
Mechanizing the Metatheory of LF

Christian Urban
TU Munich

James Cheney
University of Edinburgh

Stefan Berghofer
TU Munich

Abstract

LF is a dependent type theory in which many other formal
systems can be conveniently embedded. However, correct
use of LF relies on nontrivial metatheoretic developments
such as proofs of correctness of decision procedures for
LF’s judgments. Although detailed informal proofs of these
properties have been published, they have not been for-
mally verified in a theorem prover. We have formalized these
properties within Isabelle/HOL using the Nominal Datatype
Package, closely following a recent article by Harper and
Pfenning. In the process, we identified and resolved a gap
in one of the proofs and a small number of minor lacunae in
others. Besides its intrinsic interest, our formalizationpro-
vides a foundation for studying the adequacy of LF encod-
ings, the correctness of Twelf-style metatheoretic reasoning,
and the metatheory of extensions to LF.

1 Introduction

The (Edinburgh) Logical Framework (LF) was introduced
by Harper, Honsell and Plotkin [6] as a framework for spec-
ifying and reasoning about formal systems. It has found
many applications, such as proof-carrying code [11]. The
Twelf system [14] has been used to mechanize reasoning
about LF specifications.

The cornerstone of LF is the idea of encodingjudgments-
as-typesandproofs-as-termswhereby judgments of a spec-
ified formal system are represented as LF-types and the LF-
terms inhabiting these LF-types correspond to valid deduc-
tions for these judgments. Hence, the validity of a deduc-
tion in a specified system is equivalent to a type checking
problem in LF. Therefore correct use of LF to encode other
logics depends on the proofs of correctness of type checking
algorithms for LF.

Type checking in LF is decidable, but proving de-
cidability is nontrivial because typechecking depends on
equality-tests for LF-terms and LF-types. Several algo-
rithms for such equality-tests have been proposed in the

literature [3, 5, 8]. Harper and Pfenning present in [8] a
type-driven algorithm, which is practical and also has been
extended to a variety of richer languages. The correctness
of this algorithm is proved by establishing soundness and
completeness with respect to the definitional equality rules
of LF. These proofs are involved: Harper and Pfenning’s
detailed “pencil-and-paper” proof given in [8] spans more
than 30 pages, yet still omits many cases and lemmas.

We present a formalization of the main results of Harper
and Pfenning’s article [8]. To our knowledge this is the first
formalization of these results. We found a few of the proofs
as presented in [8] donotgo through as described, and there
is agapin the proof of soundness. Fixing the problem with-
out changing the rules of the system was nontrivial. Our for-
malization was essential not only to find this gap in Harper
and Pfenning’s argument, but also to find and validate the
possible repairs relatively quickly.

We used Isabelle/HOL [12] and the Nominal Datatype
Package [18, 20] for our formalization. The latter provides
an infrastructure for reasoning conveniently about datatypes
with a built-in notion of alpha-equivalence: it allows to
specify such datatypes, provides appropriate recursion com-
binators and derives strong induction principles that have
the usual variable convention already built-in. The Nominal
Datatype Package has already been used to formalize log-
ical relation arguments similar to (but much simpler than)
those in Harper and Pfenning’s completeness proof [10];
logical relations proofs are currently not easy to formalize
in Twelf, despite the recent breakthrough in [16].

Besides proving the correctness of their equivalence al-
gorithm, Harper and Pfenning also sketched a proof of de-
cidability. Unfortunately, since Isabelle/HOL is based on
classical logic, proving decidability results of this kindis
not straightforward. We have formalized the essential parts
of the decidability proof by providing inductive definitions
of the complements of the relations we wish to decide. It
is clear by inspection that these relations define recursively
enumerable sets, which implies decidability, but we have
not formalized this part of the proof. A complete proof
of decidability would require first developing a substan-
tial amount of computability theory within Isabelle/HOL,
a problem of independent interest we leave for future work.

1

Contributions: We present a formalization of the sound-
ness and completeness of the equivalence algorithm and ad-
ditional metatheoretic properties of LF presented in [8]. We
discuss additional lemmas and other complications arising
during the formalization, and explain the gap in the sound-
ness proof and its solutions in detail. We also discuss our
partial formalization of decidability. Due to space limita-
tions, we omit detailed discussion of our formalizations of
some of the material from sections 6 and 7 of [8]; the inter-
ested reader should consult our formalization and compan-
ion technical report [19].

2 Background

The logical framework LF [6] is a dependent type theory.
We present it here following closely the article by Harper
and Pfenning [8], to which we refer from now on as HP05.
The syntax of LF includeskinds, type familiesandobjects
defined by the grammar:

Kinds K, L ::= typej �x:A: K
Type families A, B ::= a j �x:A1: A2 j A M
Objects M, N ::= c j x j �x:A: M j M1 M2

where variablesx and constants
 anda are drawn from
countably infinite, disjoint setsVar and Id of variables
andidentifiersrespectively. We formalize the syntax of LF
as nominal datatypes (i.e.�-equivalence classes) since the
constructors� and� bind variables. Traditionally, LF has
included�-abstraction at the level of both types and objects.
However, Geuvers and Barendsen [4] established that type-
level�-abstraction is superfluous in LF. Accordingly, HP05
omits type-level�-abstraction, and so do we.

Substitutions are represented as lists of variable-term
pairs and we define capture avoiding substitution in the
standard way as

x[�℄ = lookup� x
c[�℄ = c(M N)[�℄ = M[�℄ N[�℄(�x:A: M)[�℄ = �x:A[�℄: M[�℄ providedx# (�; A)
a[�℄ = a(A M)[�℄ = A[�℄ M[�℄(�x:A: B)[�℄ = �x:A[�℄: B[�℄ providedx# (�; A)

type[�℄ = type(�x:A: K)[�℄ = �x:A[�℄: K[�℄ providedx# (�; A)
where the variable case is defined in terms of the auxiliary
functionlookup:

lookup[℄ x= x
lookup((y; M)::�) x= (if x = y then M else lookup� x)

The preconditionsx # (�; A) in the above definition are
freshness constraints provided automatically by the Nomi-
nal Datatype Package and stand forx not occurring freely in

the list� and in type familyA. Substitution for a single vari-

able is defined as a special case:()[x:=M℄ def= (-)[(x;M)℄.
LF also includessignatures� andcontexts� , both of

which we represent as lists of pairs. The former consist of
pairs of the form(c; A) or (a; K) associating the constant
 with typeA and the constanta with kind K respectively,
and the latter consists of pairs(x; A) associating the variable
x with typeA. Accordingly, we write(x; A)::� for list con-
struction (rather than�; x:A), � @� 0 for list concatenation
and(x; A) 2 � for list membership (similarly for�).

HP05 defines two judgments for identifying valid signa-
tures and contexts, which we formalize as follows` � sig ` [℄ sig

`� sig [℄ `� K : kind a# �` (a; K)::� sig` � sig [℄ `� A : type c#�` (c; A)::� sig`� � ctx
`� sig`� [℄ ctx

`� � ctx � `� A : type x# �`� (x; A)::� ctx

where[℄ stands for the empty list. In contrast with HP05, we
make explicit that the new bindings do not occur previously
in � or � , using freshness constraints such asx # � . We
also leave explicit the dependence of all judgments on�.

Central in HP05 are the definitions of the validity and
definitional equivalence judgments for LF, and of algorith-
mic judgments for checking equivalence. The validity and
definitional equivalence rules are shown in Fig. 1. Note that
there are three judgments for validity and three for equiva-
lence, corresponding to objects, type families and kinds re-
spectively. These six judgments are defined simultaneously
with signature and context validity by induction. We added
explicit validity hypotheses to some of the rules; these are
left implicit in HP05. We also added some (redundant)
freshness constraints to some rules in order to be able to
use “strong” induction principles [18].

The rules for the equivalence checking algorithm are
given in Fig. 2. There are five algorithmic judgments: algo-
rithmic and structural object equivalence, algorithmic and
structural type equivalence, and algorithmic kind equiva-
lence. Note that the algorithmic rules are type- (or kind-)
directed while the structural rules are syntax-directed. The
algorithmic rules make use of several additional notations
which we define next.

A crucial point of the algorithm in HP05 is that it does
not analyze the precise types or kinds of objects or types
respectively, rather it only uses approximatesimple types�
andsimple kinds� defined as follows:� ::= a� j � ! � 0 � ::= type� j � ! �
This simplification is sufficient for obtaining a sound and
complete equivalence checking algorithm, and crucially
also simplifies the proof development in a number of places.

2

Similarly, simple contexts� consist of lists of pairs(x;�) of variables and simple types. We writè� sctx to
indicate that� is valid, i.e. has no repeated variables, and
write��� 0 to indicate that� 0 contains all of the bindings
of � and� is a valid simple context.

The erasure function translates families and kinds to
simple types and simple kinds:(a)� = a�(A M)� = A�(�x:A1: A2)� = A1� ! A2� (type)� = type�(�x:A: K)� = A� ! K�
Similarly, we write�� for the simple context resulting from
replacing each binding(x; A) in � with (x; A�).

The rules for the algorithm also employ aweak head re-
ductionrelation which performs beta-reductions only at
the head of the top-level application of a term. It is defined
as

x# (A1; M1)(�x:A1: M2) M1 M2[x:=M1℄ M1 M1 0
M1 M2 M1 0 M2

The main results of HP05 are soundness and complete-
ness of the algorithmic judgments relative to the equiva-
lence judgments, namely

Theorem 1 (Completeness).
1. If � `� M = N : A then�� `� M , N : A�:
2. If � `� A= B : K then�� `� A, B : K�:
3. If � `� K = L : kind then�� `� K , L : kind�:

Theorem 2 (Soundness).
1. If �� `� M , N : A� and � `� M : A and� `� N : A then� `� M = N : A:
2. If �� `� A, B : K� and � `� A : K and� `� B : K then� `� A= B : K:
3. If �� `� K , L : kind� and � `� K : kind and� `� L : kind then� `� K = L : kind:

In what follows, we outline the proofs of these results and
discuss how we have formalized them, paying particular at-
tention to places where additional lemmas or different proof
techniques were needed. We also discuss the gap in the
soundness proof of HP05, along with several solutions.

3 The formalization

The proof in HP05 starts by establishing a number of useful
metatheoretic properties for the validity and equality judg-
ments (shown in Fig. 1), such as weakening, substitution,
generalizations of the conversion rules and inversion princi-
ples. We needed two technical lemmas having to do with the
implicit freshness and validity assumptions which must be
explicitly handled in our formalization. Both are straight-
forward by induction, and both are needed frequently. For
example for the validity judgments for objects we have:

Lemma 1 (Freshness). If x # � and � `� M : A then
x# M and x# A.

Lemma 2 (Implicit Validity) . If � `� M : A then` � sig
and`� � ctx.

Similarly for the other validity and definitional equivalence
judgments.

All the metatheoretic properties can be proved as stated
in the article (appealing to Lem. 1 and 2 as necessary); how-
ever, since all of the judgments of LF are interdependent,
each inductive proof must consider all 35 cases, making
each proof nontrivial as a practical matter (it is one of the
biggest parts of our formalization).

HP05 organize the proofs of these metatheoretic proper-
ties very neatly. For example one can show that the validity
judgment of terms implies the validity of the type, namely

Lemma 3 (Validity). Types and kinds appearing in deriv-
able judgments are valid. For example, if� `� M : A then� `� A : type.

However, in order to establish this a number of auxiliary
facts have to be proved first which depend on this property.
In order to get the proof through, HP05 defined the rules
given in Fig. 1 to explicitly check the validity of type and
kind subterms� `� A : typeand� `� K : kind. In many
cases, these checks are unnecessary once validity has been
proved.3.1. Algorithmi
 equivalen
e
The main metatheoretic properties of algorithmic equiva-
lence are symmetry and transitivity. Several properties of
weak head reduction and erasure needed later in HP05 are
also proved. Most of the proofs were straightforward to for-
malize, given the details in HP05 (where provided). How-
ever, there were a few missing lemmas and other compli-
cations. The algorithmic system is less well-behaved than
the definitional system because derivable judgments may
have “ill-formed” arguments; for example, the judgment[℄ `� (�x:a: c) y, c : b� is derivable provided(c; b) 2 �
since(�x:a: c) y c. Thus, analogues of Lem. 1 and 2 do
not hold for the algorithmic system, and in rules involving
binding we need to impose additional freshness constraints.
Moreover, proof search in the algorithmic system is not nec-
essarily terminating because may diverge if called on ill-
formed terms such as(�x:a: x x) (�x:a: x x).

The erasure preservation lemma establishes basic prop-
erties of erasure which are frequently needed in HP05:

Lemma 4 (Erasure preservation).
1. If � `� A= B : K then A� = B�:
2. If � `� K = L : kind then K� = L�:
3. If (x; A)::� `� B : type then B� = B[x:=M℄�

3

� `� M : A
`� � ctx (x; A) 2 �� `� x : A

`� � ctx (c; A) 2 �� `� c : A

� `� M1 : �x:A2: A1 � `� M2 : A2 x# �� `� M1 M2 : A1[x:=M2℄� `� A1 : type (x; A1)::� `� M2 : A2 x# (� ; A1)� `� �x:A1: M2 : �x:A1: A2 � `� M : A � `� A= B : type� `� M : B� `� A : K
`� � ctx (a; K) 2 �� `� a : K

� `� A : �x:B: K � `� M : B x# �� `� A M : K[x:=M℄� `� A1 : type (x; A1)::� `� A2 : type x# (� ; A1)� `� �x:A1: A2 : type

� `� A : K � `� K = L : kind� `� A : L� `� K : kind
`� � ctx� `� type: kind

� `� A : type (x; A)::� `� K : kind x# (� ; A)� `� �x:A: K : kind� `� M = N : A
`� � ctx (x; A) 2 �� `� x= x : A

`� � ctx (c; A) 2 �� `� c= c : A� `� M1 = N1 : �x:A2: A1� `� M2 = N2 : A2 x# �� `� M1 M2 = N1 N2 : A1[x:=M2℄ � `� A1 0= A1 : type � `� A1 00= A1 : type� `� A1 : type (x; A1)::� `� M2 = N2 : A2 x# �� `� �x:A1 0: M2 = �x:A1 00: N2 : �x:A1: A2� `� M : �x:A1: A2 � `� N : �x:A1: A2� `� A1 : type (x; A1)::� `� M x= N x : A2 x# �� `� M = N : �x:A1: A2 � `� A1 : type (x; A1)::� `� M2 = N2 : A2� `� M1 = N1 : A1 x# �� `� (�x:A1: M2) M1 = N2[x:=N1℄ : A2[x:=M1℄� `� M = N : A� `� N = M : A

� `� M = N : A � `� N = P : A� `� M = P : A

� `� M = N : A � `� A= B : type� `� M = N : B� `� A= B : K
`� � ctx (a; K) 2 �� `� a= a : K

� `� A= B : �x:C: K� `� M = N : C x# �� `� A M = B N : K[x:=M℄ � `� A1 = B1 : type � `� A1 : type(x; A1)::� `� A2 = B2 : type x# �� `� �x:A1: A2 = �x:B1: B2 : type� `� A= B : K� `� B= A : K

� `� A= B : K � `� B= C : K� `� A= C : K

� `� A= B : K � `� K = L : kind� `� A= B : L� `� K = L : kind
`� � ctx� `� type= type: kind

� `� A= B : type � `� A : type (x; A)::� `� K = L : kind x# �� `� �x:A: K = �x:B: L : kind� `� K = L : kind� `� L = K : kind

� `� K = L : kind � `� L = L 0 : kind� `� K = L 0 : kind

Figure 1. Validity and definitional equivalence rules for ki nds, type families and objects.� `� M , N : � M M 0 � `� M 0, N : a�� `� M , N : a� N N 0 � `� M, N 0 : a�� `� M , N : a�� `� M $ N : a�� `� M , N : a� (x; �1)::� `� M x, N x : �2 x# (�;�; M; N)� `� M , N : �1! � 2� `� M $ N : � (x; �) 2�� `� x$ x : � (c; A) 2 �� `� c$ c : A� � `� M1$ N1 : �2! � 1 � `� M2, N2 : �2� `� M1 M2 $ N1 N2 : �1� `� A, B : � � `� A$ B : type�� `� A, B : type� (x; �)::� `� A x, B x : � x# (�;�; A; B)� `� A, B : � ! �� `� A1, B1 : type� (x; A1�)::� `� A2, B2 : type� x# (�;�; A1; B1)� `� �x:A1: A2, �x:B1: B2 : type�� `� A$ B : � (a; K) 2 �� `� a$ a : K� � `� A$ B : � ! � � `� M , N : �� `� A M$ B N : �� `� K , L : kind� � `� type, type: kind� � `� A, B : type� (x; A�)::� `� K , L : kind� x# (�;�; A; B)� `� �x:A: K , �x:B: L : kind�
Figure 2. Algorithmic equivalence rules

4

4. If (x; A)::� `� K : kind then K� = K[x:=M℄�
However, we found that the hypotheses of parts 3 and 4 are
unnecessarily strong. Indeed, we can easily prove:

Lemma 5 (Erasure cancels substitution).
1. A[x:=N℄� = A� and A[�℄� = A�
2. K[x:=N℄� = K� and K[�℄� = K�

We also needed the following algorithmic erasure preserva-
tion lemma (omitted from HP05):

Lemma 6 (Alg. erasure preservation).
1. If � `� A, B : � then A� = B�:
2. If � `� A$ B : � then A� = B�:
3. If � `� K , L : kind� then K� = L�:
The determinacy lemma establishes several important

properties of weak head reduction and algorithmic equiv-
alence.

Lemma 7 (Determinacy). Suppose that̀ � sig and`� sctx.
1. If M M 0 and M M 00 then M0= M 00.
2. If � `� M $ N : � then �M 0: M M 0:
3. If � `� M $ N : � then �N 0: N N 0:
4. If � `� M,N : � and� `� M,N : � 0 then� = � 0.
5. If � `� A, B : � and� `� A, B : � 0 then� = � 0.

However, we needed generalized forms of 4 and 5 in the
proof of transitivity (Thm. 4). It is also later used in Thm. 12
in proving decidability of the algorithmic rules.

Lemma 8 (Generalised determinacy). Suppose that̀ � sig
and` � sctx.

1. If � `� M, N : � and� `� N, P : � 0 then� = � 0.
2. If � `� A, B : � and� `� B, C : � 0 then� = � 0.

Verifying symmetry of the algorithmic judgments is then
straightforward, using properties established so far.

Theorem 3 (Symmetry of algorithmic equivalence).
1. If � `� M , N : � then� `� N , M : � :
2. If � `� M $ N : � then� `� N $ M : � :
3. If � `� A, B : � then� `� B, A : �:
4. If � `� A$ B : � then� `� B$ A : �:
5. If � `� K , L : kind� then� `� L , K : kind�:

However, verifying transitivity required more work.

Theorem 4 (Transitivity of algorithmic equivalence). Sup-
pose that̀ � sig and`� sctx.

1. If � `� M , N : � and � `� N , P : � then� `� M , P : � .
2. If � `� M $ N : � and � `� N $ P : � then� `� M $ P : � .
3. If � `� A , B : � and � `� B , C : � then� `� A, C : �.

4. If � `� A $ B : � and � `� B $ C : � then� `� A$ C : �.
5. If � `� K , L : kind� and� `� L , L 0 : kind�

then� `� K , L 0 : kind�.

Proof. As described in HP05, the proof is by simultaneous
induction on the two derivations. For types and kinds, this
simultaneous induction can be avoided by performing in-
duction over one derivation and using inversion principles.
For the object-level judgments (cases 1 and 2), we formalize
this argument in Isabelle by defining object-level algorith-
mic judgments “instrumented” with a height argument, and
prove parts 1 and 2 by well-founded induction on the sum
of the heights of the derivations.

Because of the induction over the height, there are sev-
eral cases where we need to perform some explicit�-
conversion and renaming steps; these are places in an infor-
mal proof where one usually appeals to renaming principles
“without loss of generality”. The generalized determinacy
property (Lem. 8) is needed here in the case of structural
equivalence of applications.

Strengthening At this point in the development, we can
also prove that the algorithmic judgments satisfystrength-
ening; that is, unused variables can be removed from
the context without harming derivability of a conclusion.
Strengthening is not discussed in HP05 until later in the
paper, but we found it necessary in repairing the proof of
soundness. We first need an (easily established) freshness-
preservation property of weak head reduction.

Lemma 9 (Weak head reduction preserves freshness). If
M N and x# M then x# N:
Lemma 10 (Strengthening of algorithmic equivalence).

1. If � 0@[(x; � 0)℄@� `� M , N : � and x# (� 0; M;
N) then� 0@� `� M , N : � .

2. If � 0@[(x; � 0)℄@� `� M $ N : � and x# (� 0; M;
N) then� 0@� `� M $ N : � .

3. If � 0@[(x; �)℄@� `� A, B : � and x# (� 0; A; B)
then� 0@� `� A, B : �.

4. If � 0@[(x; �)℄@� `� A$ B : � and x# (� 0; A; B)
then� 0@� `� A$ B : �.

5. If � 0@[(x; �)℄@� `� K , L : kind� and x# (� 0;
K; L) then� 0@� `� K , L : kind�.

Proof. Straightforward induction on derivations, using
properties of freshness and Lem. 9.3.2. Completeness
The proof of completeness involves a Kripke-style logical
relations argument. We can define the logical relation for
objects, types, and substitutions, by induction on the struc-
ture of simple types� and kinds� and simple contexts�,
respectively, as shown in Fig. 3.

5

� `� M = N 2 [[a�℄℄ = � `� M , N : a�� `� M = N 2 [[� ! � 0℄℄ = 8� 0��; M 0; N 0:� 0`� M 0, N 0 : � implies� 0`� M M 0, N N0 : � 0� `� A= B2 [[type�℄℄ = � `� A, B : type�� `� A= B2 [[� ! �℄℄ = 8� 0��; M 0; N 0:� 0`� M 0, N 0 : � implies� 0`� A M 0, B N0 : � 0� `� K = L 2 [[kind�℄℄ = � `� K , L : kind�� `� [℄ = [℄ 2 [[[℄℄℄ = True� `� (x; M)::� = (x; N)::� 2 [[(x; �)::�℄℄ = � `� � = � 2 [[�℄℄ and x# � and � `� M = N 2 [[� ℄℄
Figure 3. Logical relation definition

The key steps in proving completeness are showing
that logically related terms are algorithmically equivalent
(Thm. 5) and that definitionally equivalent terms are logi-
cally related (Thm. 6). Many properties can be established
by an induction on the structure of types, appealing to the
properties of the algorithmic judgments established in sec-
tion 3 of HP05 and the definition of the logical relation.

Lemma 11 (Log. rel. weakening). Suppose� 0��.
1. If � `� M = N 2 [[� ℄℄ then� 0 `� M = N 2 [[� ℄℄.
2. If � `� A= B 2 [[�℄℄ then� 0 `� A= B 2 [[�℄℄.
3. If � `� � = � 2 [[�℄℄ then� 0 `� � = � 2 [[�℄℄.

Theorem 5 (Log. rel. implies alg. equiv.).
Supposè � sctx.

1. If � `� M = N 2 [[� ℄℄ then� `� M , N : � .
2. If � `� M $ N : � then� `� M = N 2 [[� ℄℄.
3. If � `� A= B 2 [[�℄℄ then� `� A, B : �.
4. If � `� A$ B : � then� `� A= B 2 [[�℄℄.

Lemma 12 (Closure under head expansion).
Suppose M M 0 and N N 0.

1. If � `� M 0= N 2 [[� ℄℄ then� `� M = N 2 [[� ℄℄.
2. If � `� M = N 02 [[� ℄℄ then� `� M = N 2 [[� ℄℄.

Lemma 13 (Log. rel. symmetry).
1. If � `� M = N 2 [[� ℄℄ then� `� N = M 2 [[� ℄℄:
2. If � `� A= B 2 [[�℄℄ then� `� B= A 2 [[�℄℄:
3. If � `� � = � 2 [[�℄℄ then� `� � = � 2 [[�℄℄:

Lemma 14 (Log. rel. transitivity). Suppose that̀ � sig
and` � sctx.

1. If � `� M = N 2 [[� ℄℄ and� `� N = P 2 [[� ℄℄ then� `� M = P 2 [[� ℄℄.
2. If � `� A = B 2 [[�℄℄ and� `� B = C 2 [[�℄℄ then� `� A= C 2 [[�℄℄.
3. If � `� � = � 2 [[�℄℄ and� `� � = Æ 2 [[�℄℄ then� `� � = Æ 2 [[�℄℄.

The proof that definitionally equal terms are logically re-
lated required some care to formalize. The key step is show-
ing that applying logically related substitutions to defini-
tionally equal terms yields logically related terms.

Lemma 15. Supposè � sctx and� `� � = � 2 [[��℄℄.
1. If � `� M = N : A then� `� M[�℄ = N[�℄ 2 [[A�℄℄.

2. If � `� A= B : K then� `� A[�℄ = B[�℄ 2 [[K�℄℄.
The last step needed to establish completeness is to show
that the identity substitution over a given context (written
id�) is related to itself:

Lemma 16. If `� � ctx then�� `� id� = id� 2 [[��℄℄:
Theorem 6 (Def. equal implies log. rel.).

1. If � `� M = N : A then�� `� M = N 2 [[A�℄℄:
2. If � `� A= B : K then �� `� A= B 2 [[K�℄℄:

Corollary 1 (Completeness).
1. If � `� M = N : A then�� `� M , N : A�:
2. If � `� A= B : K then �� `� A, B : K�:
3. If � `� K = L : kind then�� `� K , L : kind�:

Note that part 3 of Cor. 1 was omitted from HP05, but it is
straightforward to prove by induction given parts 1 and 2,
and algorithmic transitivity and symmetry.3.3. Soundness
Soundness of the algorithmic equivalence definition is
proved under the assumption that the terms being compared
are well-formed. This first requires showing that weak head
reduction preserves well-formedness:

Lemma 17 (Subject reduction). Suppose M M 0 and� `� M : A. Then� `� M 0 : A and� `� M = M 0 : A.

The soundness theorem then states that if the arguments
to a derivable algorithmic judgment are well-formed, then
the corresponding definitional judgment holds; it however
needs to be stated slightly more generally than Thm. 2. In
contrast to completeness, the proof of soundness proceeds
by entirely syntactic techniques, by induction over the struc-
ture of algorithmic and structural derivations. Our initial
formalization attempt followed the proofs given by HP05.
However, we encountered two difficulties which were not
discussed in the article. Both difficulties arise in the algo-
rithmic extensionality cases in parts 1 and 3 of Thm. 2.

First problem In proving the soundness of algorithmic
extensionality for objects arising in part 1 of Thm. 2, recall
that we have a derivation of the form:

6

� `� A
 B : � (a; K) 2 �� `� a
 a : K� � `� A
 B : � ! � � `� M , N : �� `� A M
 B N : �� `� A1
 B1 : type� (x; A1�)::� `� A2
 B2 : type� x# (�;�; A1; B1)� `� �x:A1: A2
 �x:B1: B2 : type�
Figure 4. Weak algorithmic type equivalence judgment(x; �1)::�� `� M x, N x : �2 x# (�; ��; M; N)�� `� M , N : �1 ! �2

and we also know that� `� M : A and� `� N : A for
someA with A� = �1 ! �2. In order to apply the induction
hypothesis, we need to know thatM x and N x are well-
formed in an extended context(x; A1)::� . HP05’s proof
begins by assuming that� `� M : �x:A1: A2 and� `�
N : �x:A1: A2, and proceeding using inversion properties.
However, it isnot immediately clear thatA� = �1 ! �2
implies thatA = �x:A1: A2 for someA1 andA2; indeed,
this can fail to be the case ifA is not well-formed. Instead,
we first need the following inversion principles for erasure:

Lemma 18 (Erasure inversion).
1. If � `� A : �x:B: K then 9 c: A� = c�:
2. If �1 ! �2 = A� and � `� A : type and x# A then9A1 A2: A= �x:A1: A2:
3. If � ! � = K� and x# K then 9A L: K =�x:A: L:

Proof. Part 1 follows by induction on the derivation. Parts
2 and 3 follow by induction on the structure ofA andK re-
spectively. In the case for type applicationsA M, clearlyA
has a�-kind, but by part 1,A erases to a constant, contra-
dicting the assumption thatA� = �1 ! �2. So the case is
vacuous. The remaining cases of part 2 are straightforward,
as are the cases for part 3.

Using Lem. 18, we can complete the proof of the first
part of Thm. 2 as described in HP05:

Lemma 19 (Soundness of algorithmic object equivalence).
1. If �� `� M , N : A� and � `� M : A and� `� N : A then� `� M = N : A:
2. If �� `� M $ N : � and � `� M : A and� `� N : B then � `� M = N : A ^ � `� A= B : type^ A� = � ^ B� = � :

Second problem The second difficulty is more serious.
The difficulty arises in the proof of soundness for the exten-
sionality rule in the algorithmic type equivalence judgment
(part 3 of Thm. 2). In this case, we have a derivation of the
form:(x; �)::�� `� A x, B x : � x# (�; ��; A; B)�� `� A, B : � ! �

We can easily show that the induction hypothesis applies,
using the same technique as above, ultimately deriving(x; A0)::� `� A x= B x : K for someA0 and K. However,
we cannot complete the proof of this case in the same way
as for object extensionality, because HP05’s variant of LF
doesnot include a type-level extensionality rule that per-
mits us to conclude that� `� A= B : �x:A0: K.

There appear to be several ways to fix this problem. One
way is to just add the extensionality rule for types to the
definitional system. Using our formalization, we were able
to verify that this solves the problem and does not introduce
any new complications (for this we had to make sure that
every proof done earlier is either not affected by this addi-
tional rule or can be extended to include it).

A second solution, suggested by Harper (private commu-
nication), is to observe that the original algorithmic rules
were unnecessarily general. In the absence of type-level�-abstraction, the weaker, syntax-directed type equivalence
rules shown in Fig. 4 suffice. In this solution, the type-level
logical relation needs to be changed to� `� A= B2 [[�℄℄ = � `� A, B : � .

The first two solutions however establish soundness only
for a variant of the original definitions. Neither tells us
whether theoriginal equivalence algorithm is sound with
respect to theoriginal definitional system in HP05. We
found a third solution for the problem, in which we were
able to “patch” the proof of HP05 in order to establish
soundness for the original definitions. This involves show-
ing that the original type equivalence judgments imply weak
type equivalence and that weak type equivalence is sound
with respect to definitional equivalence.

To show that algorithmic and structural type equivalence
imply weak type equivalence, we need to show that weak
type equivalence admits extensionality (Lem. 24 below).
This is nontrivial. To establish extensionality for weak type
equivalence, we first need to develop some syntactic proper-
ties of algorithmic equivalence for objects, in particularthat
if � `� x , x : � then(x; �) 2 �. This requires several
auxiliary definitions and lemmas. We say that an objectM0
is anapplied variableif it is of the form

M0 ::= x j M0 x

that is, it is a variable applied to a sequence of variables.
Clearly, applied variables are weak head normal forms:

7

Lemma 20. If M0 is an applied variable then M0 is in weak
head normal form.

We then introduce a weak well-formedness relation� `0 M0 : � for applied variables, defined as follows:(x; �) 2 �� `0 x : � � `0 M0 : �1 ! �2 (y; �1) 2 �� `0 M0 y : �2
It is easy to show that that̀0 satisfies strengthening:

Lemma 21. If (y; � 0)::� `0 M0 : � and y# M0 then �`0 M0 : � :
Lemma 22. Suppose M0 is an applied variable and`� sctx.

1. If � `� M0 , M0 : � then� `0 M0 : � .
2. If � `� M0 $ M0 : � then� `0 M0 : � .

Proof. Induction on derivations. Lem. 20 is needed to show
that the cases involving weak head reduction are vacuous.
The only other interesting case is the case for an extension-
ality rule(x; �1)::� `� M0 x, M0 x : �2 x# (�; �; M0; M0)� `� M0 , M0 : �1 ! �2

By induction, we have that(x; �1)::� `0 M0 x : �2. By
inversion, we can show that(x; �1)::� `0 M0 : �1 ! �2.
To complete the proof, we use Lem. 21 to show that� `0
M0 : �1 ! �2, which follows sincex# M0.

Corollary 2. If � `� x, x : � and ` � sctx then(x; �)2 �:
We also need to establish strengthening for weak algorith-
mic type equivalence:

Lemma 23 (Strengthening of weak type equivalence). If� 0@[(x; �)℄@� `� A
 B : � and x# (� 0; A; B) then� 0@� `� A
 B : �:
Proof. Straightforward induction on derivations. Note that
we need Lem. 10 here for strengthening of algorithmic ob-
ject equivalence subderivations.

We now establish the admissibility of extensionality for
weak type equivalence:

Lemma 24 (Extensionality of weak type equivalence).
If (x; �)::� `� A x
 B x : � and x# (�; �; A; B) and`� sctx then� `� A
 B : � ! �:
Proof. By inversion, we have subderivations(x; �)::� `�
A
 B : � 0! � and(x; �)::� `� x, x : � 0 for some� 0
Using Cor. 2 on the second subderivation we have that(x;� 0) 2 (x; �)::� and using the validity of(x; �)::� we know
that � = � 0. Hence,(x; �)::� `� A
 B : � ! �. Using
Lem. 23 we conclude� `� A
 B : � ! �.

Lemma 25. Supposè � sctx. Then
1. If � `� A, B : � then� `� A
 B : �.
2. If � `� A$ B : � then� `� A
 B : �.

Proof. By induction on the structure of derivations. The
case for the algorithmic type extensionality rule requires
Lem. 24.

The proof of Thm. 2 is completed as follows.

Lemma 26 (Soundness of weak type equivalence). . If ��`� A
 B : � and� `� A : K and� `� B : L then� `�
A= B : K, � `� K = L : kind, K� = � and L� = �.

Proof. Similar to the proof of soundness of algorithmic and
structural type equivalence from HP05. Requires soundness
of object equivalence (Lem. 19).

Lemma 27 (Soundness of algorithmic type equivalence).
1. If �� `� A,B : K� and� `� A : K and� `� B : K

then� `� A= B : K.
2. If �� `� A$ B : � and� `� A : K and� `� B : L

then� `� A= B : K, � `� K = L : kind, K� = � and
L� = �.

Proof. Immediate using Lem. 25 and 26.

Lemma 28 (Soundness of algorithmic kind equiva-
lence). If �� `� K , L : kind� and � `� K : kind and� `� L : kind then� `� K = L : kind:
Proof. As in HP05, using Lem. 27 as necessary.

Thm. 2 follows immediately from Lem. 19, 27 and 28.3.4. Additional properties
After the soundness and completeness proof, HP05 intro-
duces an algorithmic version of the typechecking judgment,
proves additional syntactic properties, sketches proofs of
decidability, and discusses quasicanonical forms and ade-
quacy of LF encodings of object languages.

Algorithmic typechecking The typechecking algorithm
in HP05 omitted explicit definitions of algorithmic signa-
ture and context validity. In our formalization, we added
these (obvious) rules, as shown in Fig. 5. The remaining
rules are the same as in HP05 except for a trivial typo-
graphical error in the rule for type constants. Proving the
soundness and completeness of algorithmic typechecking is
a (mostly) straightforward induction:

Theorem 7 (Soundness of algorithmic typechecking).
1. If ` �) sig then` � sig:
2. If `� �) ctx then`� � ctx:
3. If � `� M) A then� `� M : A:
4. If � `� A) K then � `� A : K:

8

`�) sig ` [℄) sig

`�) sig [℄ `� A) type c# �` (c; A)::�) sig

`�) sig [℄ `� K) kind a#�` (a; K)::�) sig`� �) ctx
`�) sig`� [℄) ctx

`� �) ctx � `� A) type x# �`� (x; A)::�) ctx� `� M) A
`� �) ctx (x; A) 2 �� `� x) A

� `� A1) type (x; A1)::� `� M2) A2 x# (� ; A1)� `� �x:A1: M2) �x:A1: A2`� �) ctx (c; A) 2 �� `� c) A

� `� M1) �x:A2 0: A1 � `� M2) A2 �� `� A2, A2 0 : type� x# �� `� M1 M2) A1[x:=M2℄� `� A) K
`� �) ctx (a; K) 2 �� `� a) K

� `� A) �x:A2 0: K1 � `� M) A2 �� `� A2, A2 0 : type� x# �� `� A M) K1[x:=M℄� `� A1) type (x; A1)::� `� A2) type x# (� ; A1)� `� �x:A1: A2) type� `� K) kind
`� �) ctx� `� type) kind

� `� A) type (x; A)::� `� K) kind x# (� ; A)� `� �x:A: K) kind

Figure 5. Algorithmic typechecking rules

5. If � `� K) kind then� `� K : kind:
Theorem 8 (Completeness of algorithmic typechecking).

1. If ` � sig then` �) sig:
2. If `� � ctx then`� �) ctx:
3. If � `� M : A then9A0: � `� M) A0^ � `� A=

A0 : type:
4. If � `� A : K then 9K 0: � `� A) K 0^ � `� K =

K 0 : kind:
5. If � `� K : kind then� `� K) kind:

Strengthening and strong extensionality We omit de-
tailed proofs and discussion of these results which can be
found in [19]. The strengthening property states that all of
the definitional judgments are preserved by removing an un-
used variable from the context.

Theorem 9 (Strengthening). Let� = � 2@[(x; B)℄@� 1.
1. If `� � ctx and x# � 2 then`� � 2@� 1 ctx.
2. If � `� M : A and x# (� 2; M; A) then� 2@� 1 `�

M : A.
3. If � `� M = N : A and x# (� 2; M; N; A) then� 2@� 1 `� M = N : A.

Similarly for kinds and type families.

HP05 also sketched a proof of astrong extensionality
rule requiring fewer typechecking hypotheses. We were
also able to verify this, but the proof is not as straightfor-
ward as in the article; the first line of the proof appeals to
“without loss of generality” reasoning about inversion and
renaming principles which was nontrivial to formalize.

Theorem 10 (Strong Extensionality).
If (x; A1)::� `� M x= N x : A2 and x# (M; N) then �`� M = N : �x:A1: A2:

Decidability HP05 also sketches proofs of the decidabil-
ity of the algorithmic judgments (and hence also the def-
initional system). Reasoning about decidability within Is-
abelle/HOL is not straightforward because Isabelle/HOL is
based on classical logic. Thus, unlike Coq or other con-
structive systems, we cannot prove decidability ofP sim-
ply by constructively provingP _ : P. Isabelle/HOL does
have some support for extracting code from proofs that
avoid non-constructive features, but code extraction cur-
rently does not work on proofs about nominal datatypes.

We write M+ to indicate thatM is strongly weak head
normalizing. As a sanity check, we have shown that well-
formed terms are strongly weak head normalizing.

Theorem 11. If � `� M : A then M+:
Proof. We first show the (standard) property that ifM N+
then M+. We then show that if� `� M , N : � then
M+ by induction on derivations. The main result follows
by reflexivity and Thm. 1.

We have also formalized what we believe is the essence
of the decidability proof using the following methodology.
For each propertyR we wish to prove decidable, possibly
under conditionsP:

1. Inductively define a “complement” relationR0.
2. Observe (informally) thatRandR0are recursively enu-

merable.
3. Prove that: (R^ R0).
4. Prove thatP impliesR_ R0.
5. HenceR is decidable (assumingP) since it is both r.e.

and co-r.e.
We have introduced inductively defined complements for

the algorithmic equivalence and typechecking judgments
and verified parts 3 and 4 above for each of them. We have

9

not verified steps 2 or 5. We call a formulaquasidecidable
if both it and its negation are equivalent to an inductively
defined relation, as described above. We were able to prove
the following lemma analogous to HP05’s Lemma 6.1:

Theorem 12 (Quasidecidability of alg. equiv.).
1. If � `� M , M 0 : � and� `� N , N 0 : � then�`� M , N : � is quasidecidable.
2. If � `� M $ M 0 : �1 and� `� N $ N 0 : �2 then9 �3:� `� M $ N : �3 is quasidecidable.
3. If � `� A, A0 : � and� `� B, B0 : � then� `�

A, B : � is quasidecidable.
4. If � `� A$ A0 : �1 and� `� B$ B0 : �2 then9�3:� `� A$ B : �3 is quasidecidable.
5. If � `� K , K 0 : kind� and� `� L , L 0 : kind�

then� `� K , L : kind� is quasidecidable.

We were also able to prove that the algorithmic judg-
ments are quasidecidable, which is the key step in HP05’s
Theorem 6.5. Proving exclusivity required establishing
uniqueness of algorithmic typechecking.

Lemma 29 (Uniqueness of algorithmic typing).
1. If � `� M) A and� `� M) A0 then A= A0:
2. If � `� A) K and � `� A) K 0 then K= K 0:

Theorem 13 (Quasidecidability of algorithmic typing).
1. For any�, ` �) sig is quasidecidable.
2. For any�;� , if ` �) sig holds theǹ � �) ctx is

quasidecidable.
3. For any�;� ;M, if `� �) ctx holds then9A: � `�

M) A is quasidecidable.
4. For any�;� ;A, if `� �) ctx holds then9K: � `�

A) K is quasidecidable.
5. For any�;� , if `� �) ctx holds then� `� K)

kind is quasidecidable.

Although we believe that this approach provides greater
confidence in the decidability results compared to the proof
sketches in HP05, these quasidecidability results leave room
for improvement. However, reasoning about decidability in
Isabelle/HOL seems to be an open problem in general, so
we leave the question of fully formalizing the decidability
of LF’s algorithmic judgments to future work.

Quasicanonical forms The last section of HP05 dis-
cusses the existence and properties ofquasicanonical forms
which can be used to prove adequacy theorems about lan-
guages encoded in LF, as illustrated by a small example.
We have also formalized and verified this section. The full
details are omitted but can be found in [19].

4 Discussion

Methodological observations The formalization was
performed by two of the authors; one is a developer of the

Nominal Datatype Package and expert Isabelle/HOL user
and the other had less than three months’ prior experience
with either. We estimate that the total effort involved was at
most three person-months. Although there is still plenty of
room for improvement in both Isabelle/HOL and the Nom-
inal Datatype Package, our experience suggests that these
tools can now be used to perform significant formalizations
within reasonable time-frames, at least by expert users.

It took approximately six person-weeks to formalize
everything up to the soundness proof (including ponder-
ing why the omitted case did not go through). However,
once Harper and Pfenning confirmed that this case was in-
deed not handled correctly in their proof, one of the au-
thors was able to check within 2 hours that adding a type-
extensionality rule solves the problem. Re-checking the
proof on paper would have meant reviewing approximately
31 pages of proofs. Since then we found another solution
for the problem and checked the validity of a solution sug-
gested by Harper. As a practical matter, the ability to rapidly
evaluate the effects of changes to the system was essential
for finding these solutions and evaluating other possibilities.
In a similar formalization project, the first author showed
that a central lemma in the informal proof in his PhD-thesis
can be repaired [17].

Our formalization using nominal datatypes follows that
given in HP05 very closely—more closely, we believe, than
has been demonstrated by any other currently available
technique. As illustration of this point, we have prepared
this paper using Isabelle’s documentation facilities [12].
Most lemmas, theorems, and definitions have been gen-
erated directly from the formalization (the main excep-
tions are the quasidecidability properties, which are para-
phrased).

In Table 1, we report some simple metrics about our for-
malization such as the sizes, number of lines of code, and
number of lemmas in each theory in the main formaliza-
tion. As Table 1 shows, the coreLF theory accounts for
about 25% of the development. These syntactic proper-
ties are mostly straightforward, and their proofs merit only
cursory discussion in HP05, but some lemmas have many
cases which must all be handled. TheDecidability
theory accounts for another 25%; much of this is due to
the quasidecidability proofs. The remaining theories ac-
count for at most 5–10% of the formalisation each; the
WeakAlgorithm theory defines the weak algorithmic
equivalence judgment and proves the properties needed for
the third solution, and accounts for only around 2% of the
total development.

The merit of metrics such as proof size or number of
lemmas is debatable. We have not attempted to distinguish
between “meaningful” lines of proof vs. blank or comment
lines; nor have we distinguished between significant and
trivial lemmas. Nevertheless, this information should at

10

Table 1. Summary of the formalization
Theory Description Size (bytes) Lines Lemmas
LF Syntax and definitional judgments of LF 126,676 2,726 103
Erasure Simple types and kinds, erasure 10,073 312 22
PairOrdering Pair ordering used for transitivity 962 29 3
Algorithm Algorithmic equivalence judgments and properties 45,116 956 42
LogicalRelation Logical relation, completeness proof 50,781 770 21
WeakAlgorithm Weak algorithmic typechecking 8,866 208 7
Soundness Subject reduction, soundness proofs 30,551 564 8
Decidability Algorithmic typechecking, strengthening, quasidecidability 143,673 2,896 69
Canonical Quasicanonical forms, adequacy example 48,823 1,115 47
Total 465,521 9,576 322

least convey an idea of therelative effort involved in each
part of the proof.

Correctness of the representation The facilities for
defining and reasoning about languages with binding pro-
vided by the Nominal Datatype Package are convenient,
but may appear strange to readers unfamiliar with nominal
logic and abstract syntax. Thus, a skeptical reader might ask
whether our definitions and reasoning principles are really
correct; that is, whether they are equivalent to the defini-
tions in HP05, as formalized using some conventional ap-
proach to binding syntax. For higher-order abstract syntax
representations, this property is often calledadequacy; this
term appears to have been coined in the context of LF [6].

Adequacy is also important for nominal techniques and
deserves further study. For the purposes of this paper, how-
ever, we view our formalization of LF’s syntax and infer-
ence rules using nominal datatypes as anaxiomatization,
and leave the question of its correctness or adequacy for fu-
ture work. Norrish and Vestergaard [13] have formalized
isomorphisms between several variants of the�-calculus,
including a nominal representation. We believe extending
their approach to the syntax of LF would be routine, if te-
dious.

5 Related and Future Work

McKinna and Pollack’s LEGO formalization of Pure Type
Systems [9] is probably the most extensive formalization
of a dependent type theory in a theorem prover. Their
formalization considered primarily syntactic propertiesof
pure type systems with�-equivalence, including a proof of
strengthening. Pollack [15] subsequently verified the partial
correctness of typechecking algorithms for certain classes
of Pure Type Systems including LF.

Aydemir et al. [2] have developed a methodology for for-
malizing metatheory in Coq based on using de Bruijn in-
dices to manage binding, and using cofinite quantification to

handle fresh names. Using their methodology to formalize
the results in this paper would provide a useful comparison
of these approaches, particularly concerning decidability.

Algorithms for equivalence and canonicalisation for de-
pendent type theories have been studied by several au-
thors. Prior work on equivalence checking for LF has
focused on first checking well-formedness using erased
types, then�- or ��-normalizing; these approaches are dis-
cussed in detail in [8]. Coquand’s algorithm [3] is similar
to Harper and Pfenning’s but operates on untyped terms.
Goguen’s approach [5] involves first�-expanding and then�-normalizing, and relies on standard (nontrivial) properties
such as strong normalization of�-reduction and strengthen-
ing. It may be interesting to verify these algorithms.

We chose to formalize Harper and Pfenning’s article [8]
because it is the most recent and most detailed development
we could find. Moreover, their work seems more exten-
sible. Another reason is that the quality standards in the
LF-community are so high, that peer-reviewed work is gen-
erally trusted. Appel, for example, told us that he trusts the
implementation of a type-checker for LF presented in [1],
because first the code is very small and second the theoret-
ical underpinnings have been studied thoroughly by Harper
and Pfenning. For such “follow-up” work it is crucial that
we were able to formalize the soundness and completeness
results in HP05.

Our formalization provides a foundation for several pos-
sible future investigations. We are interested in extend-
ing our formalization to include verifying Twelf-style meta-
reasoning about LF specifications, following Harper and Li-
cata’s detailed informal development [7]. Doing so could
make it possible to extract Isabelle/HOL theorems from
Twelf proofs. It would also be interesting to extend our for-
malization to accommodate extensions to LF involving (or-
dered) linear logic, concurrency, proof-irrelevance, or sin-
gleton kinds, as discussed in [8, Sec. 8]. We hope that any-
one who proposes an extension to LF will be able to use our
formalization as a starting point for verifying its metathe-
ory.

11

6 Conclusions

LF is an extremely convenient tool for defining logics and
other calculi. It has many compelling applications and un-
derlies the system Twelf, which has a proven record in for-
malizing many programming language calculi. Hence, it is
of intrinsic interest to verify key properties of LF’s metathe-
ory, such as the correctness and decidability of the type-
checking algorithms. We have done so, using the Nomi-
nal Datatype Package for Isabelle/HOL. The infrastructure
provided by this package allowed us to follow the proof of
Harper and Pfenning closely.

For our formalization we had the advantage of work-
ing from Harper and Pfenning’s carefully-written informal
proof, which stood up to the rigors of mechanical formaliza-
tion rather well. Still we found in this informal proof one
gap and a few minor complications. We have shown that
they can be repaired. We have also partially verified the de-
cidability of the equivalence and typechecking algorithms,
although some work remains to formally prove decidabil-
ity per se. Formalizing decidability proofs of any kind in
Isabelle/HOL appears to be an open problem, so we leave
this for future work.

While verifying correctness of proofs is a central motiva-
tion for doing formalizations, it isnot the only one. There is
a second important benefit—they can be used to experiment
with changes to the system. By “replaying” a modified for-
malization in a theorem prover one can immediately focus
on places where the proof fails. This ability was essential in
fixing the soundness proof.

Our formalization is not an end in itself but also pro-
vides a foundation for further study in several directions.
Researchers using LF may find it useful for checking the
adequacy of their LF encodings. Researchers developing
extensions to LF based on Harper and Pfenning’s algorithm
may find our formalization useful as a starting point for
verifying the metatheory of such extensions. More ambi-
tiously, we contemplate formalizing the meaning and cor-
rectness of Twelf’s metatheoretic reasoning facilities inside
Isabelle/HOL, and extracting Isabelle/HOL theorems from
Twelf proofs.

Acknowledgments: We are extremely grateful to Bob
Harper for many discussions about LF. Benjamin Pierce
and Stephanie Weirich have also made helpful comments
on drafts of this paper.

References

[1] A. Appel, N. Michael, A. Stump, and R. Virga. A trustworthy
proof checker.J. Autom. Reasoning, 31:231–260, 2003.

[2] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and
S. Weirich. Engineering formal metatheory. InPOPL, pages
3–15. ACM, 2008.

[3] T. Coquand. An algorithm for testing conversion in type the-
ory. In G. Huet and G. Plotkin, editors,Logical Frameworks,
pages 255–279. Cambridge University Press, 1991.

[4] H. Geuvers and E. Barendsen. Some logical and syntacti-
cal observations concerning the first-order dependent type
system�P. Mathematical Structures in Computer Science,
9(4):335–359, 1999.

[5] H. Goguen. A syntactic approach to eta equality in type the-
ory. In POPL, pages 75–84. ACM, 2005.

[6] R. Harper, F. Honsell, and G. Plotkin. A framework for defin-
ing logics.Journal of the ACM, 40(1):143–184, 1993.

[7] R. Harper and D. Licata. Mechanizing metatheory in a logi-
cal framework.J. Funct. Programming, 2007. To appear.

[8] R. Harper and F. Pfenning. On equivalence and canonical
forms in the LF type theory.ACM Transactions on Compu-
tational Logic, 6(1):61–101, 2005.

[9] J. McKinna and R. Pollack. Some lambda calculus and type
theory formalized.J. Autom. Reasoning, 23(3-4):373–409,
1999.

[10] J. Narboux and C. Urban. Formalising in Nominal Isabelle
Crary’s completeness proof for equivalence checking. In
LFMTP, volume 196 ofENTCS, 2007.

[11] G. C. Necula. Proof-carrying code. InPOPL, pages 106–
119. ACM, 1997.

[12] T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle HOL:
A Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer, 2002.

[13] M. Norrish and R. Vestergaard. Proof pearl: de bruijn terms
really do work. InTPHOLs, volume 4732 ofLNCS, pages
207–222. Springer, 2007.

[14] F. Pfenning and C. Schürmann. System description: Twelf–
a meta-logical framework for deductive systems. InCADE,
volume 1632 ofLNAI, pages 202–206, 1999.

[15] R. Pollack. A verified typechecker. In M. Dezani-Ciancaglini
and G. D. Plotkin, editors,TLCA, volume 902 ofLNCS,
pages 365–380. Springer, 1995.

[16] C. Schürmann and J. Sarnat. Structural logical relations. In
LICS, 2008.

[17] C. Urban. Revisiting cut-elimination: One difficult proof is
really a proof. In RTA, 2008.

[18] C. Urban, S. Berghofer, and M. Norrish. Barendregt’s vari-
able convention in rule inductions. InCADE, volume 4603
of LNAI, pages 35–50, 2007.

[19] C. Urban, J. Cheney, and S. Berghofer. Mechanis-
ing the metatheory of LF, 2008. Technical Report
arXiv:0804.1667.

[20] C. Urban and C. Tasson. Nominal techniques in Is-
abelle/HOL. InCADE, volume 3632 ofLNCS, pages 38–53,
2005.

12

