
Strong Induction Principles in the Locally
Nameless Representation of Binders

(Preliminary Notes)

Christian Urban1 and Robert Pollack2

1 TU Munich, Germany
2 Edinburgh University, UK

Abstract. When using the locally nameless representation technique for
binders, proofs by induction over a de�nition traditionally involve a weak
and strong version of this de�nition, and a proof that shows both versions
derive the same judgements. In these notes we demonstrate with two
examples that it is often su�cient to de�ne just the weak version and then
use the infrastructure provided by the nominal Isabelle package to derive
automatically and in a uniform way a strong induction principle for this
weak version. The strong induction principle o�ers a similar convenience
in induction proofs as the traditional approach using weak and strong
versions of the de�nition. From our experience with the nominal Isabelle
package, we conjecture that the presented technique can be used in many
rule and structural induction proofs.

1 Introduction

The idea that bound variables and free (global) variables should be represented
by distinct syntactic classes of names goes back at least to Gentzen and Prawitz.
Following a suggestion by Coquand [3], McKinna and Pollack formalized a sig-
ni�cant amount of lambda calculus and type theory using such a representa-
tion [7, 8]. This work introduced a new technique for handling the requirement
of choosing fresh global variables that often occurs in reasoning about binding.
(Weakening lemmas are a prototypical example of the problem.) With this tech-
nique, reasoning about lambda calculus and type theory is straightforward, if
heavy. McKinna and Pollack required very little argument about alpha conver-
sion.3 Nonetheless, the use of names for bound variables is not a perfect �t to
the intuitive notion of binding, so Pollack [10] suggested that the McKinna{
Pollack approach to reasoning with two species of variables also works well with
a representation that uses names for global variables, and de Bruijn indices for
bound variables. This locally nameless representation, in which alpha equiva-
lence \classes" have exactly one element, had previously been used in Huet's

3 E.g. they proved that the representation of Pure Type Systems (PTS) is closed under
alpha conversion, but this fact is not needed in reasoning about PTS, including a
strengthening lemma and correctness of typechecking algorithms.



Constructive Engine [5] (this required de Bruijn lifting, which the McKinna{
Pollack approach obviates) and by Andy Gordon [4] (this requires an exten-
sional logic, which the McKinna{Pollack approach does not). The locally name-
less representation with McKinna{Pollack style reasoning has recently been used
by several researchers (with several proof tools) for solutions to the POPLmark
Challenge [1, 2, 6, 11].

Nonetheless, McKinna{Pollack style reasoning is very heavy. In this paper
we show how to considerably lighten the load using the nominal Isabelle pack-
age [12]. The most interesting contribution described in these notes is an ob-
servation that the technique of strengthening induction principles implemented
in this package is also applicable to the locally nameless representation of al-
pha equivalence classes. To set the stage for our contribution, we present this
representation in some detail.

2 Locally Nameless Representation

Consider the following datatype of locally nameless pre-terms:

t ::= Var x j Bnd i j App t1 t2 j Lam t

where i is a natural number index and x is a name. As we shall see, a predicate is
needed to restrict the pre-terms to those that correspond to well-formed lambda-
terms: all indices must actually be bound. A frequently needed operation for
pre-terms is the substitution of a term for a de-Bruijn index, de�ned as follows:

vsub (Var x) n s
def
= Var x

vsub (Bnd i) n s
def
=

8><
>:

Bnd i i < n

s i = n

Bnd (i� 1) i > n

vsub (App t1 t2) n s
def
= App (vsub t1 n s) (vsub t2 n s)

vsub (Lam t) n s
def
= Lam (vsub t (n+ 1) s)

Since the \s" argument to vsub will always be a correct (i.e. de Bruijn closed)
pre-term, no de Bruijn lifting of s is needed in the Lam case of this de�nition.
It is useful to introduce the following short-hand for the cases where a lambda-
abstraction is \opened up" and the zero-index needs to be replaced by a variable.

freshen t x
def
= vsub t 0 (Var x) :

We can now de�ne the typing relation of simply typed lambda calculus, writ-
ten `w (Table 1). In the Lamw rule, x # t stands for x not occurring syntactically
in t. Types are de�ned as usual; typing-contexts are lists of (variable, type)-pairs.
Note that `w establishes context validity at the leaves of derivations Varw and
preserves it through the other rules. The side condition x # t in the rule Lamw

is necessary to prevent too many judgements from being derivable: otherwise x
could occur in the rule's conclusion.



valid � (x:T ) 2 �

� `w Var x : T
Varw

� `w t1 : T1 ! T2 � `w t2 : T2
� `w App t1 t2 : T2

App
w

x # t (x:T1)::� `w freshen t x : T2

� `w Lam t : T1 ! T2
Lamw

valid []

x # � valid �

valid (x:T )::�

Table 1. Typing Rules in the locally nameless representation.

A Problem with Locally Nameless Representation: Consider proving the
weakening property

�1 `w t : T ) (8�2: valid �2 ) �1 � �2 ) �2 `w t : T ) (1)

by induction on the �rst assumption. This results in a proof obligation for the
lambda case

�2 `w Lam t : T1 ! T2 (2)

with the assumptions

x0 # t; �1 � �2 and valid �2;

for an arbitrary name x0 (notionally coming from the hypothetical derivation of
�1 `w t : T being eliminated). The induction hypothesis is

8�2: valid �2 ) (x0:T1)::�1 � �2 ) �2 `w freshen t x0 : T2 :

Applying rule Lamw to (2) shows we need some name z with

z # t and (z:T1)::�2 `w freshen t z : T2 : (3)

Taking z = x0 and applying the induction hypothesis gives the goals

(x0:T1)::�1 � (x0:T1)::�2 and valid (x0:T1)::�2 :

While the �rst of these can be discharged using the assumption �1 � �2, there
is no obvious way to prove the second goal, as we cannot show x0 # �2. The
problem is that the particular x0 appearing in the induction hypothesis is not
fresh enough. A direct proof of weakening can be still obtained but requires some
non-trivial renamings (see for example [9]).

McKinna{Pollack Style: In order to overcome the problem of needing re-
namings, [7] de�nes an alternative strong typing relation, written `s (Table 2).

4

4
`w and `s are called \weak" and \strong" because `s ) `w is trivial.



valid � (x:T ) 2 �

� `s Var x : T
Vars

� `s t1 : T1 ! t2 � `s t2 : T2
� `s App t1 T2 : T2

Vars

8x: x # � ) (x:T1)::� `s freshen t x : T2

� `s Lam t : T1 ! T2
Lams

Table 2. \Strong" Typing Rules.

The condition x # � in rule Lams is necessary for enough judgements to be
derivable, as the premise is not derivable for any x occurring in � . The essential
point however is that `w and `s are provably equivalent, that is

� `w t : T , � `s t : T: (4)

Using this equivalence, one should in proof by induction over the typing
rules eliminate `s (as the induction hypothesis generated by the single premise
of rule Lams accepts any su�ciently fresh name x # � ) and introduce `w
(as introduction rule Lamw only requires one name, x # t). The trick in the
McKinne{Pollack approach is therefore not to prove (1), but instead to prove

�1 `s t : T ) (8�2: valid �2 ) �1 � �2 ) �2 `w t : T ) : (5)

Eliminating `s, the induction hypothesis becomes

8x�2: x # �1 ) valid �2 ) (x:T1)::�1 � �2 ) �2 `w freshen t x : T2

allowing to use any x # �1. Pick y # (t; �2) to instantiate x, and the proof goes
through smoothly.

The main problem with this approach is that the equivalence between `w
and `s is not trivial to prove, and we don't know how to do it automatically.
Even the statements of the \weak" and \strong" de�nitions are not obvious; e.g.
the freshness conditions in `w and `s. Another problem is that we must still
explicitly choose a su�ciently fresh name in each induction proof, as we chose
y # (t; �2) in the proof of weakening.

3 A Strengthened Induction Principle

The main point of this paper is that, following [12], we may be able to directly
derive an induction principle for an inductively de�ned relation R (e.g. `w)
that is strengthened in the sense that a speci�ed name (e.g. x in rule Lamw) is
chosen fresh for any given �nitely supported object.5 This technique eliminates
the need to de�ne an auxiliary relation `s, and packages up the actual choosing
of a su�ciently fresh name.

For this to work, we must show that R is equivariant6 and satis�es the
requirements to be variable condition compatible (vc-compatible) set out in [12].

5 That means it cannot mention all names as free.
6 For a de�nition of equivariance see for example [12].



For vc-compatibility, we must show that the name x is not in the support of the
conclusion of Lamw (i.e. not in the support of � , t and T1!T2), given the side
conditions and premises of Lamw. In this rule x cannot be free in � , as otherwise
(x:T1)::� is not a valid context and cannot be part of the typing-judgement in
the premise; x cannot be free in t because of the side-condition x # t imposed
in Lamw; and x cannot be free in T1!T2 because types do not contain any
variables. In addition we must show that valid and `w are equivariant (this part
is done automatically by nominal Isabelle package provided we supply the fact
that freshen is equivariant).

Having checked these conditions, we can apply the results from [12] and
obtain the following strong induction principle for `w:

8� x t c:

valid � ^ (x:T ) 2 � ) P c � (Var x) T

8� t1 t2 T1 T2 c:

(8d: P d � t1 (T1 ! T2)) ^ (8d: P d � t2 T1)) P c � (App t1 t2) T2

8x� t T1 T2 c:

x # (t; c) ^ (8d: P d ((x:T1)::� ) (freshen t x) T2)) P c � (Lam t) (T1 ! T2)

� `w t : T ) P c � t T

In this induction principle we have to establish the lambda-case under the as-
sumption that x is fresh for the induction context c (which is required to be
�nitely supported). When applying this induction principle, we can instantiate
c appropriately, mimicking in some sense the usual variable convention about
binders.

Let us illustrate the usage of the strong induction principle in case of the
weakening lemma. We show by induction that

�1 `w t : T ) valid �2 ) �1 � �2 ) �2 `w t : T (6)

holds, for which we instantiate the induction context c with �2. In (6), �1 and
�2 are implicitly universally quanti�ed, but note that in contrast to (5), we do
not generalize the induction predicate over �2, as this will be implicitly done
by the choice to instantiate c with �2 (see quanti�ers (8d : : :) in the premises of
the strong induction principle). In the lambda-case this means that we have to
show:

�2 `w Lam t : T1 ! T2

using the induction hypothesis

8�2: valid �2 ) (x:T1)::�1 � �2 ) �2 `w t : T2 (7)

and the assumptions

x # �2 valid �2 �1 � �2 x # t :

From the �rst two assumptions we can infer that (x:T1)::�2 is valid, and from the
third that (x:T1)::�1 � (x:T1)::�2 holds. Consequently, we can use the induction



vcw (Var x)

vcw t1 vcw t2

vcw (App t1 t2)

vcw (freshen t x)

vcw (Lam t)

vcs (Var x)

vcs t1 vcs t2

vcs (App t1 t2)

8x: vcs (freshen t x)

vcs (Lam t)

Table 3. "Weak" and \Strong" Rules for Term Well-Formedness.

hypothesis shown in (7) to obtain (x:T1)::�2 `w t : T2. We can use Lamw with the
fourth assumption to infer that �2 `w Lam t : T1 ! T2 holds, which concludes
the proof. The proof is very easy, because by instantiating the induction context
with �2, we obtain in the induction step the additional freshness condition x #
�2, which was not available from the rule induction principle that comes for
\free" with `w.

4 Well-Formedness of Terms

An aspect of locally nameless representation that we have only alluded to so
far is well-formedness of terms. The pre-term Lam 2 is not considered a well-
formed term because it contains an unbound index: well-formed terms must be
de Bruijn closed.7 (This has been implicitly used in the de�nition of vsub.) We
can formalise the well-formedness property by inductive de�nition, and there are
weak and strong forms of the de�nition, vcw and vcs (Table 3). It is possible to
prove that vcw and vcs are equivalent, but not automatically.

As for typing, we want to derive a strengthened induction principle for vcw,
and completely avoid the use of vcs. However, a problem arises when we try
to do this. Unlike the case for `w, vcw is not vc-compatible. We must consider
another de�nition of the relation, vc:

vc (Var x)

vc t1 vc t2

vc (App t1 t2)

x # t vc (freshen t x)

vc (Lam t)

where we require in the third rule that x must be fresh for t in order to show
that x is fresh for the conclusion of that rule. With this we obtain automatically
the following strong induction principle for vc:

8x c: P c (Var x)

8t1 t2 c: (8d: P d t1) ^ (8d: P d t2)) P c (App t1 t2)

8x t c: x # (t; c) ^ (8d: P d (freshen t x))) P c (Lam t)

vc t) P c t (8)

7 The reason we have not needed to mention well-formedness so far is that if � `w t : T ,
then t is well-formed.



To illustrate the usage of this strong induction principle, we will prove the
lemma

vc s ) 8n: s = vsub s n (Var x) (9)

which states that vsub does \nothing" to well-formed terms. In the proof we
need the following auxiliary properties:

y # (s; t) ^ vsub s n (Var y) = vsub t n (Var y) ) s = t ; (10)

y # (s; t) ) y # vsub s n t ; (11)

n < m ) vsub (vsub s n (Var x)) (m� 1) (Var y)
= vsub (vsub s m (Var y)) n (Var x) :

(12)

Our proof of (9) proceeds by strong induction on vcs with the induction context
set to x. Only the Lam case gives a non-trivial goal

Lam t = vsub (Lam t) n (Var x)

with induction hypothesis

8nx: freshen t y = vsub (freshen t y) n (Var x)

and assumptions y # t (coming from the vc rule for Lam) and y # x (com-
ing from the strengthened induction context). By the de�nition of vsub, and
injectivity of constructors, the goal becomes

t = vsub t (n+ 1) (Var x)

which is solved by (10) if we can show

y # (t; vsub t (n+ 1) (Var x)) ;

freshen t y = freshen (vsub t (n+ 1) (Var x)) y :

The �rst of these is straightforward by (11) using the assumptions y # (t; x).
For the second, we have

freshen t y = vsub (freshen t y) n (Var x) by ih
= freshen (vsub t (n+ 1) (Var x)) y by (12)

and we are �nished. Crucial in this proof is that the freshness condition y # x

coming from the strong induction holds, as otherwise we could not have appealed
directly to (10) and (11).

5 Discussion and Related Work

Judging from the experience of the strong induction principles with nominal
datatypes, we conjecture that the presented approach can be used in many rule
and structural induction proofs in the locally nameless approach. By relying on
the infrastructure a�orded by the nominal Isabelle package, we obtain the strong



induction principles automatically and they are derived in a uniform way. We also
get for \free" the conditions of inductive de�nitions involving locally nameless
(pre-)terms for when they are compatible with the strengthening (see [12]). In
comparison, in the existing work on locally nameless representation there is
no uniform treatment for obtaining the equivalence between the weak and the
strong versions of an inductive de�nition. There seems to be also no treatment
of generalisations to cases where a rule contains more than one \binder". Even
so, the approach we propose in this paper will only be completely satisfactory,
if some problems can be worked out.

Potential Shortcomings: We have already noted some potential problems. We
observed that the strengthened induction principle proved for `w is probably
not able to directly prove the property that `w and `s are equivalent. Along
the same lines, but worse, the strengthened induction principle proved for vc

is probably not able to directly prove that vc is equivalent to vcw, let alone to
vcs. In practice, these may not be serious incompletenesses, and if necessary, the
full McKinna{Pollack technology can be used to prove these statements without
changing representation. The user isn't committing to a limited representation.

Another shortcoming of this approach may be more serious in practice.8 In
McKinna-Pollack style the strong relations give strong inversion principles, as
well as strong induction principles. For example, the inversion principles for
Lamw and Lams are respectively:

� `w Lam t : T )

9xT1 T2: (x # t ^ (x:T1)::� `w freshen t x : T2 ^ T = T1!T2);

� `s Lam t : T )

9T1 T2: 8 x: (x # � ) (x:T1)::� `s freshen t x : T2 ^ T = T1!T2)

Given that `w and `s are provably equivalent by McKinna-Pollack technology,
and � is �nitely supported, the latter of these is clearly stronger. We do not
yet see how to get strong inversion principles from the strengthened induction
outlined in this note.

Related Work Aydemir et. al. argue in [1] that it is more convenient to de�ne
the strong typing rule for lambda (in our notation) as:

8x 62 L: (x:T1)::� ` freshen t1 x : T2
� `c Lam t : T1 ! T2

where L stands for a �nite set of variables. (The \c" in `c stands for \co�-
nite quanti�cation".) We trivially have `s ) `c ) `w. `c results in a strong
induction principle (similar to, but weaker than `s), and proof of the weakening
lemma for this relation goes through smoothly. More interesting, introduction

8 Thanks to Julien Narboux for pointing this out.



of `c is stronger than introduction of `s, so that equivalence of `c and `w can
be proved without resorting to name permutation arguments. Alternatively, a
strong introduction lemma

x # t (x:T1)::� `c freshen t x : T2
� `c Lam t : T1 ! T2

can be proved without name permutation arguments. With this lemma, every-
thing that can be proved using the equivalence of `c and `w can be proved
without de�ning `w.

The main di�erence between their work and ours is that we derive an ad-
equately strong induction principle from the weak version of the typing rules,
which is preferable to an in�nitely branching system such as `c. Further, our
strengthened induction principle not only allows specifying a co-�nite set to
avoid (as does the principle from `c), but chooses a fresh name, which has to be
done manually in the style of [1].

References

1. B. Aydemir, A. Chargu�eraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering
Formal Metatheory, 2007. Submitted for publication.

2. A. Chlipala. POPLmark challenge part 1a solution.
www.cs.berkeley.edu/~adamc/poplmark.

3. T. Coquand. An algorithm for testing conversion in Type Theory. In G. Huet and
G. Plotkin, editors, Logical Frameworks. Camb. Univ. Press, 1991.

4. A. Gordon. A mechanism of name-carrying syntax up to alpha-conversion. In
Higher Order Logic Theorem Proving and its Applications. Proceedings, 1993,
LNCS 780. Springer-Verlag, 1993.

5. G. Huet. The constructive engine. In R. Narasimhan, editor, A Perspective in
Theoretical Computer Science. World Scienti�c Publishing, 1989. Commemorative
Volume for Gift Siromoney.

6. X. Leroy. A Locally Nameless Solution to the POPLmark Challenge. Research
report 6098, INRIA, Jan. 2007.

7. J. McKinna and R. Pollack. Pure Type Systems Formalized. In Proc. of the Inter-
national Conference on Typed Lambda Calculi and Applications (TLCA), number
664 in LNCS, pages 289{305. Springer-Verlag, 1993.

8. J. McKinna and R. Pollack. Some Type Theory and Lambda Calculus Formalised.
Journal of Automated Reasoning, 23(1-4), 1999.

9. A. Pitts. Nominal logic, a �rst order theory of names and binding. Information
and Computation, (186):165{193, 2003.

10. R. Pollack. Closure under alpha-conversion. In H. Barendregt and T. Nipkow,
editors, TYPES'93: Workshop on Types for Proofs and Programs, Nijmegen, May
1993, Selected Papers, volume 806 of LNCS, pages 313{332. Springer-Verlag, 1994.

11. W. Ricciotti. POPLmark challenge part 1a solution. ricciott.web.cs.unibo.it.
12. C. Urban, S. Berghofer, and M. Norrish. Barendregt's Variable Convention in Rule

Inductions. In Proc. of the 21th International Conference on Automated Deduction
(CADE), volume 4603 of LNAI, pages 35{50, 2007.


