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ABSTRACT. Nominal Isabelle is a definitional extension of the Isad@lOL theorem prover. It
provides a proving infrastructure for reasoning about mogning language calculi involving named
bound variables (as opposed to de-Bruijn indices). In thjsep we present an extension of Nominal
Isabelle for dealing with general bindings, that means tonstructors where multiple variables are
bound at once. Such general bindings are ubiquitous in anogring language research and only
very poorly supported with single binders, such as lambmdractions. Our extension includes new
definitions of alpha-equivalence and establishes autcaitithe reasoning infrastructure for alpha-
equated terms. We also prove strong induction principles ftlave the usual variable convention
already built in.

1. INTRODUCTION

So far, Nominal Isabelle provided a mechanism for constrgailpha-equated terms, for example
lambda-terms

tu=x|tt| At

where free and bound variables have names. For such alpladeeiderms, Nominal Isabelle derives
automatically a reasoning infrastructure that has beed ssecessfully in formalisations of an
equivalence checking algorithm for LE [27], Typed Sched],[2everal calculi for concurrency
[3] and a strong normalisation result for cut-eliminatiarclassical logicl[30]. It has also been used

by Pollack for formalisations in the locally-nameless amh to binding([20].
However, Nominal Isabelle has fared less well in a formébseof the algorithm W[[20], where

types and type-schemes are, respectively, of the form

Ti=x|T->T S:=V{Xy, .., % }. T (1.2)

1998 ACM Subject Classificatior.3.1.
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and thev -quantification binds a finite (possibly empty) set of tyeiables. While it is possible to
implement this kind of more general binders by iteratingyrbinders, likev x;.V xs...V x,,. T, this
leads to a rather clumsy formalisation of W. For example,usal definition for a type being an
instance of a type-scheme requires in the iterated vers@fotlowing auxiliaryunbinding relation

S— (xgT)
T (],T) VX.S<— (X::xs, T)

Its purpose is to relate a type-scheme with a list of typeatées and a type. It is used to address
the following problem: Given a type-scheme, sgyhow does one get access to the bound type-
variables and the type-part 82 The unbinding relation gives an answer to this problermyghadn
general it will only providea list of type-variables together withtype that are “alpha-equivalent”
to S This is because unbinding is a relation; it cannot be a fondor alpha-equated type-schemes.
With the unbinding relation in place, we can define when a fiyjean instance of a type-scherSe

as follows:

T<S def IxsT'o0.S— (xs T)) Adomo =setxsA o(T) =T

This means there exists a list of type-variabteand a typerl ' to which the type-schem@unbinds,
and there exists a substitutienwhose domain igs(seen as set) such thafT’) = T. The problem
with this definition is that we cannot follow the usual prodiiat are by induction on the type-part
of the type-scheme (since it is under an existential quantind only an alpha-variant). The imple-
mentation of type-schemes using iterations of single sgesvents us from directly “unbinding”
the bound type-variables and the type-part. Clearly, a rdapeified approach for formalising al-
gorithm W is desirable. The purpose of this paper is to intoedgeneral binders, which allow us
to represent type-schemes so that they can bind multiplablas at once and as a result solve this
problem more straightforwardly. The need of iterating Eriginders is also one reason why the
existing Nominal Isabelle and similar theorem provers thrdy provide mechanisms for binding
single variables have so far not fared very well with the maganced tasks in the POPLmark
challengel([2], because also there one would like to bindipteltariables at once.

Binding multiple variables has interesting propertied ttanot be captured easily by iterating
single binders. For example in the case of type-schemes wetdeant to make a distinction about
the order of the bound variables. Therefore we would likeetpard in[(1.2) below the first pair of
type-schemes as alpha-equivalent, but assumingtig@ndz are distinct variables, the second pair
shouldnot be alpha-equivalent:

VX, y}.X—=Y =, V{Xy}.y—X V{Xy}.x—y %, V{z}.z— 2 (1.2)

Moreover, we like to regard type-schemes as alpha-equilyalé¢hey differ only onvacuoushinders,
such as

V{x}. x>y ~, V{X, 2}. x>y (1.3)

wherezdoes not occur freely in the type. In this paper we will giveeagral binding mechanism and
associated notion of alpha-equivalence that can be usadhéully represent this kind of binding in
Nominal Isabelle. The difficulty of finding the right notioarfalpha-equivalence can be appreciated
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in this case by considering that the definition given for tgpbemes by Leroy in [13, Page 18-19]
is incorrect (it omits a side-condition).

However, the notion of alpha-equivalence that is presebyedacuous binders is not always
wanted. For example in terms like

letX=3andy=2in X — yend (1.4)

we might not care in which order the assignments 3 andy = 2 are given, but it would be often
unusual (particularly in strict languages) to regard](agtalpha-equivalent with

let X=3andy=2and z=f00in X — Y end

Therefore we will also provide a separate binding mechafismmases in which the order of binders
does not matter, but the ‘cardinality’ of the binders hasgiea.

However, we found that this is still not sufficient for deglwith language constructs frequently
occurring in programming language research. For examplets containing patterns like

let (X, ¥) =(3,2) in X — yend (1.5)

we want to bind all variables from the pattern inside the boldjye 1et, but we also care about the
order of these variables, since we do not want to redard &k.8)pha-equivalent with

let (Y, X) =(3,2) in X — yend

As a result, we provide three general binding mechanisnis @aghich binds multiple variables at
once, and let the user choose which one is intended when lisingga term-calculus.
By providing these general binding mechanisms, howevehave to work around a problem

that has been pointed out by Pottier|[19] and Chehgy [7]eittconstructs of the form

let Xy =tjand... and X, =1, in Send

we care about the information that there are as many boumablesx; as there arg¢;. We lose this
information if we represent theet-constructor by something like

let (AXp... %, . S) [t1,...,t,]

where the notation\_ . _ indicates that the list of; becomes bound ia In this representation the
termlet (AX. S) [t1, t2] is a perfectly legal instance, but the lengths of the twe lds not agree.
To exclude such terms, additional predicates about wethéal terms are needed in order to ensure
that the two lists are of equal length. This can result in vegssy reasoning (see for example [3]).
To avoid this, we will allow type specifications faets as follows

trm ::

anil
acons hame trm assn

| let as:assn strm bindsbn(as) in s
assn ::=
|
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whereassnis an auxiliary type representing a list of assignments lam@n auxiliary function
identifying the variables to be bound by thet. This function can be defined by recursion over
asshas follows

bn(anil) = o bn(acons x tas = {x} U bn(as)

The scope of the binding is indicated by labels given to tipesy for example::trm, and a binding
clause, in this casbinds bn(as) in s. This binding clause states that all the names the function
bn(as) returns should be bound 8 This style of specifying terms and bindings is heavily insg

by the syntax of the Ott-tool [22]. Our work extends Ott ines@l aspects: one is that we support
three binding modes—Ott has only one, namely the one wherertter of binders matters. Another
is that our reasoning infrastructure, like strong induttiwinciples and the notion of free variables,
is derived from first principles within the Isabelle/HOL trem prover.

However, we will not be able to cope with all specificationatthre allowed by Ott. One reason
is that Ott lets the user specify ‘empty’ types like=tt | Ax. t where no clause for variables is
given. Arguably, such specifications make some sense indtiext of Coq’s type theory (which
Ott supports), but not at all in a HOL-based environment wharery datatype must have a non-
empty set-theoretic modell[4]. Another reason is that waldish the reasoning infrastructure for
alphaequatedterms. In contrast, Ott produces a reasoning infrastradtutsabelle/HOL fomon
alpha-equated, or ‘raw’, terms. While our alpha-equatetiseand the ‘raw’ terms produced by Ott
use names for bound variables, there is a key differencekimgpwith alpha-equated terms means,
for example, that the two type-schemes

Vi{x}. x>y =V{x z}. x>y

are not just alpha-equal, but actuaigual As a result, we can only support specifications that
make sense on the level of alpha-equated terms (offendewfE@tions, which for example bind a
variable according to a variable bound somewhere else,airexcluded by Ott, but we have to).

Our insistence on reasoning with alpha-equated terms cémmesthe wealth of experience
we gained with the older version of Nominal Isabelle: for fiowial properties, reasoning with
alpha-equated terms is much easier than reasoning with teams. The fundamental reason for
this is that the HOL-logic underlying Nominal Isabelle a® us to replace ‘equals-by-equals’. In
contrast, replacing ‘alpha-equals-by-alpha-equals’repsesentation based on ‘raw’ terms requires
a lot of extra reasoning work.

Although in informal settings a reasoning infrastructuoe dlpha-equated terms is nearly al-
ways taken for granted, establishing it automatically mbklle/HOL is a rather non-trivial task.
For every specification we will need to construct type(s)taming as elements the alpha-equated
terms. To do so, we use the standard HOL-technique of defanimgw type by identifying a non-
empty subset of an existing type. The construction we perfiorlsabelle/HOL can be illustrated
by the following picture:

existin
tny(?:)vé t%r?r?é isomorphism type g
¢ g (sets of raw terms)

non-empty
subset

(1.6)
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We take as the starting point a definition of raw terms (defiagd datatype in Isabelle/HOL);
then identify the alpha-equivalence classes in the typetsfaf raw terms according to our alpha-
equivalence relation, and finally define the new type as théd®-equivalence classes (the non-
emptiness requirement is always satisfied whenever theaamstare definable as datatype in Is-
abelle/HOL and our relation for alpha-equivalence is arivedgnce relation).

The fact that we obtain an isomorphism between the new typgehennon-empty subset shows
that the new type is a faithful representation of alpha-tefiserms. That is not the case for example
for terms using the locally nameless representation ofdsmfl4]: in this representation there are
‘junk’ terms that need to be excluded by reasoning about &faehedness predicate.

The problem with introducing a new type in Isabelle/HOL iattin order to be useful, a rea-
soning infrastructure needs to be ‘lifted’ from the undiendysubset to the new type. This is usually
a tricky and arduous task. To ease it, we re-implementechivele/HOL [10] the quotient package
described by Homeier [8] for the HOL4 system. This packatmal us to lift definitions and the-
orems involving raw terms to definitions and theorems invimh\alpha-equated terms. For example
if we define the free-variable function over raw lambda-te@amn follows

MY < i

fu(ts to) = fu(ty) U fv(ty)

O E () — [x)
then with the help of the quotient package we can obtain aifumé/* operating on quotients, that
is alpha-equivalence classes of lambda-terms. This lfftadtion is characterised by the equations

fv(x) ={x}
v (ty to) = fv(ty) U v (tz)
v (Ax.t) = fv¥(t) — {x}

(Note that this means also the term-constructors for viasalapplications and lambda are lifted
to the quotient level.) This construction, of course, onlyrks if alpha-equivalence is indeed an
equivalence relation, and the ‘raw’ definitions and the@eme respectful w.r.t. alpha-equivalence.
For example, we will not be able to lift a bound-variable fuimc. Although this function can be
defined for raw terms, it does not respect alpha-equivalandetherefore cannot be lifted. To sum
up, every lifting of theorems to the quotient level needofs@f some respectfulness properties (see
[8]). In the paper we show that we are able to automate thesdgpand as a result can automatically
establish a reasoning infrastructure for alpha-equataaiste

The examples we have in mind where our reasoning infrastreiatill be helpful include the
term language of Core-Haskell (see Figure 1). This termuagg involves patterns that have lists
of type-, coercion- and term-variables, all of which arenmbin case-expressions. In these patterns
we do not know in advance how many variables need to be boumoth&r example is the algorithm
W, which includes multiple binders in type-schemes.

Contributions: We provide three new definitions for when terms involving gah binders are
alpha-equivalent. These definitions are inspired by eaxloek of Pitts [18]. By means of automati-
cally-generated proofs, we establish a reasoning infreigstre for alpha-equated terms, including
properties about support, freshness and equality conditior alpha-equated terms. We are also
able to automatically derive strong induction principlaatthave the variable convention already
built in. For this we simplify the earlier automated proofg lsing the proving tools from the
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Type Kinds
K = x| K1 — K2

Coercion Kinds
L 1= 01~ 029

Types
oux=alT|oy102|S, 7" |Vak.o|t=o0

Coercion Types
o= C|C|7172|S,%7"|VC:L.7|L:>'7|I’ef|0|8ym7|71072
| y@o |lefty |righty [ y1 ~ 72 | rightcy | leftcy | y1 > 72

Terms
e = x|K|Aak.e|Aci.eleo|ey|\xo.e|e &
| letxoc =€ ine, |casee of p— & |erry
Patterns
p = Ka&rccrXo
Constants

C coercion constants

T value type constructors

S, n-ary type functions (which need to be fully applied)
K data constructors

Variables
a type variables
c coercion variables
X term variables

Figure 1: The Systerkr¢ [23], also often referred to aSore-Haskell In this version ofF- we
made a modification by separating the grammars for type kamdiscoercion kinds, as
well as for types and coercion types. For this paper theéstiarg term-constructor is
case, which binds multiple type-, coercion- and term-variablg® overlines stand for
lists).

function package [11] of Isabelle/HOL. The method behind specification of general binders
is taken from the Ott-tool, but we introduce crucial redinics, and also extensions, so that our
specifications make sense for reasoning about alpha-ebugstes. The main improvement over Ott
is that we introduce three binding modes (only one is preisedtt), provide formalised definitions
for alpha-equivalence and for free variables of our termd,aso derive a reasoning infrastructure
for our specifications from *first principles’ inside a thear prover.

2. A SHORT REVIEW OF THE NOMINAL LOGIC WORK

At its core, Nominal Isabelle is an adaptation of the nomiogic work by Pitts[[17]. This adapta-
tion for Isabelle/HOL is described inl[9] (including prohf&Ve shall briefly review this work to aid
the description of what follows.

Two central notions in the nominal logic work are sorted at@and sort-respecting permuta-
tions of atoms. We will use the lettegs b, c, ... to stand for atoms and, 7, ... to stand for
permutations, which in Nominal Isabelle have typerm The purpose of atoms is to represent
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variables, be they bound or free. The sorts of atoms can ki toseepresent different kinds of

variables, such as the term-, coercion- and type-variabl€ore-Haskell. It is assumed that there
is an infinite supply of atoms for each sort. In the interesbrelvity, we shall restrict ourselves in

what follows to only one sort of atoms.

Permutations are bijective functions from atoms to atoras dlne the identity everywhere ex-
cept on a finite number of atoms. There is a two-place permuataperation written_ - _ and
having the typgperm=- 5 = 3 where the generic typg is the type of the object over which the
permutation acts. In Nominal Isabelle, the identity pefation is written a$), the composition of
two permutationsr; andw, asm; + w5 (even if this operation is non-commutative), and the ineers
permutation ofr as— w. The permutation operation is defined over Isabelle/HOlp®thierarchy
[9]; for example permutations acting on atoms, productds lipermutations, sets, functions and
booleans are given by:

def

Tea=ma ren' Engn o
def def
Te(Xy) = (meX, weY) meX = {mex|xeX} 2.1)
] def I ﬂ.fd:ef)\x.w-(f (—7meX))
def def
e (X:XS) = (7« X)::(m + XS) b =b

Concrete permutations in Nominal Isabelle are built up fewappings, written a& b), which are
permutations that behave as follows:

(ab)=Ac.ifa=cthenbelseifb=cthenaelsec

The most original aspect of the nominal logic work of Pitta igeneral definition for the notion
of the ‘set of free variables of an object This notion, writtensupp X is general in the sense that
it applies not only to lambda-terms (alpha-equated or i) also to lists, products, sets and even
functions. Its definition depends only on the permutatioerapon and on the notion of equality
defined for the type ok, namely:

supp x 2! {a|infinite {b | (ab) +x # x}} (2.2)
There is also the derived notion for when an atom freshfor anx, defined as
a#x d:efagé supp x

We use for sets of atoms the abbreviatem¥* X, defined a¥ acas a # x. A striking consequence
of these definitions is that we can prove without knowing Bimg about the structure of that
swapping two fresh atoms, sayandb, leaves< unchanged, namely

Proposition 2.1. If a # x and b# x then(a b) - x = x.

While often the support of an object can be relatively eaddgcribed, for example for atoms,
products, lists, function applications, booleans and péations as follows
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suppa = {a}
supp(fx) C supp fU supp x
supp(x, yﬁ = supp xUsuppy psﬂ(pp)b = @pp pp 03
supp|] = < = . _
SUpp(x::Xs) = Supp XU supp Xs suppr = {a|rw.a#a}

in some cases it can be difficult to characterise the suppecigely, and only an approximation can
be established (as for function applications above). Reagabout such approximations can be
simplified with the notiorsupports defined as follows:

Definition 2.2. A setS supports xif for all atomsa andb not in Swe have(a b) « x = x.
The main point obupportsis that we can establish the following two properties.

Proposition 2.3. Given a set bs of atoms.
() If bs supports x and finite bs then supgbs.

(i) (supp X supports Xx.

Another important notion in the nominal logic work éguivariance For a functionf to be
equivariant it is required that every permutation ledvaeachanged, that is

Vo.m.f=f. (2.4)

If a function is of typex = 3, say, this definition is equivalent to the fact that a perroeapplied
to the applicatiorf x can be moved to the argumentThat means for such functions, we have for
all permutationsr:

m.f=f ifandonlyif Vx 7.(fx)="f (7-x). (2.5)

There is also a similar property for relations, which are @lHfunctions of typea = 5 = bool.
Suppose a relatioR, then for all permutations:

m+R=R ifandonlyif Vxy xRyimpliegr.X)R(7-y).

Note that from property (214) and the definitionsafpp we can easily deduce that for a function
being equivariant is equivalent to having empty support.

Using freshness, the nominal logic work provides us withegehmeans for renaming binders.
While in the older version of Nominal Isabelle, we used esie#ly Propositiof 2]1 to rename single
binders, this property proved too unwieldy for dealing withltiple binders. For such binders the
following generalisations turned out to be easier to use.

Proposition 2.4. If supp x#* w thenm+«x =X

Proposition 2.5. For a finite set as and a finitely supported x with #% x and also a finitely
supported c, there exists a permutatioisuch thatr - as#* ¢ and supp ¥4 .

The idea behind the second property is that given a finitasef binders (being bound, or fresh,
in X is ensured by the assumptias #* x), then there exists a permutatiarsuch that the renamed
bindersw . asavoid ¢ (which can be arbitrarily chosen as long as it is finitely sapgd) and also
7 does not affect anything in the supportxofthat issupp x#* 7). The last fact and Property 2.4
allow us to ‘rename’ just the bindeesin x, becauser - X = X.
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Note thatsupp x#* = is equivalent withsuppm #* x, which means we could also formulate
Propositions 2}4 and 2.5 in the other ‘direction’; however teasoning infrastructure of Nominal
Isabelle is set up so that it provides more automation fofdhaulation given above.

Most properties given in this section are described in HatdiR] and all are formalised in
Isabelle/HOL. In the next sections we will make use of thesgperties in order to define alpha-
equivalence in the presence of multiple binders.

3. ABSTRACTIONS

In Nominal Isabelle, the user is expected to write down aifipation of a term-calculus and then
a reasoning infrastructure is automatically derived frbm specification (remember that Nominal
Isabelle is a definitional extension of Isabelle/HOL, whitdes not introduce any new axioms).

In order to keep our work with deriving the reasoning infrasture manageable, we will wher-
ever possible state definitions and perform proofs on ther-level’ of Isabelle/HOL, as opposed to
writing custom ML-code that generates them anew for eactifspsion. To that end, we will con-
sider first pairdas x) of type (atom se} x /3. These pairs are intended to represent the abstraction,
or binding, of the set of atomasin the bodyx.

The first question we have to answer is when two p@ssx) and(bs y) are alpha-equivalent?
(For the moment we are interested in the notion of alphavatprice that ismot preserved by adding
vacuous binders.) To answer this question, we identify mnditions:(i) given a free-atom func-
tion fa of type § = atom set then (as x) and (bs y) need to have the same set of free atoms;
moreover there must be a permutatiosuch thafii) = leaves the free atoms ¢ds x) and(bs y)
unchanged, bufii) ‘moves’ their bound names so that we obtain modulo a relasap_ R _, two
equivalent terms. We also require th{at) = makes the sets of abstracted atamssindbs equal.
The requirement§) to (iv) can be stated formally as:

Definition 3.1 (Alpha-Equivalence for Set-Bindings)

(as x) ~ R (bs y) %" if there exists ar such that:

(i) fax—as=fay—bs
(i) fax —as#*w«
(i) (mr-x)RYy
(iv) we.as=bs
Note that the relation is dependent on a free-atom funddand a relatiorR. The reason for this
extra generality is that we will usagg? for both raw terms and alpha-equated terms. In the latter

caseRwill be replaced by equality= and we will prove thafa is equal tasupp
Definition[3.1 does not make any distinction between therasflabstracted atoms. If we want

this, then we can define alpha-equivalence for pairs of tha fas x) with type (atom lis x g as
follows

Definition 3.2 (Alpha-Equivalence for List-Bindings)
(as x) ~ 1 (bs y) %" if there exists ar such that:
(i) fax—setas=fay— setbs

(i) fax —setas#*

(i) (r-x)RYy

(iv) we.as=bs
wheresetis the function that coerces a list of atoms into a set of atdyasv the last clause ensures
that the order of the binders matters (sims@andbsare lists of atoms).
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If we do not want to make any difference between the ordermddrisand also allow vacuous
binders, that means according to Pitts! [1&$trict atoms, then we keep sets of binders, but drop
condition(iv) in Definition[3.1:

Definition 3.3 (Alpha-Equivalence for Set+-Bindings)

(as x) ~Rfa (bs y) %" if there exists ar such that:

() fax—as=fay—bs
(i) fax —as#*«
(i) (mr+x)RYy
It might be useful to consider first some examples how thefiaitiens of alpha-equivalence
pan out in practice. For this consider the case of abstaetiget of atoms over types (as in type-
schemes). We s&to be the usual equality and forfa(T) we define

fax) £ x} faT — To) Efa(T)) Uta(T,)

Now recall the examples shown [n(IL.2) ahd{1.3). It can béyeasecked that{x, y}, x —y) and
({x, vy}, y — x) are alpha-equivalent according 40t and = set+ by taking to be the swapping
(xy). In case ofx £y, then([x, y], X = Y) st ([, X], X = y) since there is no permutation that
makes the list§x, y] and|y, x| equal, and also leaves the types y unchanged. Another example is
({x}, X) =~ set+ ({X, ¥}, X) which holds by takingr to be the identity permutation. Howeverxif y,
then({x}, X) % set ({X, ¥}, X) since there is no permutation that makes the §etand{x, y} equal
(similarly for =~ is). It can also relatively easily be shown that all three nadiof alpha-equivalence
coincide, if we only abstract a single atom. In this case tleg agree with the alpha-equivalence
used in older versions of Nominal Isabelle [ﬂG].

In the rest of this section we are going to show that the agpavalences really lead to ab-
stractions where some atoms are bound (or more preciselyvierirom the support). For this we
will consider three abstraction types that are quotientb@telations

(as x) = PP (bs y)
(as x) ~ sqrPP (bs y) (3.1)
(as x) ~ st >PP(bs )

Note that in these relations we replaced the free-atom ifumé& with suppand the relatiorkR with
equality. We can show the following two properties:

Lemma 3.4. The relationsz o5, ~ 5 and ~ .t PP are equivalence relations and equivariant.

Proof. Reflexivity is by takingw to be 0. For symmetry we have a permutatianand for the
proof obligation take-x. In case of transitivity, we have two permutationsandm,, and for the
proof obligation user; + mo. Equivariance meangr - as m « X) ~ 5;>"PP (7 - bs 7 . y) holds
provided(as, x) = 5 >UPP (bs y) holds. From the assumption we have a permutatitend for the
proof obligation user - v’. To show equivariance, we need to ‘pull out’ the permutatjomhich is
possible since all operators, namely4as —, =, ., setandsupp are equivariant (se€l[9]). Finally,
we apply the permutation operation on booleans. L]

Iwe omita proof of this fact since the details are hairy andreally important for the purpose of this paper.
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Recall the picture shown ifn_(1.6) about new types in HOL. Tmarha above allows us to use our
quotient package for introducing new typ8sabset, 5 absetr and s absigt representing alpha-
equivalence classes of pairs of tyf@om set x £ (in the first two cases) and of tygatom list) x

6 (in the third case). The elements in these types will be aesgely, written as

[agsetX [agsetr X [asist-X

indicating that a set (or list) of atomes is abstracted ix. We will call the typesabstraction
typesand their elementabstractions The important property we need to derive is the support of
abstractions, namely:

Theorem 3.5(Support of Abstractions)Assuming x has finite support, then
supp[agsetX = supp x— as

supp[agsety .X = supp x— as
supp[agjist.X = supp x— set as

In effect, this theorem states that the atamare bound in the abstraction. As stated earlier, this can
be seen as a litmus test that our Definitions B.1], 3.2 add ®@Bieathe idea of alpha-equivalence
relations. Below we will give the proof for the first equatiohTheoreni 3.6. The others follow by
similar arguments. By definition of the abstraction tyieset we have

[agsetx = [bsety ifandonlyif (as x) ~ ;%P (bs y) (3.2)
and also set
def
T e [aﬁset.x = [71" aqSet.(T("X) (33)

With this at our disposal, we can show the following lemmaudtsavapping two atoms in an ab-
straction.

Lemma 3.6. If a ¢ supp x— as and b¢ supp x— as thenagsetX = [(a b) - agset((a b) - x)

Proof. If a = b the lemma is immediate, singe b) is then the identity permutation. Also in the
other case the lemma is straightforward usingl(3.2) andreiogethat the assumptions give (&
b) - (supp x— as) = supp x— as We therefore can use the swappifegb) as the permutation for
the proof obligation. L]

This lemma together witt (3.3) allows us to show

(supp X— as) supportsjagsetXx (3.4)

which by Property 213 gives us ‘one half’ of Theoréml|3.5. Takbksh the ‘other half’, we use a
trick from [18] and first define an auxiliary functiaux taking an abstraction as argument

aux ([agsetX) & supp x— as
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Using the second equation in(R.5), we can show #luatis equivariant (sincer - (supp x— as) =
supp(w - X) — 7 - a9 and therefore has empty support. This in turn means

supp(aux([assetX)) < supp[agsetx

using the fact about the support of function application@if). Assumingsupp x— asis a finite
set, we further obtain

supp x— asC supp|agsetX (3.5)

This is because for every finite set of atoms, bgywe havesupp bs= bsA Finally, taking [3.4)
and [3.5) together establishes the first equation of TheBt8mThe others are similar.

Recall the definition of support given in_(2.2), and note tlifeence between the support of a
raw pair and an abstraction

supp(as Xx) = supp asJ supp X suppagsetX = Supp x— as

While the permutation operations behave in both cases the &apermutation is just moved to the
arguments), the notion of equality is different for pairsl abstractions. Therefore we have different
supports. In case of abstractions, we have establishedeioréhi 3.5 that bound atoms are removed
from the support of the abstractions’ bodies.

The method of first considering abstractions of the fdasjsetx etc is motivated by the fact
that we can conveniently establish at the Isabelle/HOLIIpveperties about them. It would be
extremely laborious to write custom ML-code that derivematically such properties for every
term-constructor that binds some atoms. Also the gengi@dlihe definitions for alpha-equivalence
will help us in the next sections.

4, SPECIFYING GENERAL BINDINGS

Our choice of syntax for specifications is influenced by thistang datatype package of Isabelle/HOL
[4] and by the syntax of the Ott-todl [22]. For us a specifimatof a term-calculus is a collection
of (possibly mutually recursive) type declarations, $gy ..., ty:, and an associated collection
of binding functions, sapry, ..., bng,. The syntax in Nominal Isabelle for such specifications is
schematically as follows:

nominal_datatypety® =...

type andtys=...
declarati t o
eclaration par andty? = ... 4.1)
binder bnfand . ..and bng,

function part

2Note that this is not the case for infinite sets.
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Every type declaratioty{ ,, consists of a collection of term-constructors, each of Wisimmes with
a list of labelled types that stand for the types of the argumef the term-constructor. For example
a term-constructo€“ might be specified with

C“ label ::ty]. .. label::ty)  binding clauses

whereby some of thiy, , (or their components) can be contained in the collectiaty(of, declared

in (@.1). In this case we will call the corresponding argub@ecursive argumeraf C*. The types

of such recursive arguments need to satisfy a ‘positivisgtriction, which ensures that the type has
a set-theoretic semantics (seé [4]). If the types are palgmo, we require the type variables to
stand for types that are finitely supported and over whichrenptation operation is defined. The
labelslabel; ; annotated on the types are optional. Their purpose is to ée nsthe (possibly
empty) list of binding clauseswhich indicate the binders and their scope in a term-caoosir.
They come in threenodes

binds bindersin bodies
binds (set)bindersin bodies
binds (set+)bindersin bodies

The first mode is for binding lists of atoms (the order of boatdms matters); the second is for
sets of binders (the order does not matter, but the cartlirdoes) and the last is for sets of binders
(with vacuous binders preserving alpha-equivalence). ndcated, the labels in thén-part’ of a
binding clause will be calleBodies the ‘binds-part’ will be calledbinders In contrast to Ott, we
allow multiple labels in binders and bodies. For example limnebinding clauses of the form:

Foo, x::name y:name t:trm s:trm bindsxyints
Foo, x::name y:name t:trm s:trm bindsxyin t, bindsxyin s

Similarly for the other binding modes. Interestingly, irseafbinds (set)andbinds (set+)the bind-
ing clauses above will make a difference to the semantichkespecifications (the corresponding
alpha-equivalence will differ). We will show this later Wwian example.

There are also some restrictions we need to impose on ouingithuses in comparison to
Ott. The main idea behind these restrictions is that we olataiotion of alpha-equivalence where it
is ensured that within a given scope an atom occurrence taertaoth bound and free at the same
time. The first restriction is that a body can only occubirebinding clause of a term constructor.
So for example

Foo x:name y:name t:trm bindsxin t, bindsyin t

is not allowed. This ensures that the bound atoms of a bodyotdre free at the same time by
specifying an alternative binder for the same body.

For binders we distinguish betweshallowanddeepbinders. Shallow binders are just labels.
The restriction we need to impose on them is that in casenafs (set)andbinds (set+)the labels
must either refer to atom types or to sets of atom types; i@ oHsinds the labels must refer to atom
types or to lists of atom types. Two examples for the use di@hainders are the specification
of lambda-terms, where a single name is bound, and typevsehewhere a finite set of names is
bound:
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nominal_datatype lam = nominal_datatypety =
Var name TVar name
| App lam lam | TFun ty ty
| Lam x:name t:lam binds xin t andtsc=

TAll xs:(name fsetT::ty binds (set+)xsin T

In these specificationsamerefers to a (concrete) atom type, asdtto the type of finite sets. Note
that forLamit does not matter which binding mode we use. The reasontisvhaind only a single
name in which case all three binding modes coincide. Howeverirtgabinds (set)or justbinds
in the second case makes a difference to the semantics gi¢hbiication (which we will define in
the next section).

A deepbinder uses an auxiliary binding function that ‘picks’ oétatoms in one argument of
the term-constructor, which can be bound in other argumamilsalso in the same argument (we
will call such bindersecursive see below). The binding functions are expected to retihneea set
of atoms (forbinds (set)andbinds (set+) or a list of atoms (fobinds). They need to be defined
by recursion over the corresponding type; the equationg brugiven in the binding function part
of the scheme shown ia(4.1). For example a term-calculutagong Lets with tuple patterns may
be specified as:

nominal_datatype trm =
Var name
| App trm trm
| Lam x:name t:trm binds xin t
| Let_pat p:pat trm t:trm binds bn(p) in t
and pat = (4.2)
PVar name
| PTup pat pat
binder bn::pat = atom list
where bn(PVar X) = [atom %

| bn(PTup p p2) = bn(p:) @ bn(p,)

In this specification the functiobn determines which atoms of the patteriffifth line) are bound
in the argument. Note that in the second-labh-clause the functiomtomcoerces a name into the
generic atom type of Nominal Isabellgl [9]. This allows usrat binders of different atom type

uniformly.
For deep binders we allow binding clauses such as

Bar p::pat t:trm bindsbn(p) in p t

where the argument of the deep binder also occurs in the baééycall such bindersecursive
To see the purpose of such recursive binders, compare “flais andLet_recs in the following
specification:
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nominal_datatype trm =

| Let as:assn t:trm binds bn(as) in t
| Let_rec as:assn t:trm  bindsbn(as) in as t
and assn=
ANl (4.3)

| ACons name trm assn
binder bn::assn=- atom list
where bn(ANil) = |]
| bn(ACons a t as= [atom g @ bn(as)

The difference is that withetwe only want to bind the atontm(as) in the termt, but withLet rec
we also want to bind the atoms inside the assignment. Thisreifce has consequences for the

associated notions of free-atoms and alpha-equivalence.
To make sure that atoms bound by deep binders cannot be treessgtme time, we cannot have
more than one binding function for a deep binder. Consefyuest exclude specifications such as

Baz p::pat t:trm binds bn; (p) b (p) inp t
Baz p::pat t;::trm ty::trm binds bny (p) in p t;, binds bry(p) in p ty

Otherwise it is possible th&in, andbn, pick out different atoms to become bound, respectively be
free, inpf

We also need to restrict the form of the binding functionsriden to ensure thbn-functions
can be defined for alpha-equated terms. The main restrictittimat we cannot return an atom in
a binding function that is also bound in the correspondinghteonstructor. Consider again the
specification foitrm and a contrived version for assignmeatsn

nominal_datatypetrm = ...
and assn=
ANil’
| ACons x::name y:name t:trm assn bindsy in t (4.4)
binder bn::assn=- atom list
where bn(ANil") = ]
| bn(ACons x y t ag = [atom % @ bn(as)

In this example the term construct&Cons has four arguments with a binding clause involving
two of them. This constructor is also used in the definitiothef binding function. The restriction
we have to impose is that the binding function can only reftga atoms, that is the ones that are
not mentioned in a binding clause. Therefgreannot be used in the binding functibn (since
it is bound inACons by the binding clause), butcan (since it is a free atom). This restriction is
sufficient for lifting the binding function to alpha-equdtterms. If we would permibnto returny,
then it would not be respectful and therefore cannot bedliftealpha-equated lambda-terms.

In the version of Nominal Isabelle described here, we alepta the restriction from the Ott-

tool that binding functions can only return: the empty se¢mipty list (as in casANil’), a singleton
set or singleton list containing an atom (cd®dar in (4.2)), or unions of atom sets or appended

3Since the Ott-tool does not derive a reasoning infrastradior alpha-equated terms with deep binders, it can permit
such specifications.
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atom lists (caséCons). This restriction will simplify some automatic definitisrand proofs later
on.

To sum up this section, we introduced nominal datatype fipations, which are like standard
datatype specifications in Isabelle/HOL but extended wittdibg clauses and specifications for
binding functions. Each constructor argument in our speatifbtn can also have an optional label.
These labels are used in the binding clauses of a constriiceye can be several binding clauses
for each constructor, but bodies of binding clauses can octyr in a single one. Binding clauses
come in three modesinds, binds (set)andbinds (set+) Binders fall into two categories: shallow
binders and deep binders. Shallow binders can occur in rharedne binding clause and only have
to respect the binding mode (i.e. be of the right type). Daagdys can also occur in more than
one binding clause, unless they are recursive in which ¢esedan only occur once. Each of the
deep binders can only have a single binding function. Bigdimctions are defined by recursion
over a nominal datatype. They can return the empty set,efimghtoms and unions of sets of atoms
(for binding modesinds (set)andbinds (set+), and the empty list, singleton atoms and appended
lists of atoms (for modéind). However, they can only return atoms that are not mentiomethy
binding clause.

In order to simplify our definitions of free atoms and alpliaigalence we define next, we
shall assume specifications of term-calculi are implicitynpleted By this we mean that for every
argument of a term-constructor thanist already part of a binding clause given by the user, we add
implicitly a specialemptybinding clause, writtefinds & in labels In case of the lambda-terms,
the completion produces

nominal_datatype lam=
Var x::name binds @ in x
| App t::lam t::lam binds @ in t; t,
| Lam x:name t:lam bindsxin t

The point of completion is that we can make definitions overtdimding clauses and be sure to have
captured all arguments of a term constructor.

5. ALPHA-EQUIVALENCE AND FREE ATOMS

Having dealt with all syntax matters, the problem now is hosvoan turn specifications into actual
type definitions in Isabelle/HOL and then establish a reiagpinfrastructure for them. As Pot-
tier and Cheney pointed out![[7,]19], just re-arranging thlgamrents of term-constructors so that
binders and their bodies are next to each other will resulb@tlequate representations in cases
like Letx =t;...x, =1, ins. Therefore we will first extract ‘raw’ datatype definition®in the
specification and then define explicitly an alpha-equivederelation over them. We subsequently
construct the quotient of the datatypes according to ouraagmuivalence.

The ‘raw’ datatype definition can be obtained by strippinglod binding clauses and the labels
from the types given by the user. We also have to invent newesdor the typesy® and the term-
constructorsC®. In our implementation we just use the affixraw”. But for the purpose of this
paper, we use the superscrigt to indicate that a notion is given for alpha-equivalencesds and
leave it out for the corresponding notion given on the rawle8o for example we hawg® / ty and
C / C wherety is the type used in the quotient construction tigt andC is the term-constructor
of the raw typdy, respectivelyC? is the corresponding term-constructortyt.

The resulting datatype definition is legal in Isabelle/HObvpded the datatypes are non-empty
and the types in the constructors only occur in positivetprs(seel[4] for an in-depth description of
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the datatype package in Isabelle/HOL). We subsequentipalefich of the user-specified binding
functionsbn,_,,, by recursion over the corresponding raw datatype. We al§oedpermutation
operations by recursion so that for each term constri€tee have that

m+(Cz...2,)=C(m+zy) ... (m~2,) (5.1)

We will need this operation later when we define the notionlgfaequivalence.
The first non-trivial step we have to perform is the generatibfree-atom functiongrom the
specificationﬂ For theraw typesty; ,, we define the free-atom functions

fa_ty; (5.2)

by recursion. We define these functions together with anilfree-atom functions for the binding
functions. Given raw binding functiori®y, ,,, we define

fa_bny_,,.

The reason for this setup is that in a deep binder not all ateavs to be bound, as we saw(in {4.3)
with the example of ‘plainLets. We need therefore functions that calculate those freesaitodeep
binders.

While the idea behind these free-atom functions is simpiey(just collect all atoms that are
not bound), because of our rather complicated binding nmeshns their definitions are somewhat
involved. Given a raw term-construct@rof typety and some associated binding clauses . . bc,
the result ofa_ty (Cz ... z,) will be the unionfa(bc; ) U . .. U fa(bc ) where we will define below
whatfa for a binding clause means. We only show the details for thdehinds (set) (the other
modes are similar). Suppose a binding clabgds of the form

binds (set)b;...b, in d;...d,

in which the body-labels; , refer to typedy; ,, and the binderb; _, either refer to labels of atom
types (in case of shallow binders) or to binding functiorigrng a single label as argument (in case
of deep binders). Assumiry stands for the set of free atoms of the bodig#r the set of binding
atoms in the binders an@’ for the set of free atoms in non-recursive deep binders, therfree
atoms of the binding claude; are

fa(bc)) £ (D — B) UB'. (5.3)
The setD is formally defined as

p & fa_ty; dy U ... Ufa_ty, d,

4Admittedly, the details of our definitions will be somewhatalved. However they are still conceptually simple in
comparison with the ‘positional’ approach taken in Qtt/[P2ges 88—95], which uses the notionsboturrencesand
partial equivalence relationsver sets of occurrences.
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where in casé; refers to one of the raw typéy, ,, from the specification, the functida_ty; is the

corresponding free-atom function we are defining by reonrsotherwise we sdt_ty; def supp
The reason for the latter is that; is not a type that is part of the specification, and we assume
suppis the generic function that characterises the free vagsabl a type (in fact in the next section
we will show that the free-variable functions we define hare,equal to the support once lifted to
alpha-equivalence classes).

In order to formally define the s&we use the following auxiliarypn-functions for atom types
to which shallow binders may refer

def
bratoma = {atom g
def
bratom setds = atoms as (5.4)
def
bnatom list as = atoms(set ag

Like the functionatom the functionatomscoerces a set of atoms to a set of the generic atom type.
. , def , . .
Itis defined astoms as= {atom a| a € as}. The seB in (65.3) is then formally defined as

B % b ty; by U... Ubn_ty, b, (5.5)

where we use the auxiliary binding functions frdm {5.4) foalkow binders (that means whép is
of type atom atom setr atom lis).

The setB’ in (5.3) collects all free atoms in non-recursive deep hisdé&et us assume these
binders in the binding claudwe; are

bnlll,...,bnrlr

with I, € by, and none of thé, . being among the bodiek ,. The seB’is defined as

B’ © fa b I, U... Ufa_bn, |, (5.6)

This completes all clauses for the free-atom functifaasy; .

Note that for non-recursive deep binders, we have to add¥) {Be set of atoms that are left un-
bound by the binding functiontsn; ,,,. We used for the definition of this set the functidasbn, ,,.
The definition for those functions needs to be extracted tfetlauses the user provided oy,
Assume the user specifieda-clause of the form

bn(Cz ... z)=rhs

where thez; , are of typedy; ;. For each of the arguments we calculate the free atoms asvioll

e fa_ty; z; providedz; does not occur imhs
(that means nothing is bound anby the binding function),
e fa_bn; z; providedz; occurs inrhs with the recursive calbn; z
(that means whatever is ‘left over’ from the-function is free)
e & providedz; occurs inrhs, but without a recursive call
(that meang; is supposed to become bound by the binding function)
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For definingfa_bn (C z ... z,) we just union up all these sets.

To see how these definitions work in practice, let us recendite term-constructorset and
Let_rec shown in [[4.8) together with the term-constructors forgasientsANil andACons Since
there is a binding function defined for assignments, we Haetfree-atom functions, name&¢m,
fagssnandfay, as follows:
fagm (Letas ) def (fagrm t — set(bn ag) U fapp as
fagm (Letrec as ) def (faassnasu fagm t) — set(bn ag

def

faassn (AN”) = o

def
faassn(ACons a t ap = (supp 8 U (fagrm t) U (fagssnas)
fapn (ANil) &

fapn (ACons at ap def (fagrm t) U (fapp a9

Recall thatANil and AConshave no binding clause in the specification. The correspontiee-
atom functionfagssntherefore returns all free atoms of an assignment (in cageCons they are
given in terms obkupp fayrm andfagssn. The binding only takes place lretandLet_rec. In case of
Let the binding clause specifies that all atoms giversé&ty(bn ag have to be bound i Therefore
we have to subtractet (bn ag from faym t. However, we also need to add all atoms that are free
in as This is in contrast withLet_rec where we have a recursive binder to bind all occurrences of
the atoms irset(bn ag also insideas Therefore we have to subtrast(bn ag from bothfagm t
andfagssnas Like the functionbn, the functionfay, traverses the list of assignments, but instead
returns the free atoms, which means in this example the fegesain the argumerit

An interesting point in this example is that a ‘naked’ assgnt ANil or ACong does not bind
any atoms, even if the binding function is specified overgasaents. Only in the context oflaet
or Let_rec, where the binding clauses are given, will some atoms dgtbatome bound. This is a
phenomenon that has also been pointed out in [22]. For usliservation is crucial, because we
would not be able to lift thén-functions to alpha-equated terms if they act on atoms tedba@und.
In that case, these functions wouldt respect alpha-equivalence.

Having the free-atom functions at our disposal, we can nefibe the alpha-equivalence rela-
tions for the raw typesy;. . We write them as

Like with the free-atom functions, we also need to definelaryialpha-equivalence relations

%bnl..m

for the binding function®n, ,,, To simplify our definitions we will use the following abbiations
for compound equivalence relatioasadcompound free-atom functioasting on tuples.

def
Xty s %) (Riyee s R) (Vs ey Yn) = Xt RIVIA .. AXy RV
def
(fag,...,fa,) (X1,..., %) = fagxq U... Ufa, X,
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The alpha-equivalence relations are defined as inductegiqates having a single clause for
each term-constructor. Assuming a term-constru€as of typety and has the binding clauses
bc, ., then the alpha-equivalence clause has the form

premgbc, ) ... premgbc;)
Cz...z, ~tyC%4... 2, (5.7)

The task below is to specify what the premises corresportdiaghinding clause are. To understand
better what the general pattern is, let us first treat theigliestance wherbéc; is the empty binding
clause of the form

binds (set)@ in d;...d,.

In this binding clause no atom is bound and we only have thalelate’ the bodies. For this we

build first the tuple® &' (d;...., d,) andD’ %' (d...., d,) whereby the labeld; _, refer to some
of the argumentg; ,, and respectively!; , to some of the ,, in (5.7). In order to relate two such

tuples we define the compound alpha-equivalence rel&ias follows

def

RE (R,....,R,) (5.8)

with R; being ~ty; if the corresponding labeld; andd; refer to a recursive argument &f and
have typety;; otherwise we takdr; to be the equality=. Again the latter is becaudy; is then
not part of the specified types and alpha-equivalence of eewiqusly defined type is supposed to
coincide with equality. This lets us now define the premiseafoempty binding clause succinctly

aspremsbc;) * bR D’, which can be unfolded to the series of premises

R ... d, R,

We will use the unfolded version in the examples below.
Now suppose the binding claube; is of the general form

binds (set)b;...b, in d;...d,. (5.9)
In this case we define a premiBeusing the relatiomgg? given in Section B (similarlnggir and
mffsfta for the other binding modes). As above, we first build the g andD’ for the bodies

d;.4, and the corresponding compound alpha-relaRqshown in [(5.8)). Forxi’é? we also need a

compound free-atom function for the bodies defined as

fa 2 (fa_ty,.. ., fa_ty,)

with the assumption that thay , refer to arguments of typeyg; ,. The last ingredient we need are
the sets of atoms bound in the bodies. For this we take

BL bnty, b U... Ubn ty,b,.
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Similarly for B” using the label®; ,. This lets us formally define the premiBefor a non-empty
binding clause as:

def
P = (B7 D) %SRétfa (B/’ D/) .

This premise accounts for alpha-equivalence of the bodidsedinding clause. However, in case
the binders have non-recursive deep binders, this presisat enough: we also have to ‘propagate’
alpha-equivalence inside the structure of these bindensexample id et where we have to make
sure the right-hand sides of assignments are alpha-egoivalFor this we use relationsbn, ,,
(which we will define shortly). Let us assume the non-reagrsieep binders ibc; are

bm |1, ,bnr [,

The tupleL consists then of all these bindéts,. . . ,I,.) (similarly L’) and the compound equivalence
relationR’is (~bm,. .. ,~bn,.). All premises forbc; are then given by

premgbc;) ©P A LRL

The auxiliary alpha-equivalence relationbn; ,,, in R’ are defined as follows: assumingmclause
is of the form

bn(Cz ... z)=rhs
where thez; , are of typegdy, , then the corresponding alpha-equivalence clause-forhas the
form

lelz’l... ZSRSZ;
Cz...zz~bnC#%... Z

In this clause the relatior®;  are given by

z; ~ty Z providedz; does not occur imhs and is a recursive argument Gf

z; = Z providedz does not occur imhs and is a non-recursive argument@f
z; ~bn; Z providedz; occurs inrhs with the recursive calbn; x; and
Trueprovidedz; occurs inrhs but without a recursive call.

This completes the definition of alpha-equivalence. As é&gaheck, we can show that the premises
of empty binding clauses are a special case of the clausasifieempty ones (we just have to unfold
the definition ofz@é? and taked for the existentially quantified permutation).

Again let us take a look at a concrete example for these defisit For the specification shown

in (4.3) we have three relationsym, ~assnand~p, with the following rules:
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(bn as t) ~ igrm: farm (bn ag, t/) as~p as’
Let as t~ym Let adt’

(bn as (as 1)) ~ [gassn ~trm). (faassn farm) (bn ag, (as t'))

Let_rec as t~ym Let_rec agt’

(5.10)
a= a./ t trm t/ as r’b’assnasl
ANl %aSSI’IANiI ACons at asvassnAconS dt’as
t ~trm t’/ as~pn as
ANIil ~p, ANil ACons at asyp, ACons dt’ as

Notice the difference between,ssnand=y,: the latter only ‘tracks’ alpha-equivalence of the com-
ponents in an assignment that aret bound. This is needed in the clause fart (which has a
non-recursive binder). The underlying reason is that thmgenside an assignment are not meant
to be ‘under’ the binder. Such a premisenist needed irLet_rec, because there all components of
an assignment are ‘under’ the binder. Note also that in chesooe than one body (that is in the
Let_rec-case above) we need to parametrise the relatighwith a compound equivalence relation
and a compound free-atom function. This is because thesmmmneling binding clause specifies a
binder with two bodies, namelgsandt.

6. ESTABLISHING THE REASONING INFRASTRUCTURE

Having made all necessary definitions for raw terms, we cam gfith establishing the reasoning
infrastructure for the alpha-equated typgd .., that is the types the user originally specified. We
give in this section and the next the proofs we need for dstaby this infrastructure. One point of
our work is that we have completely automated these prodfsaivelle/HOL.

First we establish that the free-variable functions, thelisig functions and the alpha-equiva-
lences are equivariant.

Lemma 6.1.
(i) The functions faty, ,, fa_bm ,, and bn _,, are equivariant.
(ii) The relations~ty; ,, and=bn,_,, are equivariant.

Proof. The function package of Isabelle/HOL allows us to prove tret fiart by mutual induction
over the definitions of the functiofisThe second is by a straightforward induction over the rufes o
~ty;. , and=bn; ,, using the first part. ]

Next we establish that the alpha-equivalence relations@gfin the previous section are indeed
equivalence relations.

Lemma 6.2. The relations~ty, ,, and~bn, ., are equivalence relations.

Proof. The proofs are by induction. The non-trivial cases involvenises built up byxse;, ~set+
and~jis;. They can be dealt with as in Lemial3.4. However, the tratgittase needs in addition
the fact that the relations are equivariant. ]

SWe have that the free-atom functions are terminating. Frogtle function package derives an induction principlg.[11
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We can feed the last lemma into our quotient package androbtw typesty{ ,, representing
alpha-equated terms of typs. ,,. We also obtain definitions for the term-constructGrs . from
the raw term-constructor€; , and similar definitions for the free-atom functiofes tyy ,, and
fa_bnf = as well as the binding functiorts , . However, these definitions are not really useful
to the user, since they are given in terms of the isomorphigensbtained by creating new types in
Isabelle/HOL (recall the picture shown in the Introducjion

The first useful property for the user is the fact that digtieom-constructors are not equal, that
is the property

CUXy oo X £EDYYy ... Vs (6.1)

whenevelC® £ D, In order to derive this property, we use the definition ohakgquivalence and
establish that

CX ... X #tyDyy ...y (6.2)

holds for the corresponding raw term-constructors. In otdededuce[(6]1) from (612), our quo-
tient package needs to know that the raw term-constru€@a@sdD arerespectfulw.r.t. the alpha-
equivalence relations (seel [8]). Given, for examfileis of typety with argument typesy; .,
respectfulness amounts to showing that

CX ... % ~tyCx ... X.

holds under the assumptiors~ty; X; whenevel; andx; are recursive arguments 6f andx; = x;
whenever they are non-recursive arguments (similarlydfjoiFor this we have to show by induction
over the definitions of alpha-equivalences the followingikary implications

x ~ty; X’ implies fa_ty; x = fa_ty; x’
x~ty; X' implies fa_bn; x = fa_bn; x’/
x~ty; X' implies bn; x = bn; x’
x~ty; X implies x~bn; x’

(6.3)

wherebyty; is the type over whiclbn; is defined. Whereas the first, second and last implication are
true by how we stated our definitions, the thinaly holds because of our restriction imposed on the
form of the binding functions—namelyot to return any bound atoms. In Ott, in contrast, the user
may definebn; ,, so that they return bound atoms and in this case the thirddatwn isnot true.

A result is that in general the lifting of the correspondingding functions in Ott to alpha-equated
terms is impossible. Having established respectfulnesthéoraw term-constructors, the quotient
package is able to automatically deducel(6.1) froml (6.2).

Next we can lift the permutation operations defined_inl(5ld )order to make this lifting to go
through, we have to show that the permutation operationseapectful. This amounts to showing
that the alpha-equivalence relations are equivariantchivhie already established in Lemial6.2.
As a result we can add the equations

Te(C¥Xp .. X)) =CY (meXq) ... (MeX) (6.4)
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to our infrastructure. In a similar fashion we can lift thdidimg equations of the free-atom functions

fa_tyf , andfa_bn{ ,, as well as of the binding functiors¥ ,,, and size functionsize_ty{ . The

latter are defined automatically for the raw types.,, by the datatype package of Isabelle/HOL.
We also need to lift the properties that characterise wherréw terms of the form

CX ... % ~tyCX¥ ... X.

are alpha-equivalent. This gives us conditions when theesponding alpha-equated terms are
equal namely

CXy ... X,n:CaXll... X;n

We call these conditionguasi-injectivity They correspond to the premises in our alpha-equivalence
relations, except that the relationgy; ,, are all replaced by equality (and similarly the free-atom
and binding functions are replaced by their lifted courdets). Recall the alpha-equivalence rules
for LetandLet_rec shown in[5.1D). FoLet* andLet_rec* we have

(bre* as t) ~ g @M (bn ag, t) as~g,as’
Let* ast= Let* as't’

(6.5)
(brr as (as t)) ~ 5 =) (fadssn fafrm) (b ag/, (as t))
Let rec* as t= Let_rec® as't’

We can also add to our infrastructure cases lemmas and aguriduction principle for the
typesty? ... The cases lemmas allow the user to deduce a propelty exhaustively analysing
how an element of a type, say; can be constructed (that means one case for each of the term-
constructors iny?). The lifted cases lemma for a typg* looks as follows

VX1 X Y=C¢X1 ... Xz =P

VX1...%.Yy=CH X ... =P
P (6.6)

wherey is a variable of typday? and P is the property that is established by the case analysis.
Similarly, we have a (mutual) induction principle for thggsty? .., which is of the form

VX X Pixg Ao AP X = P (CE Xy LX)

VX X Pr X A vt APsXs =P (Coy X1 ... %)
P ViAo /\Pnyn (67)

whereby theP; ,, are the properties established by the induction, and/the are of typety{ ...
Note that for the term construct@¢ the induction principle has a hypothesis of the form

VXl X PiXi Ao AP X = P (CE X ... Xg)
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in which thex; ; C x;_;, are the recursive arguments of this term constructor (arfgifor the other

term-constructors).
Recall the lambda-calculus witket-patterns shown i (4.2). The cases lemmas and the induc-

tion principle shown in[(6]6) and_(8.7) boil down in that exglento the following three inference
rules:

cases lemmas:

VX y=Var® X = Pym
VX1 Xo. Y= App* X1 X2 = Pyrm

VX1 Xo. Y = Lant* X; Xo = Pym VX.y=PVar* Xx=- Ppat
VX1 X2 X3. Y = Let_pat® X; X9 X3 = Ptm VX1 Xo. Y = PTup* X; X2 = Ppat
Ptrm Ppat
induction principle: (6.8)

\V/X. Ptrm (Val’o‘ X)

VX1 Xo. Pirm X1 A Prm X2 = Pum (App™ X1 X2)

VX Xo. Ptrm X2 = Pym (Lant* x; Xo)

VX1 X2 X3. Ppat X1 A Pyrm X2 A Pyrm X3 = Pym (Let_pat™ x; Xo X3)
\V/X. Ppat (PVarO‘ X)

VX1 X2. Ppat X1 A Ppat X2 = Ppat (PTup* x; X2)

Ptrm Y1 A Ppat Y2

By working now completely on the alpha-equated level, we fiet show using[(6J4) and
Property 2.1l that the support of each term constructor isided in the support of its arguments,
namely

(supp X U ... Usupp %) supports(C* x; ... X)

This allows us to prove using the induction principle fgf , that every element of typgf .,
is finitely supported (using Proposition B)3. Similarly, we can establish by induction that the
free-atom functions and binding functions are equivariaatnely

me (fatyy x) = fa_ty®(m+X)
e (fa_brf x) = fa_bnf (7«x)
7+ (brf x) = br (7 +X)

Lastly, we can show that the support of elementsyth,, is the same as the free-atom functions
fa_tyf ,,. This fact is important in the nominal setting where the gehtheory is formulated in
terms of support and freshness, but also provides evideateur notions of free-atoms and alpha-
equivalence ‘match up’ correctly.

Theorem 6.3. For x;_,, with type ty ,,, we have supp;x= fa_tys'x;.

Proof. The proof is by induction orx; ,,. In each case we unfold the definition sipp move
the swapping inside the term-constructors and then useuasi-ipjectivity lemmas in order to
complete the proof. For the abstraction cases we use thefadtederived in Theorein 3.5, for
which we have to know that every body of an abstraction isdiypupported. This, we have proved
earlier. []
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Consequently, we can replace the free-atom functiorsuppin our guasi-injection lemmas. In the
examples shown in_(6.5), for instance, we obtainlfet* andLet_rec®

(b as t) ~ i SYPP (b ag/, t') as~g, as’
Let* ast= Let* as't’

(brr as, (as t)) ~ {5 =) (SUPRSUPD (brr ag/ (as t'))
Let rec* as t= Let_rec® as't’

Taking into account that the compound equivalence relation=) and the compound free-atom
function (supp supp are by definition equal te= andsupp respectively, the above rules simplify
further to

[br™ agjist.t = [br™ asjist.t’ as~fnas
Let® ast= Let* as't’

[br* agjjst.(as t) = [on™ asjst.(as t)
Let_rec™ as t= Let_rec® as't’

which means we can characterise equality between terntraotws (on the alpha-equated level)
in terms of equality between the abstractions defined ini@e& From this we can deduce the
support forLet* andLet_rec*, namely

supp(Let* as ) = (supp t— set(bm* as)) U fag, as
supp(Let_rec* ast) = (supp tU supp ag$ — set(bn* as)

using the support of abstractions derived in Thedrem 3.5.

To sum up this section, we have established a reasoningstinfcdure for the types/f ,, by
first lifting definitions from the ‘raw’ level to the quotierével and then by proving facts about
these lifted definitions. All necessary proofs are gendratéomatically by custom ML-code.

7. STRONG INDUCTION PRINCIPLES

In the previous section we derived induction principles dtpha-equated terms (sée_(6.7) for the
general form and (618) for an example). This was done bynijfihe corresponding inductions
principles for ‘raw’ terms. We already employed these ingurcprinciples for deriving several facts
about alpha-equated terms, including the property thafrfeatom functions and the notion of
support coincide. Still, we call these induction princgpleeak because for a term-constructor, say
C% Xq...X,, the induction hypothesis requires us to establish (unolmesassumptions) a property
P(C*X...x,) forall x;_,. The problem with this is that in the presence of binders vmmoamake
any assumptions about the atoms that are bound—for exaraplening the variable convention.
One obvious way around this problem is to rename bound atbmf&rtunately, this leads to very
clunky proofs and makes formalisations grievous expedsifespecially in the context of multiple
bound atoms).

For the older versions of Nominal Isabelle we described 8] 2 method for automatically
strengthening weak induction principles. These strongduétion principles allow the user to make
additional assumptions about bound atoms. The advantabes# assumptions is that they make in
most cases any renaming of bound atoms unnecessary. Tinegxplathe strengthening works, we
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use as running example the lambda-calculus Wwihpatterns shown i (4.2). Its weak induction
principle is given in[(6.B). The stronger induction prireis as follows:

VX €. Pyrm € (Var® x)
VX; Xo €. (Vd. Pemd X)) A (Vd. Pym d %) = Ptrm € (App® X1 X2)
VX Xo €. atom X # ¢ A (Vd. Pyrm d %) = Pym € (Lant* x; Xz)
VX X2 X3 C. (set(br® x;)) #* cA
(Vd. Ppatd xi) A (Vd. Pym d %) A (Vd. Pym d X3) = Pym € (Let_pat® x; X2 X3)
VX C. Ppat ¢ (PVar® x)
VX1 X2 C. (Vd. Ppatd x) A (Vd. Ppat d %) = Ppat C (PTup* x; X2)

Ptrm C Y1 A Ppat C Yo

(7.1)

Notice that instead of establishing two properties of thenfdPym y1 A Ppat Y2, as the weak one
does, the stronger induction principle establishes thpepties of the formPym ¢ y; A PpatC ¥ in
which the additional parameteiis assumed to be of finite support. The purposeisfto ‘control’
which freshness assumptions the binders should satisheibant* andLet_pat* cases: fot.ant*
we can assume the bound atamis fresh forc (third line); for Let_pat* we can assume all bound
atoms from an assignment are fresh éqffourth line). In order to see how an instantiation for
in the conclusion ‘controls’ the premises, one has to tateaccount that Isabelle/HOL is a typed
logic. That means it is instantiated with, for example, a pair, then this typestmint will be
propagated to the premises. The main point is thatisf instantiated appropriately, then the user
can mimic the usual convenient ‘pencil-and-paper’ reasprmploying the variable convention
about bound and free variables being distihct [26].

In what follows we will show that the weak induction prinapin (6.8) implies the strong
one [Z.1). This fact was established for single binders @ & some quite involved, nevertheless
automated, induction proof. In this paper we simplify thegdiby leveraging the automated proving
tools from the function package of Isabelle/HOL[11]. Thagening principle behind these tools is
well-founded induction. To use them in our setting, we havgischarge two proof obligations: one
is that we have well-founded measures (one for each tyjpe) that decrease in every induction
step and the other is that we have covered all cases in thetiodrinciple. Once these two proof
obligations are discharged, the reasoning infrastruatfithe function package will automatically
derive the stronger induction principle. This way of egbhg the stronger induction principle is

considerably simpler than the earlier work presented i [26
As measures we can use the size functisize_tyy ,, which we lifted in the previous section

and which are all well-founded. It is straightforward toaddish that the sizes decrease in every
induction step. What is left to show is that we covered allesasTo do so, we have to derive
stronger cases lemmas, which look in our running examplelks\s:

VX y=Var® Xx= Ptm
VX1 Xo. Y= App* X1 X2 = Pyrm

VX1 Xo. atom X # c Ay = Lant* X; Xo = Pym VX.y=PVar* Xx=- Ppat
VX1 X2 X3. set(bn® x;) #* c Ay =Letpat® X; Xo X3 = Pym VX X2. Y = PTup* X; X2 = Ppat
Ptrm Ppat

They are stronger in the sense that they allow us to assurhelrair* andLet_pat* cases that the
bound atoms avoid, or are fresh for, a contefivhich is assumed to be finitely supported).



28 C. URBAN AND C. KALISZYK

These stronger cases lemmas can be derived from the ‘wess temmas given if (6.8). This
is trivial in case of patterns (the one on the right-hand)ssitece the weak and strong cases lemma
coincide (there is no binding in patterns). Interesting @mly the cases fotant* andLet_pat®,
where we have some binders and therefore have an additissaingtion about avoiding Let us
first establish the case faant*. By the weak cases lemnia (6.8) we can assume that

y = Lant x; X, (7.2)

holds, and need to establifm. The stronger cases lemma has the corresponding implicatio

VX; Xo. atom X # ¢ Ay = Lant* x; X = Pyrm (7.3)

which we must use in order to inf&m. Clearly, we cannot use this implication directly, because
we have no information whether or natis fresh forc. However, we can use Properties|2.4 2.5
to renamex;. We know by Theorern 613 thgatom x } #* Lant* x; X, (since its support isupp %

— {atom x }). Property 2.b provides us then with a permutatigrsuch thafatom (7« x;)} #* ¢
andsupp(Lant* x; X2) #* 7 hold. By using Property 214, we can infer from the latter that

Lanf' (m«x;) (7« x2) = Lam® x; Xy

holds. We can use this equation in the assumpfion (7.2), andehuse the implicatiof (7.3) with
the renamed - x; andr « x5 for concluding this case.

ThelLet_pat*-case involving a deep binder is slightly more complicaté. have the assump-
tion

y = Let_pat® x; X, X3 (7.4)

and the implication from the stronger cases lemma

VX; Xo X3. set(bn® x;) #* c Ay = Let_pat® x; Xo X3 = Ptrm (7.5)

The reason that this case is more complicated is that we taleetly apply Property 215 for
obtaining a renaming permutation. Propértyl 2.5 requirasttie binders are fresh for the term in
which we want to perform the renaming. But this is not trueemts such as (using an informal
notation)

Let (x,y) := (X, y) in (X, y)

wherex andy are bound in the term, but are also free in the right-hand afidee assignment. We
can, however, obtain such a renaming permutation,zsdgr the abstractiodbn® x; Jjist.X3. As a
result we haveset(bn® (m+X;)) #* cand[bn™ (7« X;)]jist-(7 + X3) = [br™ X1 ]jist-X3 (remembeiset
andbn® are equivariant). Now the quasi-injective property lfet_pat* states that

[brf* pliist. ta =[O pliist. ta p=pn P ti=1
Let_pat® pt; ty = Let_pat® p't] th
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Since all atoms in a pattern are boundl®t _pat*, we can infer thafr - x; ) ~fn x; holds for every
m. Therefore we have that

Let pat® (m+X;) X2 (7m+X3) = Let_pat® x; X2 X3

Taking the left-hand side in the assumption showr_in] (7.4)can use the implicatiof _(7.5) from
the stronger cases lemma to inRfm, as needed.

The remaining difficulty is when a deep binder contains sotama that are bound and some
that are free. An example it in (4.3). In such casesr-x; ) ~f, x; does not hold in general. The
idea however is that only renames atoms that become bound. In this walpes not affectg,
(which only tracks alpha-equivalence of terms that are ndeuthe binder). However, the problem
is that the permutation operation. x; applies to all atoms ix;. To avoid this we introduce an
auxiliary permutation operations, writteny,, _, for deep binders that only permutes bound atoms
(or more precisely the atoms specified by bmefunctions) and leaves the other atoms unchanged.
Like the functionda_bn,_,,,, we can define these permutation operations over raw tereigsamg
how the functionsn,_,, are defined. Assuming the user specified a clause

bn(Cx ... % )=rhs
we definer ¢ (C X ... X;) def Cvi ...y, withy; determined as follows:

def . .
oy = x; providedx; does not occur imhs
def . L.
® VY, = T epnX; providedbn x is inrhs
def .
e Yy, = meX; otherwise

Using again the quotient package we can lift the auxiliammgation operations -, _ to alpha-
equated terms. Moreover we can prove the following two ptigse

Lemma 7.1. Given a binding function bhand auxiliary equivalence=§, then for all =

(i) 7« (br® x) = bn™ (7§, x) and

(ii) (7 +n X) ~bn X-

Proof. By induction onx. The properties follow by unfolding of the definitions. L]

The first property states that a permutation applied to aitgnflinction is equivalent to first per-
muting the binders and then calculating the bound atoms.s&ébend states that-f,, _ preserves
~fn. The main point of the auxiliary permutation functions iattthey allow us to rename just the
bound atoms in a term, without changing anything else.

Having the auxiliary permutation function in place, we camrsolve all remaining cases. For
the Let* term-constructor, for example, we can by Property 2.5 atdai such that

(m- (set(bn™ x1)) #* ¢ 7 [br X Jjist- X2 = [bN™ X1 Jjist- X2

hold. Using the first part of Lemnfa_7.1, we can simplify thisset (br* (7 , X1)) #* ¢ and
[br? (7 fn X1 )Jlist- (7m+X2) = [P X ]jist- X2. Since(mw Hn X1) ~fn X; holds by the second part, we
can infer that
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Let® (m«hnX1) (m+X2) = Let* x; Xo

holds. This allows us to use the implication from the stroages lemma, and we are done.

Consequently, we can discharge all proof-obligations abawming ‘covered all cases’. This
completes the proof establishing that the weak inductiamcjpies imply the strong induction prin-
ciples. These strong induction principles have alreadyqudeing very useful in practice, partic-
ularly for proving properties about capture-avoiding sitbson [26].

8. RELATED WORK

To our knowledge the earliest usage of general binders ie@ré¢in prover is described by Nara-
schewski and Nipkow [15] with a formalisation of the algbnit W. This formalisation implements
binding in type-schemes using a de-Bruijn indices repragiem. Since type-schemes in W contain
only a single place where variables are bound, differenicesddo not refer to different binders
(as in the usual de-Bruijn representation), but to diffedeound variables. A similar idea has
been recently explored for general binders by Charguéf@loh the locally nameless approach
to binding. There, de-Bruijn indices consist of two numbense referring to the place where a
variable is bound, and the other to which variable is bourige fieasoning infrastructure for both
representations of bindings comes for free in theorem psdile Isabelle/HOL and Coq, since the
corresponding term-calculi can be implemented as ‘norgwthtypes. However, in both approaches
it seems difficult to achieve our fine-grained control over $emantics’ of bindings (i.e. whether
the order of binders should matter, or vacuous binders dhmitaken into account). To do so, one
would require additional predicates that filter out unwdriggms. Our guess is that such predicates
result in rather intricate formal reasoning. We are not awdrany formalisation of a non-trivial
language that uses Charguéraud’s idea.

Another technique for representing binding is higher-oaestract syntax (HOAS), which for
example is implemented in the Twelf system|[16]. This re@négtion technique supports very
elegantly many aspects sfngle binding, and impressive work by Lee et al [12] has been done
that uses HOAS for mechanising the metatheory of SML. Wetamwgver, not aware how multiple
binders of SML are represented in this work. Judging fromsilemitted Twelf-solution for the
POPLmark challenge, HOAS cannot easily deal with bindingstmcts where the number of bound
variables is not fixed. For example, in the second part of¢hadlengeLets involve patterns that
bind multiple variables at once. In such situations, HOA&m to have to resort to the iterated-
single-binders-approach with all the unwanted consegqgemthen reasoning about the resulting
terms.

Two formalisations involving general binders have beerigoered in older versions of Nomi-
nal Isabelle (one about Psi-calculi and one about algorithi{B],[22]). Both use the approach based
on iterated single binders. Our experience with the latbemélisation has been disappointing.
The major pain arose from the need to ‘unbind’ bound varmhbled the resulting formal reasoning
turned out to be rather unpleasant. In contrast, the unmgndan be done in one step with our
general binders described in this paper.

The most closely related work to the one presented here i©thwol by Sewell et all[22]
and the @ml language by Pottiel [19]. Ott is a nifty front-end for ciieg IATpX documents from
specifications of term-calculi involving general bindeFr a subset of the specifications Ott can
also generate theorem prover code using a ‘raw’ represemtat terms, and in Coq also a locally
nameless representation. The developers of this tool Hawepat forward (on paper) a definition
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for alpha-equivalence and free variables for terms thatbeaspecified in Ott. This definition is
rather different from ours, not using any nominal techngyuio our knowledge there is no concrete
mathematical result concerning this notion of alpha-egjaivce and free variables. We have proved
that our definitions lead to alpha-equated terms, whoseostifgpas expected (that means bound
atoms are removed from the support). We also showed thapeaifeations lift from ‘raw’ terms to
alpha-equivalence classes. For this we have establishémhfatically) that every term-constructor
and function defined for ‘raw’ terms is respectful w.r.t.l@pequivalence.

Although we were heavily inspired by the syntax of Ott, itdinidon of alpha-equivalence
is unsuitable for our extension of Nominal Isabelle. Fiiists far too complicated to be a basis
for automated proofs implemented on the ML-level of IsalelDL. Second, it covers cases of
binders depending on other binders, which just do not makseestor our alpha-equated terms (the
correspondindga-functions would not lift). Third, it allows empty types thaave no meaning in
a HOL-based theorem prover. We also had to generalise Iglighits binding clauses. In Ott one
specifies binding clauses with a single body; we allow moaa thne. We have to do this, because
this makes a difference for our notion of alpha-equivalencsase ohbinds (set)andbinds (set+)
Consider the examples

Foo, xs:name fset:ttrm s:trm binds (set)xsints
Foo, xs:name fset:ttrm s:trm binds (set)xsin t, binds (set)xsin s

In the first term-constructor we have a single body that happe be ‘spread’ over two arguments;
in the second term-constructor we have two independentbddiwhich the same variables are
bound. As a result we hdye

Foo, {a, b} (a,b) (a, b) # Fooy {a, b} (a b) (b, a)
but

Foo; {a, b} (a,b) (a, b) = Foo, {a, b} (a, b) (b, a)

and therefore need the extra generality to be able to digshdetween both specifications. Because
of how we set up our definitions, we also had to impose someatshs (like a single binding
function for a deep binder) that are not present in Ott. Opeetation is that we can still cover
many interesting term-calculi from programming languaggearch, for example the Core-Haskell
language from the Introduction. With the work presentedhis paper we can define it formally
as shown in Figurgl2 and then Nominal Isabelle derives autoally a corresponding reasoning
infrastructure. However we have found out that telescopessto not easily be representable in
our framework. The reason is that we need to be able to lifttwuiunctions to alpha-equated
lambda-terms and therefore need to restrict what thedanctions can return. Telescopes can be
represented in the framework described(inl [31] using annski@ of the usual locally-nameless
representation.

Pottier presents a programming language, callean( for representing terms with general
binders inside OCaml [19]. This language is implemented fsrd-end that can be translated to
OCaml with the help of a library. He presents a type-systemtiith the scope of general binders
can be specified using special markers, wriiterer andouter. It seems our and his specifications

6Assuminga # b, there is no permutation that can malee b) equal with both(a, b) and (b, a), but there are two
permutations so that we can mafee b) and(a, b) equal with one permutation, arfd, b) and(b, a) with the other.
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atom_declvar cvar tvar

nominal_datatype tkind = KStar| KFun tkind tkind
and ckind= CKSim ty ty
andty = TVar tvar| T string| TApp ty ty
| TFun string ty list | TAIl tv::tvar tkind ty:ty bindstvin ty
| TArr ckind ty
andty_Ist = TNil | TCons ty tylst
and cty = CVar cvar| C string| CApp cty cty CFun string calst
| CAll cv::cvar ckind cty:cty binds cvin cty
| CArr ckind cty| CRefl ty] CSym cty CCirc cty cty
| CAt cty ty| CLeft cty| CRight cty| CSim cty cty
| CRightc ctyj CLeftc cty| Coerce cty cty
and co_Ist = CNil | CCons cty calst
and trm = Var var | K string
| LAM_ty tv::tvar tkind t:trm  bindstvin t
| LAM_cty cv:cvar ckind t:trm  binds cvin t
| App_ty trm ty| App_cty trm cty| App trm trm
| Lam v:varty t:trm bindsvin t
| Let x:var ty trm t:trm binds xin t
| Case trm assadst | Cast trm co
and assoclst = ANil | ACons p:pat t:trm assoclst binds bv pin t
and pat = Kpat string tvtk Ist tvck Ist vt_Ist
and vt_Ist = VTNil | VTCons var ty vtist
and tvtk_Ist = TVTKNIl | TVTKCons tvar tkind tvtist
and tvck_Ist = TVCKNIl | TVCKCons cvar ckind tvckst
binder
bv:: pat= atom listand
bv; :: vt_Ist = atom listand
bwv, :: tvtk_Ist = atom listand
bv; :: tvck_Ist = atom list
where
bv (K s tvts tvcs vs= (bv; tvts) @ (bw, tves) @ (bv; vs)
| bv; VTNiIl =[]
| bv; (VTCons x ty §l = (atom X::(bw tl)
| bva TVTKNIl= ||
| bv, (TVTKCons a ty 3l = (atom g::(bw tl)
| bvs TVCKNiIl = {]
| bvs (TVCKCons c cty jl= (atom g::(bw; tl)

Figure 2: A definition for Core-Haskell in Nominal Isabell&or the moment we do not support
nested types; therefore we explicitly have to unfold this ke_Ist, assocIst and so on.
Apart from that limitation, the definition follows closelfé original shown in Figurel 1.
The point of our work is that having made such a definition imi\wal Isabelle, one
obtains automatically a reasoning infrastructure for Gdaskell.
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can be inter-translated as long as ours use the binding tiods only. However, we have not
proved this. Pottier gives a definition for alpha-equivaksrwhich also uses a permutation operation
(like ours). Still, this definition is rather different fromurs and he only proves that it defines
an equivalence relation. A complete reasoning infrasinects well beyond the purposes of his
language. Similar work for Haskell with similar results waported by Cheney [6] and more
recently by Weirich et al [31].

In a slightly different domain (programming with dependsgmtes), Altenkirch et al]1] present
a calculus with a notion of alpha-equivalence related to lmnding modebinds (set+) Their
definition is similar to the one by Pottier, except that it hasore operational flavour and calculates
a partial (renaming) map. In this way, the definition can eati vacuous binders. However, to our
best knowledge, no concrete mathematical result conagthis definition of alpha-equivalence has
been proved.

9. CONCLUSION

We have presented an extension of Nominal Isabelle formtgalith general binders, that is where
term-constructors have multiple bound atoms. For thisresiéa we introduced new definitions of
alpha-equivalence and automated all necessary proofaliells/HOL. To specify general binders
we used the syntax from Ott, but extended it in some placegestdcted it in others so that the
definitions make sense in the context of alpha-equated té&fmslso introduced two binding modes
(set and set+) that do not exist in Ott. We have tried out thenskon with calculi such as Core-
Haskell, type-schemes and approximately a dozen of otlecalyexamples from programming
language research [21]. The code will eventually becomegbdine Isabelle distributiod.

We have left out a discussion about how functions can be dkfiwer alpha-equated terms
involving general binders. In earlier versions of Nominsébelle this turned out to be a thorny
issue. We hope to do better this time by using the functiorkqge [11] that has recently been
implemented in Isabelle/HOL and also by restricting fumietdefinitions to equivariant functions
(for them we can provide more automation).

There are some restrictions we had to impose in this papérc#mbe lifted using a recent
reimplementation[[25] of the datatype package for Isalig¢d., which however is not yet part of
the stable distribution. This reimplementation allowstedslatatype definitions and would allow
one to specify, for instance, the function kinds in Core#é#fisas TFun string(ty list) instead of
the unfolded versioMFun string ty list (see Figuré]2). We can also use it to representltite
terms from the Introduction where the order@fassignments does not matter. This means we can
representets such that the following two terms are equal

Letxy =tjandx =ty ins = Letx =t,andx =t;ins

For this we have to represent thetassignments as finite sets of pair and a binding function tha
picks out the left components to be boundsin

One line of future investigation is whether we can go beytedstmple-minded form of binding
functions that we adopted from Ott. At the moment, bindingctions can only return the empty
set, a singleton atom set or unions of atom sets (similaryigts). It remains to be seen whether
properties like

/It can be downloaded already from http://isabelle.in.demominal/downlozd.


http://isabelle.in.tum.de/nominal/download

34 C. URBAN AND C. KALISZYK

fa_ty x = bn xu fa_bn x

allow us to support more interesting binding functions.

We have also not yet played with other binding modes. For gkame can imagine that there
is need for a binding mode where instead of usual lists, weadidists of distinct elements (the
corresponding typellist already exists in the library of Isabelle/HOL). We expea firesented
work can be extended to accommodate such binding modes.
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Isabelle. We thank Peter Sewell for making the informal ad#{] available to us and also for
patiently explaining some of the finer points of the Ott-tddlephanie Weirich suggested to separate
the subgrammars of kinds and types in our Core-Haskell ekamiRamana Kumar and Andrei
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