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Abstract
Barendregt’s variable convention simplifies many informal
proofs in the�-calculus by allowing the consideration of
only those bound variables that have been suitably chosen.
Barendregt does not give a formal justification for the vari-
able convention, which makes it hard to formalise such infor-
mal proofs. In this paper we show how a form of the variable
convention can be built into the reasoning principles for rule
inductions. We give two examples explaining our technique.

Categories and Subject Descriptors F.4.1 [Mathematical
Logic]: Lambda-calculus and related systems; I.2.3 [De-
duction and Theorem Proving]: Deduction

General Terms Theory, Verification

Keywords Lambda-calculus, nominal logic, POPLmark
challenge

1. Introduction
In informal proofs about languages that feature bound vari-
ables, one often assumes (explicitly or implicitly) rathercon-
venient conventions about those bound variables. For exam-
ple, in Barendregt’s seminal book [2] about the�-calculus:

2.1.12. CONVENTION. Terms that are�-congruent
are identified. So now we write�x:x � �y:y, etcetera.

2.1.13. VARIABLE CONVENTION. If M1; : : : ;Mn
occur in a certain mathematical context (e.g. defini-
tion, proof), then in these terms all bound variables
are chosen to be different from the free variables.
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Both conventions give rise to very slick informal proofs:
the first convention assumes that the “data structure” over
which the proofs are done is not that of syntax-trees, but
of �-equivalent lambda-terms (or�-equivalence classes).
However, the claim to be using�-equivalence classes, rather
than syntax-trees, is often blurred by statements like [2]:

2.1.14. MORAL. Using conventions 2.1.12 and 2.1.13
one can work with�-terms in the naive way.

One advantage of using�-equivalence classes is that cap-
ture avoiding substitution can be defined as a total function
satisfying the following four properties [6, 13]:� var(a)[a := N ℄ = N� var(b)[a := N ℄ = var(b) providedb 6= a� app(M1;M2)[a := N ℄ = app(M1[a := N ℄;M2[a := N ℄)� lam(b;M)[a := N ℄ = lam(b;M [a := N ℄)

providedb 6= a andb 62 FV (N)
The second convention assumes that binders have always
been so chosen that they do not clash with free variables.
This avoids having to rename bound variables. When per-
forming a structural induction, renaming bound variables
can be handled by switching to inductions on term size,
as done by Homeier [7]. When performing rule inductions,
proofs typically need to be entirely recast, perhaps by prov-
ing properties involving iterated substitutions. In either case,
and particularly the latter, the mechanisation can hardly be
seen as faithful to the original presentation.

A typical informal proof making use of both conventions
is presented in Figure 1.

In this proof, the equational reasoning in the variable-
case (1.1.–1.3.) relies on the fact that substitution is a func-
tion. In the lambda-case, the reasoning further relies on the
variable convention. This gives the assumption thatz satis-
fies freshness constraints which allow the substitutions tobe
pushed under the binder. Then one can apply the induction
hypothesis, and finally pull the substitutions back out from
under the binder. In the absence of the variable convention,z



2.1.16. SUBSTITUTION LEMMA . If x 6� y and x 62FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄:
PROOF. By induction on the structure ofM .

Case 1:M is a variable.

Case 1.1.M � x. Then both sides equalN [y := L℄ sincex 6� y.

Case 1.2.M � y. Then both sides equalL, forx 62 FV (L) impliesL[x := : : :℄ � L.

Case 1.3.M � z 6� x; y. Then both sides equalz.

Case 2:M � �z:M1. By the variable convention we may
assume thatz 6� x; y andz is not free inN;L. Then by
induction hypothesis(�z:M1)[x := N ℄[y := L℄� �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.
Case 3:M � M1M2 The statement follows again from
the induction hypothesis.

Figure 1. Barendregt’s proof of the Substitution Lemma

might not be distinct from the free variables in the induction
(fx; yg [ FV (N;L)), and one has to renamez away from
that set in order to move the substitutions around.

The approaches reported in [6, 14, 7, 10] show how to
deal with the first convention in a formal setting, and do so
without having to resort to a nameless de-Bruijn or HOAS-
representation for�-equated�-terms. They construct data
structures which allow one to writevar(a), app(M1;M2)
and lam(a;M) to denote�-equated variables, applications
and abstractions. Furthermore, one has the equationlam(a;M) = lam(b;N) (1)

whenever the corresponding syntax-trees “�a:M ” and “�b:N ”
are�-equivalent.

One problem when working with name-carrying�-equi-
valence classes is that convenient structural induction prin-
ciples do not come for “free”, but need to be derived. Such
convenient structural induction principles are derived in[5,
14, 13]. These induction principles are stated in such a way
that they come very close to the convenience of the informal
reasoning using Barendregt’s variable convention. The struc-
tural induction principle of Urban and Tasson, for example,

is:18x z: P (var (z)) x8xM N:(8y: P M y) ^ (8y: P N y) ) P (app(M;N)) x8x zM:z # x ^ (8y: P M y) ) P (lam(z;M)) xP M x
(2)

whereP stands for the property to be proved;M is the vari-
able over which the induction is done, and the variablex
for thecontextof the induction. By “the context of an induc-
tion”, we mean all free variables of the induction hypothesis,
except the variable over which the induction is performed. In
case of the substitution lemma, the induction hypothesisP
is M [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄
with M being the variable over which the induction is done.
So in this case, the contextx would need to be instantiated
with the tuple(x; y;N; L). Then, when one comes to prove
the lambda-case, one can assume in (2) that the binderz inP (lam(z;M)) (x; y;M;N)
is fresh w.r.t.(x; y;N; L)—meaning roughly thatz cannot
be equal tox and y, and thatz cannot be a free variable
in N andL. In effect, one can formalise Barendregt’s slick
informal proof without difficulties.

In this paper we show that similar induction principles
can be given for rule inductions, provided a certain property
holds for the relations over which the rule inductions are
performed. We illustrate our technique with two examples:
one is the proof of the substitutivity property of the1

relation (this is one part of the simple Church-Rosser proof
due to Tait and Martin-Löf for�-reduction [2]), and the other
is the usual proof of the weakening lemma for simple types.

The proof by Tait and Martin-Löf does not show the
Church-Rosser property directly for�-reduction, but for a
more general reduction relation defined as:M 1 M M 1 M 0lam(x;M) 1 lam(x;M 0)M 1 M 0 N 1 N 0app(M;N) 1 app(M 0; N 0)M 1 M 0 N 1 N 0app(lam(x;M); N) 1 M 0[x := N 0℄ (3)

A central lemma in this Church-Rosser proof is then:

SUBSTITUTIVITY OF 1 . If M 1 M 0 andN 1 N 0,
thenM [x := N ℄ 1 M 0[x := N 0℄.
1 This is a slightly strengthened version of the induction principle given
in [14], which in the light of this work seems more useful thanthe original
version.



This proof proceeds in [2] by an induction over the defi-
nition of M 1 M 0. Though Barendregt does not acknow-
ledge the fact explicitly (as he did in the substitution lemma),
there are two places in this proof where the variable conven-
tion is used. In the case of the second rule of1 , for ex-
ample, Barendregt writes (slightly changed to conform with
our syntax):

CASE 2.M 1 M 0 is lam(y; P ) 1 lam(y; P 0) and is
a direct consequence of ofP 1 P 0. By induction hypothe-
sis one has P [x := N ℄ 1 P [x := N 0℄ :
But thenlam(y; P [x := N ℄) 1 lam(y; P 0[x := N 0℄) ;
i.e.M [x := N ℄ 1 M 0[x := N 0℄.

The last step in this case only works if one knows thatlam(y; P [x := N ℄) = lam(y; P )[x := N ℄ andlam(y; P 0[x := N 0℄) = lam(y; P 0)[x := N 0℄
which only holds fory being not equal tox and not free
in N and N 0. If y did not satisfy these constraints, one
would have to rename first. The contribution of this paper
is the technique allowing the derivation of a rule induction
principle for 1 in which the above case can be proved
under the assumption thaty 6= x and y 62 FV (N;N 0).
This additional assumption allows one to reason just like
Barendregt in a rigorous, mechanised setting.

Our technique works for relations that are inductively-
defined by a set of rules. Such relations come with a notion
of rule induction, which can be used to prove theorems of
the form R(M1; : : : ;Mn)) P (M1; : : : ;Mn)
with R the original inductive relation onn arguments, andP
another relation, which is shown to be a superset ofR. The
property we need for deriving our rule induction principles
with a built-in form of the variable convention is that the
relationR is equivariant[3, 12], that8�: R(M1; : : : ;Mn)) R(��M1; : : : ; ��Mn)
Equivariance therefore is the property that a relation is
preserved under any permutation�, where permutations
are finite bijective mappings from atoms to atoms. Beta-
reduction, typing and 1 are instances of equivariant re-
lations. So too are the reduction and typing relations for
systems such as the polymorphic�-calculus. In fact, equiv-
ariance is very common. Its absence would imply that a
particular relation didn’t behave uniformly over choices of
the names (atoms) used as variables.

Our technique applies to all equivariant relations.

This paper is organised as follows: Sec. 2 gives a very
brief overview about the nominal logic work. Proofs are
omitted, but can be found in [3, 12, 14]. Sec. 3 illustrates our
technique by deriving improved principles of rule induction
for two standard relations from the literature. The ease-
of-use of the new principles is also demonstrated. Sec. 4
mentions some related work and Sec. 5 concludes.

2. Nominal Logic
There are two central notions in nominal logic: permutations
and support. As mentioned in the previous section, permu-
tations are finite bijective mappings from atoms to atoms,
where atoms are drawn from a countably infinite set denoted
by A . We represent permutations as finite lists whose ele-
ments are swappings (i.e. pairs of atoms). We write such
permutations as(a1 b1)(a2 b2) � � � (an bn); the empty list[℄
stands for the identity permutation. A permutation� acting
on an atoma is defined as:[℄�a def= a((a1 a2) :: �)�a def= 8<: a2 if ��a = a1a1 if ��a = a2��a otherwise

where(a b) :: � is the composition of a permutation fol-
lowed by the swapping(a b). The composition of� followed
by another permutation�0 is given by list-concatenation,
written as�0��, and the inverse of a permutation is given
by list reversal, written as��1. Our representation of per-
mutations as lists does not give unique representatives: for
example, the permutation(a a) is “equal” to the identity per-
mutation.

We equate the representations of permutations with a
relation�:

Definition 1 (Permutation Equality). Two permutations are
equal, written �1 � �2, provided�1�x = �2�x, for allx 2 A .

The action of a permutation can be lifted to other types
as long as the action on the new type issensible. By this we
mean that it has to satisfy the following three properties:(i) [℄�x = x(ii) (�1��2)�x = �1�(�2�x)(iii) if �1 � �2 then�1�x = �2�x
From this we can define “permutation sets” as those having
a sensible permutation action:

Definition 2 (PSets). A setX equipped with a permutation
action ��(�) is said to be a pset, if for allx 2 X , the
permutation action satisfies the properties(i)-(iii).

The informal notationx 2 psetwill be adopted whenever
it needs to be indicated thatx comes from apset. Typical per-
mutation actions permute all atoms in a givenpset-element.
For example, lists, tuples and sets can be seen aspsets if their
respective permutation actions are defined point-wise:



lists: ��[℄ def= [℄��(x :: t) def= (��x) :: (��t)
tuples: ��(x1; : : : ; xn) def= (��x1; : : : ; ��xn)
sets: ��X def= f��x jx 2 Xg

On�-equated�-terms the permutation action is defined such
that it satisfies:��var (a) = var(��a)��app(M1;M2) = app(��M1; ��M2)��lam(a;M) = lam(��a; ��M) (4)

We note the following:

Lemma 1. The following sets arepsets: A , the set of�-
equated lambda-terms, and every set of lists (similarly tuples
and sets) containing elements frompsets.

One interesting consequence of nominal logic [3] is that
as soon as one fixes the notion of permutation action for a
pset, then the notion of support, very roughly speaking its set
of free atoms, is fixed as well. The support and the derived
notion of freshness is defined as follows:

Definition 3 (Support and Freshness). Givenx 2 pset, its
supportis defined as:supp(x) def= fa j infinitefb j (a b)�x 6= xgg :
An atoma is said to befreshfor such anx, written a # x,
provideda 62 supp(x).
With these notions in place we can make the equation in (1)
precise, stating when two�-equated abstractions are equal:lam(a;M) = lam(b;N),(a = b ^M = N) _(a 6= b ^M = (a b)�N ^ a # N) (5)

In what follows we will often make use the following prop-
erties ofpsets:

Lemma 2. For allx 2 pset,(i) a # x implies��a # ��x(ii) if a # x andb # x, then(a b)�x = x(iii) a # (x; y) if and only if a # x anda # y
A further restriction onpsets filters out allpsets contain-

ing elements with infinite support:

Definition 4 (Finitely Supported PSets). A psetX is said to
be an fs-pset if every element inX has finite support.

We note the following:

Lemma 3. The following sets are fs-psets:A , the set of�-
equated�-terms, and every set of lists (similarly tuples and
finite sets) containing elements from fs-psets.

Since the set of atomsA is infinite, the most important
property offs-psets is that for each element one can choose
a fresh atom.

Lemma 4. For all x 2 fs-pset, there exists an atoma such
thata # x.

Unwinding the definitions for permutation actions and
support one can often easily calculate the support forfs-pset-
elements:

atoms: supp(a) = fag
tuples: supp(x1; : : : ; xn) = supp(x1) [ : : : [ supp(xn)
lists: supp([℄) = ?supp(x :: xs) = supp(x) [ supp(xs)
finite sets: supp(X) = Sx2X supp(x)�-equated lambda-terms:supp(var (a)) = fagsupp(app(M;N)) = supp(M) [ supp(N)supp(lam(a;M)) = supp(M)� fag

The last three equations show that the support of�-
equated lambda-terms coincides with the usual notion of
free variables. In turn,a # M with M being an�-equated
lambda-term coincides witha not being free inM . If b is an
atom, thena # b coincides witha 6= b.
3. Rule Inductions
Inductions over inductively-defined relations, also called
rule inductions, are important reasoning tools in the�-
calculus and programming languages [1]. Here we provide
two small, but typical, examples of such rule inductions, and
illustrate our technique on both.

3.1 Weakening for Simple Types

Terms of the�-calculus can be given types with respect to
contexts (for example finite sets of name-type pairs). Types
are of the form ty : � ::= X j � ! �
Contexts arevalid if no variable occurs twice:valid (?) a # � valid (�)valid (a : �;�)
The relation associating terms and types is straightforward
to define:valid (�) (a : �) 2 �� ` var (a) : � a # � a : �;� `M : �� ` lam(a;M) : � ! �� `M : � ! � � ` N : �� ` app(M;N) : �
Making such a definition also results in the proof of the
associated induction principle, withP a three-place, curried



predicate:8� a �: valid (�) ^ (a : �) 2 �) P � (var (a)) �8�MN � �: � `M : � ! � ^ P � M (� ! �) ^� ` N : � ^ P � N � )P � (app(M;N)) �8� aM � �: a # � ^ (a : �;�) `M : � ^P (a : �;�) M � )P � (lam(a;M)) (� ! �)� `M : � ) P � M �
(6)

We wish to prove the following property, where a context�2 is weaker than�1 (written�1 � �2), if every name-type
pair in�1 also appears in�2:
Lemma 5 (Weakening Lemma). If �1 `M : � is derivable,
and�1 � �2 with �2 being valid, then�2 ` M : � is also
derivable.

Proofs of this lemma are often claimed to be straightfor-
ward (e.g. [11]). The informal proof usually goes as follows:

INFORMAL PROOF OF THEWEAKENING LEMMA . By rule
induction over�1 `M : � .

CASE 1: �1 `M : � is �1 ` var (a) : � . By assumption
we knowvalid(�2), (a : �) 2 �1 and�1 � �2. Therefore
we can use the typing rules to derive�2 ` var(a) : � .

CASE 2: �1 ` M : � is �1 ` app(M1;M2) : � . Case
follows from the induction hypotheses and the typing rules.

CASE 3: �1 ` M : � is �1 ` lam(a;M1) : � ! �.
Although, one has to prove this case for alla, using the
variable convention we assume thata does not occur in�2.
Then we know by the induction hypothesis that(a : �;�2) `M1 : � holds. Hence also�2 ` lam(a;M1) : � ! � by the
typing rules. “ ”

Because of the arguably questionable use of the variable
convention in the third case, this informal proof is painful
to formalise using the original induction principle (6), see
for example [4]. In particular, the abstraction case in a for-
mal proof will typically require the abstraction to have its
bound variable renamed to be suitably fresh. The proof of
the lemma also then requires an equivariance result� `M : � ) (���) ` (��M) : � (7)

to be shown.2 This lemma is generally useful, and because
of the existence of inverses for permutations can be recast as(���) ` (��M) : � , � `M : �
or even (���) `M : � , � ` (��1�M) : �
which is a useful theorem to rewrite with because it collects
all of the permutations in a typing judgement and moves
them so that they apply only to the term argument.

2 The proof is an easy induction using (6).

(Another possibility when formalising results such as
these is to show that the relation is preserved under iter-
ated variable-for-variable substitutions. This result applies
when the body of an abstraction acquires an extra substi-
tution through renaming. Because substitutions are harder
to reason with than permutations, this approach is usually
less attractive than performing the body’s renaming with a
permutation.)

The painful requirement to rename the bound variable in
the rule induction tends to happen every time a rule induction
with (6) is performed (though not in the proof of (7), pleas-
antly). We can avoid this by proving a more useful induction
hypothesis once and for all:

Theorem 1. For all typing contexts�, all �-equated�-termsM , all � 2 ty and all contextsx 2 fs-pset, the following
implication holds:8x� a �: valid (�) ^ (a : �) 2 �) P � (var (a)) � x8x�MN � �:� `M : � ! � ^ (8z: P � M (� ! �) z) ^� ` N : � ^ (8z: P � N � z) )P � (app(M;N)) � x8x a�M � �:a # x ^ a # � ^ (a : �;�) `M : � ^(8z: P (a : �;�) M � z) )P � (lam(a;M)) (� ! �) x� `M : � ) P � M � x
Proof. The proof uses the original induction principle (6).
We strengthen the goal by aiming to prove8� �M � (x 2 fs-pset): ( : : : )) P (���) (��M) � x :
In the variable-case we need to proveP (���) (var (��a)) � x
while knowing thatvalid (�) and(a : �) 2 � hold. Validity
of contexts is preserved under permutations, so we havevalid (���). From(a : �) 2 � we can infer(��a : �) 2 ���
and hence we can use the assumed implication8x� a �: valid (�) ^ (a : �) 2 �) P � var (a) � x
to obtainP (���) (var (��a)) � x.

The application-case is routine. The interesting case is the
lambda-case. In this case we need to proveP (���) (lam(��a; ��M)) (� ! �) x
under the assumption that(i) a # �(ii) a : �;� `M : �(iii) 8� x: P (��(a : �;�)) (��M) � x (8)

Since atoms,�-terms and typing contexts are finitely sup-
ported and by assumption alsox, there exists by Lem. 4 an



atom 
 with 
 # (��a; ��M;���; x). Using (iii) we can
infer8x: P ((
 ��a)���(a : �;�)) ((
 ��a)���M) � x
which is8x: P (
 : �; (
 ��a)����) ((
 ��a)���M) � x (9)

From(i) and Lem. 2(i) follows that��a # ���. With 
 #��� we can infer using Lem. 2(ii) that(
 ��a)���� = ���,
and hence simplify (9) further to8x: P (
 : �; ���) ((
 ��a)���M) � x (10)

By equivariance of the typing relation (7), we can use(ii)
and infer(
 ��a)���(a : �;�) ` (
 ��a)���M : �
which is (
 : �; ���) ` (
 ��a)���M : � (11)

Now we can use
 # x, (10), (11) and infer from the
assumed implication in the lambda-case thatP (���) (lam(
; (
 ��a)���M)) (� ! �) x
Because
 # ��a and
 # ��M , we know by (5), however,
that lam(
; (
 ��a)���M) = lam(��a; ��M)
and we are done.

With this induction principle at our disposal, the proof of
the weakening lemma is simple.

Proof of the Weakening Lemma.Perform a rule induction
over�1 `M : � using the induction hypothesis�1 � �2 ) valid (�2)) �2 `M : �
That is, we instantiate Thm. 1 withP = ��1M � �2: �1 � �2 ) valid (�2)) �2 `M : �� = �1M = M� = �x = �2
where�2 2 fs-psetby Lem. 3. This gives the following three
sub-goals:(1) valid (�01) ^ (a : �) 2 �01 ^ �01 � �02 ^ valid (�02)) �02 ` var (a) : �(2) �01 `M1 : � ! � ^ �01 `M2 : � ^(8�03: �01 � �03 ) valid (�03)) �03 `M1 : � ! �) ^(8�03: �01 � �03 ) valid (�03)) �03 `M2 : �) ^�01 � �02 ^ valid (�02)) �02 ` app(M1;M2) : �(3) a # �02 ^ a # �01 ^ (a : �;�01) `M : � ^(8�03: (a : �;�01) � �03 ) valid (�03) ) �03 `M : �) ^�01 � �02 ^ valid (�02)) �02 ` lam(a;M) : � ! �

where the first two are trivial. For(3) we instantiate8�03
with (a : �;�02). The fact(a : �;�01) � (a : �;�02) follows
from �01 � �02; valid (a : �;�02) follows from valid (�02)
and a # �02. This gives us(a : �;�02) ` M : �. Now
we immediately obtain�02 ` lam(a;M) : � ! � using the
definition of the typing relation and the fact thata # �02.

This example also shows why the new induction principle
needs to have universal quantifications over the contexts in
the premises. For example, in the lambda-case the assumed
implication has the premise(8z: P (a : �;�) M � z):8x a�M � �: a # x ^ a # � ^ (a : �;�) `M : � ^(8z: P (a : �;�) M � z) )P � (lam(a;M)) (� ! �) x
If we had stated the induction principle using the following
simpler implication38x a�M � �: a # x ^ a # � ^ (a : �;�) `M : � ^P (a : �;�) M � x )P � (lam(a;M)) (� ! �) x
then the induction hypothesis with which we proved the
weakening lemma, namely�1 � �2 ) valid (�2)) �2 `M : �
would not have been strong enough. We would have to make
it stronger as follows8�2: �1 � �2 ) valid (�2)) �2 `M : �
but then we would not be able to use the assumptiona #�2, which was vital in the weakening lemma to get the
lambda-case through. In effect, we would have to perform
renamings. With the version of the rule induction we have
given, this is unnecessary.

3.2 Substitutivity of One-Reduction

The central lemma in proof given in [2] for the Church-
Rosser property of beta-reduction is the substitutivity ofthe

1 -reduction shown in (3). The induction principle that
comes with this definition is as follows:8M: P M M8aMM 0:M 1 M 0 ^ P M M 0 )P (lam(a;M)) (lam(a;M 0))8MM 0N N 0:M 1 M 0 ^ P M M 0^N 1 N 0 ^ P N N 0 )P (app(M;N)) (app(M 0; N 0))8aMM 0N N 0:M 1 M 0 ^ P M M 0^N 1 N 0 ^ P N N 0 )P (app(lam(a;M); N)) (M 0[a := N 0℄)M 1 N ) P M N (12)

3 This version is similar in style to the structural inductionprinciple in [14].



Our technique derives the following new induction principle:

Theorem 2. For all �-equated�-termsM andN and all
contextsx 2 fs-pset, the following implication holds:8xM: P M M x8x aM M 0:a # x ^M 1 M 0 ^ (8z: P M M 0 z) )P (lam(a;M)) (lam(a;M 0)) x8xM M 0N N 0:M 1 M 0 ^ (8z: P M M 0 z) ^N 1 N 0 ^ (8z: P N N 0 z) )P (app(M;N)) (app(M 0; N 0)) x8x aM M 0N N 0:a # (x;N;N 0) ^M 1 M 0 ^ (8z: P M M 0 z) ^N 1 N 0 ^ (8z: P N N 0 z) )P (app(lam(a;M); N)) (M 0[a := N 0℄) xM 1 N ) P M N x
Proof (Sketch).The proof is similar to the proof of Thm. 1.
We need to strengthen the induction hypothesis to be of the
form:8�M N x 2 fs-pset: (: : :) ) P (��M) (��N) x :
In the second and fourth rule we can chose a fresh atom

w.r.t. (x;N;N 0) since�-equated�-terms andx are finitely
supported. We must prove equivariance for1 , namely8�: M 1 N ) (��M) 1 (��N)
in order to apply the assumed implications (this can be eas-
ily established using the original induction principle shown
in (12)).

Using the new induction principle to proveM 1 M 0 ) N 1 N 0 )M [x := N ℄ 1 M 0[x := N 0℄
leads to a very simple substitutivity proof: all cases are quite
simple calculations about substitutions. In the second case,
we haveM 1 M 0 being lam(a; P ) 1 lam(a; P 0) anda # (x;N;N 0). The latter assumption allows us to move
the substitutions[x := N ℄ and [x := N 0℄ freely under the
binder and back out.

In the fourth case, we haveM 1 M 0 beingapp(lam(a; P ); Q) 1 P [a := Q℄ :
Because of the assumption in this case thata is fresh for(x;Q;Q0; N;N 0) we haveapp(lam(a; P ); Q)[x := N ℄ =app(lam(a; P [x := N ℄); Q[x := N ℄) (13)

and know by the induction hypothesesN 1 N 0 ) P [x := N ℄ 1 P 0[x := N 0℄N 1 N 0 ) Q[x := N ℄ 1 Q0[x := N 0℄

(we also haveN 1 N 0). The definition of 1 tells us that
the right-hand side of (13) reduces to:P 0[x := N 0℄[a := Q0[x := N 0℄℄
Now the freshness constraintsa # x anda # N 0 match
exactly the pre-conditions for the substitution lemma, which
gives us P 0[a := Q0℄[x := N 0℄ :
This completes the proof.

4. Related Work
The prettiest formal proof of the weakening lemma we found
in the existing literature is that in [12]. Pitts’s proof uses the
equivariance property of the typing relation, and includesa
renaming step using permutations. Because of the pleasant
properties that permutations enjoy (they are bijective renam-
ings, in contrast to substitutions which might identify two
names), the renaming can be done with minimal overhead.
Our contribution is that we have effectively built this renam-
ing into the induction principles once and for all. Proofs us-
ing our principles do not need to perform explicit renam-
ing steps at all. Furthermore, we have created a full reason-
ing framework in HOL4 and Isabelle/HOL in which results
about calculi with binders can be proved at least as conve-
niently as in other mechanisations.

Somewhat similar to our approach is the work of Pollack
and McKinna [9]. Starting from the standard induction prin-
ciple that is associated with an inductive definition, we de-
rived an induction principle that allows emulation of Baren-
dregt’s variable convention. Pollack and McKinna, in con-
trast, gave a “weak” and “strong” version of the typing rela-
tion. These versions differ in the way the rule for abstractions
is stated:x # M (x : �;�) `M [y := x℄ : �� ` lam(y;M) : � ! � weak8x: x # �) (x : �;�) `M [y := x℄ : �� ` lam(y;M) : � ! � strong

They then showed that both versions derive the same typing
judgements. With this they proved the weakening lemma us-
ing the “strong” version of the principle, while knowing that
the result held for the “weak” relation as well. The main dif-
ference between this and our work seems to be of conve-
nience: we can relatively easily derive, in a uniform way,
an induction principle for equivaraint relations that allows
the variable convention (we have illustrated this point with
two examples). Achieving the same uniformity in the style
of McKinna and Pollack does not seem as straightforward.

5. Conclusion
In the POPLMARK Challenge [1], the proof of the weaken-
ing lemma is described as a “straightforward induction”. In



fact, mechanising this informal proof isnot straightforward
at all (see for example [9, 4, 12]). We have given a novel
rule induction principle for the typing relation that makes
proving the weakening lemma mechanically as simple as
the performing the informal proof. We have also illustrated
our technique with another typical proof taken from the�-
calculus. We see no problems in extending this technique to
other calculi with bound names.

One remaining challenge is to provide machine support
to derive our new rule induction principles automatically.At
the moment, we have proved the principles manually. There
is clearly a pattern in the statement of the revised principles,
and in their proof:� bound variables that appear in rules can be assumed to be

fresh with respect both to free variables in those rules and
with respect to an additional “context” parameter; and� proofs proceed by showing equivariance for the relation,
and then using the original induction principles to show
that an induction parameterP holds for all possible per-
mutations of its parameters.

The first element of the pattern is not yet rigorous. For
example, in the last rule of the principle in Theorem 2, the
bound atoma can be assumed fresh with respect to variablesN andN 0, but notM andM 0. As a binds overM it is
reasonable that it not be forced to be free there, but it is
not syntactically clear whyM 0 is excluded. Semantically,
it is clear:M 1 M 0, and soa may also appear inM 0. For
arbitrary relations, this may not always hold, and we may
have to content ourselves with syntactic heuristics.

In any case, requiring one simple, stereotyped induction
in order to reproduce the ease-of-use of Barendregt’s Vari-
able Convention seems a very small price to pay. We have
shown this by implementing our results in HOL4 and Is-
abelle/HOL.
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