following irative relation, calledec ¢, ¢, r,
and which has typélam, x a) set where, like abovey is assumed to be a permutation type:

(tl,rl) € TECE, fofs (t2,7“2) € TECF, fofs
(Varq(a), f1 a) € recy, 1,5, (App, (t1,t2), fatitarima) € Tecy, 1, 1,

(23)
a#(fl:f27f3) (tar)erecflfzfa

(Lamg(a,t), fzatr) € recy, 1, 1,

We shall show next that the relatioac, f, r, defines a function in the sense that for
all lambda-termg there exists a unique so that(t,r) € recy, 1, . From this we can
again use standard techniques of HOL to obtain a functian fram,, to o (see for example
Slind [28]). We first show that imecy, ¢, 7, the “result”+ has finite support provided the
functionsfy, f andfs have finite support.

Lemma 12 (Finite Support) If f1, f» and f3 have finite support, theft,r) € recy, , 1,
implies that- has finite support.

Proof By induction over the relation defined in (23). In the varebhse we have to show
that f1 a has finite support, which we inferred in Example 1 using owriséic. The appli-
cation and lambda-case are by similar calculatiorns.

In the proof of Thm 3, we need the following lemma establighimatrec ¢, ¢, ¢, is equivari-
ant (see Pitts [26]).

Lemma 13 (Equivariance)If (t,r) € recy, , ¢, holds then for allr, also (ret,mer) €
TEC(re f1)(re f2)(r f) NOIOS.

Proof By induction over the rules given in (23). All cases are noatby pushing the permu-
tation into t andr, except in the lambda-case where we have to apply Lii). B order

to inferrea # (W.fl77r'f277r.f3) froma # (f17f27 f3) a
Next we can show the crucial lemma abety, f, r, being a “function”.

Lemma 14 (Existence and Uniquenes$l f1, f> and f3 have finite support angi satisfies
the FCB, ther!r. (t,7) € recy, 4,4, -

Proof By the induction principle given in Thm. 2, where we set thechion f to the constant
function \_.(f1, fo, f3) and the induction contextto unit.® Condition(i) of Thm. 2 holds
because by assumptigh, f> and f3 have finite support. The only non-routine case then is
the lambda-case with showing thélt-. (Lama (a, t),7) € recy, ¢, ¢, holds. This is difficult,
because for lambdas we do not have injectivity (see (18). @roof in this case proceeds
as follows.

The induction principle allows us to assume tha# (f1, f2, f3), therefore the “ex-
istential” part of the lemma is immediate. In the “uniquesiesart we have to show that
if (Lama(a,t), fsatr) € recy, s, and also(Lama (b, t'), f3bt'r') € recy, 1,4, With the
equationLamy (a,t) = Lamg (b,t'), thenfs atr = f3bt' ' holds. By rule inversion we can
assume thatt # (f1, f2, f3) and that there exists afisuch tha(t',r’) € recy, 1, s, further
by the induction we know there is a uniqusuch that(t,r) € recy, ¢, #,. Now we show the
following 6 facts:

8 For this induction we cannot use the more convenient indogtrinciple shown in (21), because func-
tions do not have finitely supported type.
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(i) From (t,r) € recy, r, 7, and (',r") € recy, s, 7, We can infer by Lem. 12 that
and+’ are finitely supported. Therefore we can apply Prop. 1 toiokgta with ¢ #
(f1, fo, f3,t,t',r,r', a,b)—all variables in the tuple have finite support.

(i) From (19) we have thai # Lamq(a,t) andb # Lama(b,t'). With (i) we can further
infer thatc # Lama(a,t) andc # Lamq(b,t'). From the assumptiobamq (a,t) =
Lamq (b, t'), we can then use Lem. 4 to deriec)sLamy(a,t) = (bc)eLamq(b,t'),
which implies thatLam, (¢, (a c)+t) = Lamy(c, (ac)+t'); hence by (18) thata c)«t =
(be)st'.

(III) From (t,T’) € TeCt fo f3r (t’,T’) € TeCt fofs O 7# (fl,fz,fg) andb # (fl, f2, f3), we
can infer by Lem. 4 and 13 théta c)+t, (ac)sr) € recy, f, ¢, @and((be)st’, (be)er') €
recy, f, - Since by induction hypothesr. (t,7) € recy, r, r, We also have the fact
that3!r. ((ac)st,r) € recy, 1, 1,. Thus we can use (ii) to infer théa c)»r = (bc)-r'.

(iv) Using the FCB forf; and knowing that: # f; andb # f; as well asr andr' are
finitely supported (from (i)), we can infer that# f3 atr andb # f3 bt' ' hold.

(V) Sincesupp(fs,a,t,r)supports(fs3atr)and since: # (fs,a,t,r) (from (i)), we know
by Lem. 11 that: # f3 a tr holds. Similarly we can infer that# f3 b¢' ' holds.

(vi) Finally, in order to show thaf; atr = f3bt' ' holds, it suffices by Lem. 4 and the
facts derived in (iv) and (v) to show thétc)«(fzatr) = (bc)+(f3 bt' r') holds. This
inturn is by (3) equivalent tgs ¢ ((ac)+t) ((ac)er) = fac((be)=t') ((be)=r'). By the
facts derived in (ii) and (iii) we have that these terms adeéed equal. O

To prove our theorem about structural recursion we defiee, f, r, t to be the unique so
that(t,r) € recy, 1, ,- This is a standard construction in HOL-based theorem [psoitan-
volves the HOL's definite description operator (see Isa&tstutorial [21, Sec. 5.10.1]). The
characteristic equations foffun ¢, r, s, are then determined by the definition @k, 1, s,
given in (23). This completes the proof of Thm. 3.

As mentioned earlier, the FCB we use differs from the oneothiced by Pitts. He
defines this notion as follow’:

Definition 7 (FCB’) A functionf with typename = lam, = « = « satisfies th&CB’ pro-
vided:
Ja.a # f N (Vtr. finite(supp(r)) = a # fatr).

It can be shown that in all cases where the recursion contrirsapplied both versions of
the FCB are interderivable.

Lemma 15 Providedy is finitely supported, then the FCB holds if an only if the FG8Ids.

Proof (=) Sincef is finitely supported, we can choose using Prop. 1 an at@uch that
a # f. With this we can instantiate the FCB and obtdin. finite(supp(r)) = a # fatr
as we have to show<) We have that: # f and finite(supp(r)) and need to show that
a # fatr.Bythe FCB’ we have an atoml such that' # f andVtr. finite(supp(r)) =
o' # fa'tr. Sincefinite(supp((aa’)~ter)) if an only if finite(supp(r)), we can infer
a' # fa' ((aa')™1+t) ((aa’)~ter). By Lemma i) we can apply on both sides gf the
swapping(a ') and obtain

a# fa((aa')+(aa)" ot) ((aa’)+(aa’) " or)
which by Lem. 1i) is equivalent ta: # fa t r—the fact we had to show.O

9 His definition of the FCB does not actually incluiite(supp(r)), because he considers only finitely
supported objects, and also does not include the quaritificavert as he derives an iteration, rather than a
recursion combinator.
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The reason that we prefer our version of the FCB is that whesibkshing a universal
quantified formula, Isabelle/HOL will just introduce an eigvariable and then proceed to
prove the “rest”. This is in practice easier than generagirfigesh atom and then instantiate
the existential quantifier in the FCB’.

6 Examples

Finally, we can start to formalise Barendregt’s informabgdr of the substitution lemma
(Fig. 1). All the constructions of the previous 3 sectionsulgodue to their complexity, be
of only academic valudf we can not automate them and hide the complexities from the
user. However, we can! We shall illustrate this next.

The typelam, can be defined in Isabelle/HOL using the nominal datatyp&aupe by
the two declarations:

atom_decl name

nominal _datatype lamy, = Var, “name”
| App, ”lamq X lamg”
| Lamy 7 ¢name)lamy”

where the first declaration establishes the tyjse with the properties described in Sec. 2;
in the second declaratian. .. » indicates that a name is boundtiam, . With this informa-
tion the nominal datatype package performs automaticaéycbnstruction we described in
Sec. 3 and also automatically derives the structural indiigirinciples from Sec. 4 and the
recursion combinator from Secvéthoutany user interference. Furthermore, this package
derives this reasoning infrastructure even for more caraf®d term-calculi that have more
than one binder and binders may have different types.

After the declaration, we can then use the recursion cortdnirta define the capture-
avoiding substitution function by stating the followingazhcteristic equations:

Varg(z)[y :=t'] = (if =y then t' else Vary(z))
Appq (tr, t2)y :=t'] = Appy(tily := 1], taly :=1t']) (24)
T # (y,t') = Lama(z,t)[y :=t'] = Lama(z,ty :=t'])

where in the clause faram, the precondition: # (y,t") corresponds to the usual condition
thatz # y andz is not free int’. Internally the nominal datatype package extracts the
following functions for capture-avoiding substitution:

def

spyt' Az. if = y then t' else Vary(z)
soyt' def At1tar1 ra. App,, (12, r1)
syt e \etr Lamy (z,T)

In order to apply Thm. 3 with the instantiatioffun ., ¢/ (s, y¢/) (s5 y /), 1520EllE first
needs to determine whether the result type of the functioam ermutation type. Since
substitution returns aam,-term, it can use Lem. 1) and automatically determine this
fact. Next Isabelle asks the user to verify the preconditiohThm. 3 about the functions
(s1yt'), (s2yt') and(sz yt') having finite support. It turns out that all of them are supgar
by the setupp(y, '), which is finitely supported because of Lem. 5 (this can berdgined
automatically by Isabelle). To verify whetheipp (y,t') supports (s1 yt') holds, the tactic
finite_guess does automatically the calculations shown in Example 2 aniiss ones for
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the casegsz yt') and (s3 yt'). Next Isabelle asks the user to verify the FCB fes y t')
which amounts to showing that

Yatr.a# (s3yt') A finite(supp(r)) = a # Lama(a,r)

holds. This can be done by a simple application of the prgpgven in (19). Last, Isabelle
asks the user to verify that the precondition of the recarsmmbinator in the lambda-case,
namely thatr # (syyt',s2yt',s3yt’) is implied by the preconditior # (y,t') given

in (24). Since, as indicated earlier, all these functiomssapported byupp(y,t'), Isabelle
can determine this automatically with the help of a tactitisTcompletes the definition of
capture-avoiding substitution. The Isabelle code forithis

consts
subst :: "lam, => name = lam, = lam," ("_[_:=_1" [100,100,100] 100)

nominal_primrec
"Vary (x) [y:=t’] = (if x=y then t’ else Var,(x))"
"Appqa (t1,t2) [y:=t’] = Appq (t1[y:=t’1,t2[y:=t’1)"
"x# (y,t’) = Lamg (x,t)[y:=t’] = Lam, (x,t[y:=t’])"
by (finite_guess+,(rule Truel)+, simp add: abs_fresh, fresh_guess+)

where in the first two lines we declare the type of the sulisditufunction and introduce
nicer syntax for writing this function. The line startingttvby contains the proof for show-
ing that the characteristic functions of substitution anitdély supported, that the FCB is
satisfied and that the preconditian (y,t’) is sufficient for instantiating the recursion
combinator.

Having the substitution function at our disposal, we can riomnalise Barendregt's
proof of the substitution lemma. First we have to formaltsefact thate ¢ FV (L) implies
L[z := P] = L whose proof is omitted by Barendregt.

Lemma 16 (Forget)lf = # L thenL[z := P] = P.

Proof The proof proceeds by induction ovérusing (21) withe instantiated tqz, P). In
the variable case we have to show that. (y)[z := P] = Varq(y) under the assumption
thatz # Var.(y). This assumption is equivalent to# y, which is in turn equivalent to
x # y, allowing us to apply (24) to prove this case. In the lambaseove have the induction
hypothesisvz P. « # L1 = Li[z := P] = Ly and have to show thatam (y, L1 )[z :=
P] = Lama(y, L;) under the assumption that # Lam.(y,L;) holds. The induction in
allows us further to assume that# (z, P)—(z, P) is the induction context and the point
of (21) is that we can assume the binder is fresh w.r.t. thigeod. Therefore we can move
the substitution under the binder, namei, (y, L1 )[x := P] = Lamq (y, L1 [z := P]), and
also infer by (19) that # L,. This allows us to apply the induction hypothesis and we are
done. The application case is trivialO

Using Isabelle’s automatic proof-tools one can formaligse proof with:

lemma forget:
assumesa: "x #L"
shows "L[x:=P] = L"
using a by (nominal_induct L avoiding: x P rule: lam,.induct)
(auto simp add: abs_fresh fresh_atm)

whereabs_fresh corresponds to the property given in (19) and the lemifeah_atm to the
fact that for atoms: andy, = # y holds if and only ifr # y. The methocthominal_induct
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(see Wenzel [38]) brings the induction principle, calleg, . induct, automatically to the
form needed in (21)—we only have to state over which varidideinduction is done and
what the induction context is, that is the variables to avoid

Next we need to show a lemma whose need is not immediatelyremphy looking
at Barendregt's informal proof. However, in the lambdaecegere Barendregt pulls out a
substitution from under the binder, namely in the step

Az.(Mi[y := L][z := N[y := L]]) = (Az.M1)[y := L][z := Ny := L]]

we need to know that is not free inN[y := L]. But by the variable convention we only
know thatz is not free inNand L. In a formalisation, this fact needs to be established
explicitly. It can be done in Isabelle with

lemma fresh_fact:
fixes z: :"name"
assumesa: "z #N" "z #L"
shows "z #N[y:=L]"
using a by (nominal_induct N avoiding: z y L rule: lam,.induct)
(auto simp add: abs_fresh fresh_atm)

wherez needs to be given an explicit type-annotation so that Is&abeh determine its type.
The substitution lemma can now be formalised with:

lemma substitution_lemma:
assumesa: "xF#y" "x#L"
shows "M[x:=N][y:=L] = M[y:=L][x:=N[y:=L]]" (25)
using a by (nominal_induct M avoiding: x y N L rule: lam, .induct)
(auto simp add: fresh_fact forget)

A formalised proof of this lemma mentioning much more dstalshown in Fig. 3.

Other proofs we formalised in a similar fashion are the ChtRosser proof from
Barendregt [5, pp. 60—62] and [29], the strong normalisggimof given in Girarcet al[12,
pp. 42-46], the strong normalisation proof for cut-elintioa from Urban [31], the correct-
ness proof of the type-inference algorithm W from Leroy [, 26—31] and the logical re-
lation proof for algorithmic equality between simply-typlambda-terms given in Crary [7,
pp. 223—-244] and between LF-terms given by Harper and Rigrini[15]. These proofs are
more complicated than the proofs we have given above and swed manual reasoning.
All proofs are included in the distribution of the nominakatype package available from

http://isabelle.in.tum.de/nominal/

7 Related Work

There are many approaches to formal treatments of bindessseéction describes the ones
from which we have drawn inspiration and also work reporteAinbleret al[1], Aydemir
et al[2] and Homeier [16].

Our work uses many ideas from the nominal logic work by Rittal [26,11,27]. The
main difference is that by constructing, so to say, an eipliodel of thea-equated lambda-
terms based on functions, we have no problem with the axioahaite. This is important.
For consider the alternative: if the axiom-of-choice caugeonsistencies, then one cannot
build a framework for binding on top of Isabelle/HOL with fish reasoning infrastructure.
One would have to base the implementation on a lower leveivandd have to redo the
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lemma substitution_lemma:
assumesa: "x#y" "x#L"
shows "M[x:=N] [y:=L] = M[y:=L] [x:=N[y:=L]11"
using a
proof (nominal_induct M avoiding: x y N L rule: lam,.induct)
case (Vary, z) (Case 1: variables
show "Var, (z) [x:=N][y:=L] = Var,(z)[y:=L][x:=N[y:=L]11" (is "?lhs=7rhs")
proof -
{ assume "z=x" (Case 1.1
have 1: "?lhs = N[y:=L1" using ‘z=x‘ by simp
have 2: "?rhs = N[y:=L1" using ‘z=x‘ ‘x#y‘ by simp
from 1 2 have "?lhs = ?rhs" by simp

}
moreover
{ assume"z=y" and "z#x" (Case 1.2
have 1: "?lhs = L" using ‘z#x‘ ‘z=y‘ by simp
have 2: "?rhs = L[x:=N[y:=L]1]" using ‘z=y‘ by simp
have 3: "L[x:=N[y:=L]] = L" using ‘x#L‘ by (simp add: forget)
from 1 2 3 have "71hs = ?rhs" by simp
}
moreover
{ assume"z#x" and "z#y" (Case 1.3

have 1: "?lhs = Var, z" using ‘z#x‘ ‘z#y‘ by simp
have 2: "?rhs = Var, z" using ‘z#x‘ ‘z#y‘ by simp
from 1 2 have "?lhs = ?rhs" by simp

ultimately show "?1hs = ?rhs" by blast

ged
next
case (Lamy z Mjp) (Case 2: lambdas
have ih: "[x#y; x#L] = Mi[x:=N][y:=L]1 = M;[y:=L][x:=N[y:=L]11" by fact
have ve: "z#x" "z#y" "z#N" "z#L" by fact (variable convention

hence "z #N[y:=L]" by (simp add: fresh_fact)
show "Lamg (z,Mp) [x:=N][y:=L] = Lamg (z,M;)[y:=L][x:=N[y:=L]1]1" (is "?1lhs=?rhs")
proof -

have "?1lhs = Lam, (z,M; [x:=N][y:=L])" using vc by simp

also have"... = Lamy(z,M; [y:=L][x:=N[y:=L]1]1)" using ih ‘x#y‘ ‘x#L‘ by simp
also have"... = Lam,(z,M; [y:=L]) [x:=N[y:=L]11" using vc ‘z# N[y:=L]1¢ by simp
also have"... = ?rhs" using vc by simp
finally show "?1hs = ?rhs" by simp
ged
next
case (Appa M1 M2) (Case 3: applications

thus "Appq (M1 ,M2) [x:=N]1[y:=L] = Appq (M1,M2) [y:=L][x:=N[y:=L]1]1" by simp
ged

Fig. 3 A formalised proof of Barendregt’s substitution lemma gsthe Isabelle’s Isar language. This proof
contains all reasoning steps given in extreme detail. Aaraated version of this proof, given in (25), is only
5 lines long. The crucial point in both proofs, however, iattim the lambda-case we have the assumptions
labelled withvc available. They allow us to easily formalise Barendreglisksnformal proof, shown in
Fig. 1, which uses the variable convention.

effort that has been spend to develop Isabelle/HOL. Thisaktasnpted in Gabbay [10], but
the attempt was quickly abandoned.

Closely related to our work is Gordon and Melham [14], whiels lbeen applied and
much further developed by Norrish [22,23]. Gordon and Medisavork states five axioms
characterisingv-equivalence and then shows that a model based on de-Bndijres satis-
fies these axioms. This is somewhat similar to our approaarevive construct explicitly
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the setlam,. In [14] Gordon and Melham give an induction principle thatjuires in the
lambda-case to prove (using their notation)

Vat. (Vou. P(tfz := VAR v])) = P (LAM z t)

That means they have to prov& LAM z t) for a variablez for which nothing can be
assumed; explicik-renamings are then often necessary in order to get proafagh. This
inconvenience has been alleviated by the version of straiciuduction given in [13] and
[23], where the lambda-case is as follows

AX. FINITEX A (Vzt.x ¢ X APt—=— P (LAM x t))

For this principle one has to provide a finite sétand then has to show the lambda-case
for all binders not in this set. This is very similar to our iradion principle where we have
to specify an induction context, but we claim that our vardiased on freshness fits better
with informal practice (recall Fig. 1 where Barendregtasahat: is fresh w.r.tz, y, N and
L) and can make better use of the automatic infrastructurgatfidile (namely the axiomatic
type-classes enforce the finite-support property).

Gordon and Melham [14] do not consider the case of rule indostover inductively
defined predicates. This has been done in [33, 34]. It turthatiwhile the variable conven-
tion can be built into every structural induction princigige our Thm. 2, this is not the case
for rule induction principles. In [33] the authors give armmple where the variable conven-
tion can lead to faulty reasoning. The nominal datatype pgelprevents this by introducing
conditions for when an inductive definition is compatibleghwthe variable convention and
only derives a strong rule induction principle for thoset t¥etisfy these conditions.

Like our 1am,, HOAS uses functions to encode lambda-abstractions; iesamtwo
flavours:weakHOAS [8] andfull HOAS [25]. The advantage of full HOAS over our work
is that notions such as capture-avoiding substitution climé&ee. We, on the other hand,
load the work of making such definitions onto the user. Thaathge of our work is that we
have no difficulties with notions such as simultaneous-suiti®n (a crucial notion in the
usual strong normalisation proofs based on logical rateiguments), which in full HOAS
seem rather difficult to encode when one at the same time wameap the benefits of a
HOAS-representation. Another advantage we see is thatduciively defininglam,, one
has induction for “free”, whereas induction requires cdasable effort in full HOAS. The
work by Ambleret al[1] on the Hybrid-system provides full HOAS on top of IsaleéHOL.
For this they use a de-Bruijn encoding and construct a typeesponding to full HOAS.
This construction is somewhat similar to our subset-cocsitn from Sect. 3. However,
their construction is done manually and only for one dattyphile we have automatic
support to do the subset construction for any nominal dagaty

The main difference of our work with weak HOAS is that we semespecific functions
to represent lambda-abstractions; in contrast, weak HG#S thdull function space. This
causes problems known by the term “exotic terms”—essénjiaik in the model.

Recently, Homeier [16] introduced a quotient package fotL Withat helps with defining
alpha-equivalence classes (this package supports gtsobigany equivalence relation) and
with lifting theorems from the “raw” version of the datatyfmethe quotient. Norrish makes
use of this package in [23]. This package would help us wighdbnstruction ofam,, but
would have only little impact on obtaining the strong indaotprinciples and the recursion
combinator. Nevertheless we look forward to a port of Homejgackage to Isabelle/HOL.
It will simplify our work when we consider more complicatethding structures.
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Aydemir et al [2] reported work in progress for providing nominal reasgniechniques
in Coq. Essentially, they derive more or less automatidatisn a specification of a nominal
datatype an axiomatisation of nominal concepts in Coq amédée of the lambda-calculus
use a Gordon-Melham representation to justify their axiigation. However, this justifi-
cation needs to be done manually, while with our constrastive provide the justification
completely automatically. Judging from recent work, ththats seem to have “abandoned”
this work in favour of working with a locally nameless repatation ofa-equated lambda-
terms [3].

8 Conclusion

The paper [4], which sets out some challenges for automateaf pssistants, claims that
theorem proving technologies have almost reached thehibigesvhere they can be uség
the masse$or formal reasoning about programming languages. We hopg®ve pushed
with this paper the boundary of the state-of-the-art in falrneasoning closer to this thresh-
old. We showed all our results for the lambda-calculus. Bettambda-calculus is onfyne
example. The nominal datatype package has no problems eitérglising the results re-
ported here to more complicated term-calculi. For exanthkse is already work by Bengt-
son using the nominal datatype package for formalisingrticalculus [6]; Tobin-Hochstadt
and Felleisen used it to verify their work on Typed Schemé.[30

There has also been work on extending strong induction ipiexto rule inductions
[33,34]. The real challenge has been and still is to gergralll the necessary reasoning
infrastructure to more general binding structures. WHhikre is no problem in the nominal
datatype package with iterated binders, aBd& «name«name:_, and binders of different
type, as inBar «kname»_ «coname_, it is not yet possible to have, for example, a finite
set of binders in a term-constructor. A typical example wlgich a generalisation is very
helpful is the Hindley-Milner typing-algorithm where onadtype-schemes of the form
V{ai,...,an}.ty. Such type-schemes can at the moment only be representattbgieg
them as an iterated list of single binders. To work out thaitiefor the generalisation of
binding structures and to implement them is future work.uFaitwork also includes the
generalisation of our recursion combinator to work withyiag parameters. This has been
treated in [23,27], but it seems difficult to adapt their fessto our setting.
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