
λ →

∀
=N

o
m

in
al

β
α

Isabelle How to Prove False using the Variable Convention
Christian Urban, Technical University of Munich

(Email: urbanc@in.tum.de)

Abstract

Bound variables play an important role in many branches of formal methods. Nearly all informal
induction proofs involving bound variables make use of the variable convention. This poster
shows by giving an example that this convention is in general an unsound reasoning principle,
i.e. one can use it to prove false. The poster also shows how Nominal Isabelle implements this
reasoning principle in a safe manner and illustrates its use in a formal proof of the substitution
lemma.

Informal Reasoning in the “Wild”

The variable convention is perhaps one of the most frequently used reasoning principles when
reasoning informally about syntax involving binders. Barendregt formulates this convention in
his classic book, “The Lambda-Calculus: Its Syntax and Semantics”, as follows:

Variable Convention:

IfM1; : : : ;Mn occur in a certain mathematical context (e.g. definition, proof), then
in these terms all bound variables are chosen to be different from the free variables.

He uses it in proofs like the following:

Substitution Lemma: If x 6= y and x 62 FV (L), thenM [x := N ℄[y := L℄ = M [y := L℄[x := N [y := L℄℄.
Proof: By induction on the structure of M .� Case 1: M is a variable.
Case 1.1.M = x. Then both sides equal N [y := L℄ since x 6= y.
Case 1.2.M = y. Then both sides equal L, for x 62 FV (L) implies L[x := : : :℄ = L.
Case 1.3.M = z 6= x; y. Then both sides equal z.� Case 2: M = �z:M1. By the variable convention we may assume thatz 6= x; y and z is not free in N;L.(�z:M1)[x := N ℄[y := L℄ = �z:(M1[x := N ℄[y := L℄)= �z:(M1[y := L℄[x := N [y := L℄℄)= (�z:M1)[y := L℄[x := N [y := L℄℄.� Case 3: M = M1M2. The statement follows again from the
induction hypothesis. �

The point of Nominal Isabelle is to provide all proving technologies necessary for conveniently
formalising such proofs. It turns out, however, that one has to be careful with the variable
convention.

Faulty Reasoning with the Variable Convention

To see why the variable convention is in general an unsound reasoning principle, consider the
following inductively defined relation taking two lambda-terms as arguments:

Relation of Interest:

x 7! x SVAR M1M2 7!M1M2 SAPP
M 7!M 0�x:M 7!M 0 SLAM

Note that the SLam-rule reads as “for all x,M andM 0, ifM 7!M 0 is in the relation, then so
is �x:M 7! M 0”. Proving a property by induction over an inductively defined relation means
that we have to establish this property for each conclusion of the rules, assuming the property
holds already for the corresponding premises. If we use the variable convention, however, we
can “prove” in this way the following faulty lemma.

Faulty Lemma: Suppose M 7!M 0. If y 62 FV (M) then y 62 FV (M 0).
The “proof” goes as follows:

� Cases SVar and SApp: These two cases are straightforward as we only have to
establish: � if y 62 FV (x) then y 62 FV (x), and� if y 62 FV (M1M2) then y 62 FV (M1M2)� Case SLam: In this case we have the induction hypothesis

if y 62 FV (M) then y 62 FV (M 0)
and the assumption that y 62 FV (�x:M). The goal is to show y 62 FV (M 0). We
use the variable convention to infer that y 6= x where x is the bound variable
from �x:M and y is the free variable from the lemma. Using this fact, we know
that y 62 FV (�x:M) holds if and only if y 62 FV (M) holds. Hence we can use
the induction hypothesis to conclude also this case. “� ”

This proof is of course bogus and we can easily find a counter example.

Counter Example: We have that �x:x 7! x is in the relation and x 62 FV (�x:x)
holds. But x 62 FV (x) is clearly false. Therefore we have a contradiction, i.e. can
prove false.

There are other similar examples. The formal reasoning in Nominal Isabelle is protected from
such bogus reasoning, as it builds the variable convention into the induction principles and in
case of rule inductions derives them only if the relations satisfy a condition ensuring that they
are compatible with the variable convention. This compatibility condition states (roughly):� the relation must be equivariant (closed under permutations) and� every binder in a rule must not be free in the conclusion of that rule.

The “interesting” relation on the left-hand side does not satisfy this condition, but the typing
relation for simply-typed lambda terms, for example, does.

Typing Relation for Simple Types:

valid� (x; T)2�� ` x : T TVAR
� `M1 : T1 ! T2 � `M2 : T1� `M1M2 : T2 TAPP

(x; T1) ::� `M : T2� ` �x:M : T1 ` T2 TLAM

Consequently, you can use the variable convention in proofs about the typing relation. So there
is no need to be afraid of this convention in Nominal Isabelle: on the contrary, it is a reasoning
principle which simplifies many formal arguments!

Formal Reasoning in Nominal Isabelle

Nominal Isabelle automatically builds the variable convention into the structural induction
principles and if the relation is compatible with the variable convention also into rule induc-
tions. For example in addition to the usual induction principle for lambda-terms

Simple Induction Principle for Lambda-Terms8x: P x8M1 M2: P M1 ^ P M2 =) P (M1M2)8xM: P M =) P (�x:M)P M
Nominal Isabelle derives also the following stronger induction principle which includes an
“avoiding” context that corresponds to the variable convention

Stronger Induction Principle8x
: P
 x8M1M2
: (8 d: P d M1) ^ (8 d: P d M2) =) P
 (M1M2)8xM
: x #
 ^ (8 d: P d M) =) P
 (�x:M)P
 M
The stronger induction principle allows you to formally prove the substitution lemma with ease:

lemma substitution lemma:
assumes a: ”x 6=y” and b: ”x # L”
shows ”M[x:=N][y:=L] = M[y:=L][x:=N[y:=L]]”

using a b by (nominal induct M avoiding: x y N L rule: lam.induct)
(auto simp add: forget fresh fact)

. . . if you prefer more details:

lemma substitution lemma:
assumes a: ”x 6=y” and b: ”x # L”
shows ”M[x:=N][y:=L] = M[y:=L][x:=N[y:=L]]”

using a b
proof (nominal induct M avoiding: x y N L rule: lam.induct)
case (Var z) (Case 1: variables)
show ”Var z[x:=N][y:=L] = Var z[y:=L][x:=N[y:=L]]” (is ”?LHS = ?RHS”)
proof -
{ assume ”z=x” (Case 1.1)
have ”(1)”: ”?LHS = N[y:=L]” using ‘z=x‘ by simp
have ”(2)”: ”?RHS = N[y:=L]” using ‘z=x‘ ‘x 6=y‘ by simp
from ”(1)” ”(2)” have ”?LHS = ?RHS” by simp }

moreover
{ assume ”z=y” and ”z 6=x” (Case 1.2)
have ”(1)”: ”?LHS = L” using ‘z 6=x‘ ‘z=y‘ by simp
have ”(2)”: ”?RHS = L[x:=N[y:=L]]” using ‘z=y‘ by simp
have ”(3)”: ”L[x:=N[y:=L]] = L” using ‘x # L‘ by (simp add: forget)
from ”(1)” ”(2)” ”(3)” have ”?LHS = ?RHS” by simp }

moreover
{ assume ”z 6=x” and ”z 6=y” (Case 1.3)
have ”(1)”: ”?LHS = Var z” using ‘z 6=x‘ ‘z 6=y‘ by simp
have ”(2)”: ”?RHS = Var z” using ‘z 6=x‘ ‘z 6=y‘ by simp
from ”(1)” ”(2)” have ”?LHS = ?RHS” by simp }

ultimately show ”?LHS = ?RHS” by blast
qed

next
case (Lam z M1) (Case 2: lambdas)
have ih: ” [[x 6=y; x # L℄℄ =) M1[x:=N][y:=L] = M1[y:=L][x:=N[y:=L]]” by fact
have fs: ”z # x” ”z # y” ”z #N” ”z # L” by fact+ (variable convention)
hence ”z #N[y:=L]” by (simp add: fresh fact)
show ”(Lam [z].M1)[x:=N][y:=L] = (Lam [z].M1)[y:=L][x:=N[y:=L]]” (is ”?LHS=?RHS”)
proof -
have ”?LHS = Lam [z].(M1[x:=N][y:=L])” using ‘z # x‘ ‘z # y‘ ‘z #N‘ ‘z # L‘ by simp
also from ih have ” : : : = Lam [z].(M1[y:=L][x:=N[y:=L]])” using ‘x 6=y‘ ‘x # L‘ by simp
also have ” : : : = (Lam [z].(M1[y:=L]))[x:=N[y:=L]]” using ‘z # x‘ ‘z #N[y:=L]‘ by simp
also have ” : : : = ?RHS” using ‘z # y‘ ‘z # L‘ by simp
finally show ”?LHS = ?RHS” .

qed
next
case (App M1 M2) thus ”(App M1 M2)[x:=N][y:=L] = (App M1 M2)[y:=L][x:=N[y:=L]]” by simp (Case 3: app's)

qed

Acknowledgments: This work arose from joint work with Michael Norrish, Stefan Berghofer and Randy Pollack.

Nominal Isabelle can be downloaded from http://isabelle.in.tum.de/nominal/ . Presented at the workshop on the occasion of Prof. Mike Gordon’s 60th birthday, Royal Society London, 25 March 2008

