
LFMTP 2007

Formalising in Nominal Isabelle Crary’s
Completeness Proof for Equivalence Checking

Julien Narboux1 and Christian Urban2

TU Munich, Germany

Abstract

In the book on Advanced Topics in Types and Programming Languages, Crary illustrates the reasoning technique of logical
relations in a case study about equivalence checking. He presents a type-driven equivalence checking algorithm and verifies
its completeness with respect to a definitional characterisation of equivalence. We present in this paper a formalisation of
Crary’s proof using Isabelle/HOL and the nominal datatype package.

Keywords: logical relations, proof assistants, formalisations, Isabelle/HOL, nominal logic work.

1 Introduction

Logical relations are a powerful reasoning technique for establishing properties about pro-
gramming languages. The idea of logical relations goes back to Tait [8] and is usually
employed for showing strong normalisation results. However this technique has wide ap-
plicability. Crary illustrates this by using a logical relation argument to prove completeness
of an equivalence checking algorithm [3]. One reason for formalising proofs involving log-
ical relations is that they are fairly intricate: First they require a logic that is sufficiently
strong (see comment in [4, Page 58]). Also in the final step of such proofs, one has to
establish by induction a property under a closing substitution. These substitutions might,
however, interfere with binders and one has to be careful that the proof covers all cases that
are required by the induction. We will show in this formalisation that there are a few places
where one has to pay attention to this issue and that the strong induction principles [10]
that have the variable convention already built in are quite convenient to get the formal
arguments through.

There have already been a number of formalisations of proofs involving logical re-
lations. For example Altenkirch [1] formalises the usual strong normalisation proof for

1 Email: narboux(at)in.tum.de
2 Email: urbanc(at)in.tum.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:narboux(at)in.tum.de
mailto:urbanc(at)in.tum.de

Narboux and Urban

System F in the theorem prover LEGO. To our knowledge all these formalisations use de
Bruijn indices to represent�-equated terms. We attribute this to the fact that proofs us-
ing logical relations heavily rely on terms being a representation for�-equivalence classes.
We assume that this is the reason why a formalisation based on a concrete (un-quotioned)
representation has never been attempted.

One practical reason why we do not wish to formalise Crary’s proof using de Bruijn
indices is that we like to stay as faithful as possible to the source and thus do not need to
invent any of the formal arguments ourselves. This intention materialised quite a bit in our
formalisation, except in one place where we developed a completely different argument
than the one Crary had mind, but did not completely spell out its details (we found this out
after we completed the formalisation by communicating with Crary about our proof). Even
so we also had to spend considerable work to implement the informal rules presented by
Crary and to justify that our implementation captures the intended behaviour of these rules.

Our formal proof is carried out in Isabelle/HOL and relies much on the infrastructure
provided by the nominal datatype package [9,10,11]. This package uses many ideas from
the nominal logic work by Pitts [6]. The ability to directly define in the nominal datatype
package�-equivalent terms and obtain automatically recursion combinators and strong in-
duction principles that have the usual variable convention already built was of great help in
our formalisation. There is one place were we had to derive manually some infrastructure,
which we hope can be derived automatically in the future. In the rest of the paper we give
a guided tour through our formalisation.

2 Terms, Types and Substitution

Terms, types and substitutions are relatively standard and follow closely Crary’s notes.
Terms are given by the grammar

Definition 2.1 (Terms)

trm ::= Var namej App trm trmj Lam name.trmj Const natj Unit

where in theLam-clause, as usual, a variable is bound; there is also an infinite supply
of constants all represented by natural numbers. By stating this definition in the nomi-
nal datatype package we immediately obtain�-equivalent terms. Types are given by the
grammar

Definition 2.2 (Types) ty ::= TBasej TUnit j ty!ty

where there is no binding. We define the usual size function for types (details omitted), as
this will be the measure over which we define the logical relation later on.

The most important operation we need for our terms is that of applying simultaneous
substitutions, which we represent as finite lists of(name;trm)-pairs. Crary defines them
as functions from some set of variables to terms. One reason for our choice is that it
is easier to deal with finitary structures in the nominal datatype package than with infinite
ones (functions are considered as infinitary structures and would require additional theorem
prover code). Using our list representation we define:

2

Narboux and Urban

Definition 2.3 (Simultaneous Substitution)

�(Var x) = lookup� x
�(App t1 t2) = App�(t1) �(t2)
�(Lam x.t) = Lam x.�(t) providedx # �
�(Const n) = Const n
�(Unit) = Unit

where in the first clause we use the auxiliary functionlookupdefined by the clauses:

lookup[] x = Var x
lookup((y; T)::�) x = if x = y then T else lookup� x

Single substitutions are a derived concept by defininge[x:=e0]
def
= [(x; e0)](e) with [(x; e0)]

being a singleton list.

Note that in theLam-clause we attach the side-condition aboutx being fresh for� (written
x # �), which is equivalent tox being not free in the list of(name;trm)-pairs. Despite im-
posing this side-condition, the definition above yields a total function, since we work with
�-equivalence classes where renamings are always possible. Because we define a function
over the structure of�-equated terms, we must be careful to not introduce any inconsisten-
cies [9]. The reason is that we can specify functions over the structure of such terms that
do not respect�-equivalence (for example the function that calculates the bound names of
a term or returns the immediate subterms) and consequently lead to inconsistencies in Is-
abelle/HOL. In our formalisation this means that we have to give two four-line proofs that
ensure that simultaneous substitutions respect�-equivalence.

3 Typing and Definitional Equivalence

Next, we define the typing judgements for our terms. In order to stay faithful to Crary’s
notes we introduce the notion for when a typing context� is valid, namely when it includes
only a single association for every variable occurring in� . Again we use lists to represent
these typing contexts; this time because Isabelle/HOL does not provide out-of-the-box a
type of finite sets. Using the lists we can define the notion of validity by the two rules:

valid []

valid � x # �

valid ((x; T)::�)

where we attach in the second rule the side-condition thatx must be fresh for� , which in
case of our typing contexts is equivalent tox not occurring in� . The typing rules are then
defined as:

valid � (x; T) 2 �

� ` Var x : T
T-Var

� ` e1 : T1!T2 � ` e2 : T1

� ` App e1 e2 : T2

T-App

x # � (x; T1)::� ` t : T2

� ` Lam x.t: T1!T2

T-Lam

valid �

� ` Const n: TBase
T-Const

valid �

� ` Unit : TUnit
T-Unit

where we ensure that only valid contexts appear in typing judgements by including validity
in the rules for variables and Units. To preserve validity in the rule T-Lam, we have the
side-condition thatx must be fresh for� . (We can infer this freshness condition also from

3

Narboux and Urban

the premise(x; T1)::� ` t : T2 and the fact that in typing-judgements contexts are always
valid, but this requires a side-lemma.) In rule T-Var we use the notation(x; T) 2 � to stand
for list-membership.

The completeness of the typing algorithm is proved with respect to some rules charac-
terising definitionally the equivalence between typed terms. The corresponding judgements
Crary is using for this are of the form� ` s� t : T wheresandt are terms andT is a type.
We formalise his rules of definitional equivalence as follows:

� ` t : T

� ` t � t : T
Q-Refl

� ` t � s : T

� ` s� t : T
Q-Symm

� ` s� t : T � ` t � u : T

� ` s� u : T
Q-Trans

� ` s1 � t1 : T1!T2 � ` s2 � t2 : T1

� ` App s1 s2 � App t1 t2 : T2

Q-App

x # � (x; T1)::� ` s2 � t2 : T2

� ` Lam x.s2 � Lam x.t2 : T1!T2

Q-Abs

x # (� ; s2; t2) (x; T1)::� ` s1 � t1 : T2 � ` s2 � t2 : T1

� ` App(Lam x.s1) s2 � t1[x:=t2] : T2

Q-Beta

x # (� ; s; t) (x; T1)::� ` App s(Var x) � App t(Var x) : T2

� ` s� t : T1!T2

Q-Ext

� ` s : TUnit � ` t : TUnit

� ` s� t : TUnit
Q-Unit

Validity of the typing contexts are implied by the validity in the typing rules, which are
included in the premises of Q-Refl and Q-Unit, and by having the side-condition aboutx
being fresh for� in Q-Abs, Q-Beta and Q-Ext.

Comparing our rules with the ones given by Crary, slightly unusual are the side-condi-
tionsx # (s2; t2) in the rule Q-Beta andx # (s; t) in the rule Q-Ext. In the former case
we can relatively easily show that our Q-Beta is equivalent to

(x; T1)::� ` s1 � t1 : T2 � ` s2 � t2 : T1

� ` App(Lam x.s1) s2 � t1[x:=t2] : T2

Q-Beta’.

However this requires explicit�-conversions and the fact that all typing contexts in the def-
initional equivalence judgements are valid. In light of this equivalence, the question arises
why we insist on the more restricted rule: The reason is that based on those constraints the
nominal datatype package can automatically derive a strong induction principle that has the
variable convention already built in. This will be very convenient in some proofs later on.
To do the same without those constraints is possible, but slightly more laborious.

In case of Q-Ext the side-conditions represent the fact that the extensionality rule should
hold for a fresh variablex only. By imposingx # (� ; s; t) we can show that Q-Ext is
equivalent to

8 x: x # � �! (x; T1)::� ` App s(Var x) � App t(Var x) : T2

� ` s� t : T1!T2

Q-Ext’

The argument for this uses the some/any-property from [6] and relies on the fact that the
definitional equivalence is equivariant; by this we mean it is invariant under swapping of
variables, namely� ` s� t : T implies (x y)�� ` (x y)�s� (x y)�t : T for all x andy (see

4

Narboux and Urban

[10,11] for more details). The side-conditions in Q-Ext are not explicitly given by Crary
and the equivalence with Q-Ext’ gave us confidence to have captured with them the “idea”
of an extensionality rule.

4 The Equivalence Checking Algorithm

One feature of Crary’s equivalence checking algorithm is that it includes a fair amount of
optimisations, in the sense that in some circumstances two lambda terms are not completely
normalised but only transformed into a weak-head normal-form. For this Crary introduces
the following four rules:

App(Lam x.t1) t2; t1[x:=t2]
QAR-Beta

t1; t1
0

App t1 t2; App t1
0 t2

QAR-App

s; t t + u

s+ u
QAN-Reduce

t 6;

t + t
QAN-Normal

The algorithm is then defined by two mutual recursive judgements, called respectivelyal-
gorithmic term equivalenceandalgorithmic path equivalence. The former is written as
� ` s, t : T and the latter as� ` s$ t : T. Their rules are

s+ p t + q � ` p$ q : TBase

� ` s, t : TBase
QAT-Base

x # (� ; s; t) (x; T1)::� ` App s(Var x), App t(Var x) : T2

� ` s, t : T1!T2

QAT-Arrow

valid �

� ` s, t : TUnit
QAT-One

valid � (x; T) 2 �

� ` Var x$ Var x : T
QAP-Var

� ` p$ q : T1!T2 � ` s, t : T1

� ` App p s$ App q t: T2

QAP-App

valid �

� ` Const n$ Const n: TBase
QAP-Const

following quite closely Crary’s definition. One difference, however, is the inclusion of
the validity predicate in the rules QAT-One, QAP-Var and QAP-Const ensuring that only
valid typing contexts appear in the judgements. Another, more interesting, difference is
the fact that by imposing the side-conditionx # (s; t) in the rule rule QAT-Arrow we
explicitly restricting the algorithm to consider only fresh variables. Recall that we imposed
a similar restriction in the rule Q-Beta given in Sec.3. There, however, the side-condition
was innocuous as we could show that the rulewith the side-condition is equivalent to the
onewithout the side-condition. With rule QAT-Arrow the situation is different—the side-
condition is a “real” restriction, meaning that

x # � (x; T1)::� ` App s(Var x), App t(Var x) : T2

� ` s, t : T1!T2

5

Narboux and Urban

and QAT-Arrow arenot interderivable. (The reason for this is that in the judgement� ` s
, t : T the free variables ofsandt do not necessarily need to be contained in� . Therefore
we cannot infer fromx # � that x # (s; t) holds, as we did with Q-Beta.) While this
restriction seems reasonable from an algorithmic point of view, it will turn out that it is
actually crucial in our proofs: in order to get the inductions through for the properties
of transitivity and monotonicity for the rules given above, we like to assume a sort of
variable convention forx. That means we like to structure our argument so that thex
in case of QAT-Arrow is fresh not just for� , s and t, but also for some other variables
specified in the lemma at hand. This is very much like the informal reasoning using the
variable convention, except thatx in QAT-Arrow is not a binder. Still the nominal datatype
package is able to derive automatically a strong induction principle, which allows us later
on to make the reasoning with the variable convention completely formal. One proviso for
deriving this strong induction principle is however that we formulate the QAT-Arrow as
we have (essentially we have to make sure that the variablex does not occur freely in the
conclusion of the corresponding rule; for more details we refer again to [10]). To see the
improvement we obtain with the strong induction principle, consider the usual induction
principle that comes with the rules specified above:

: : :
8x� s t T1 T2:

x#(�; s; t) ^ P1 ((x : T1) ::�) (App s (V ar x)) (App t (V ar x))T2
�! P1 � s t (T1 ! T2)

: : :

� ` s, t : T �! P1 � s t T � ` s$ t : T �! P2 � s t T

This induction principle states that if one wants to prove two propertiesP1 andP2 by mu-
tual induction over the rules for algorithmic term equivalence and algorithmic path equiv-
alence, then one can assume in the QAT-Arrow the side-conditionx#(�; s; t) andP1 for
the premise, and one has to establishP1 for the conclusion. The strong induction principle
is similar

: : :
8x� s t T1 T2 c:

x#c ^ x#(�; s; t) ^ (8c: P1 c ((x : T1) ::�) (App s (V ar x)) (App t (V ar x))T2)

�! P1 c � s t (T1 ! T2)
: : :

� ` s, t : T �! P1 c � s t T � ` s$ t : T �! P2 c � s t T

except that it includes an induction contextc in the propertiesP1 andP2, and we can
assume that in the QAT-Arrow-case thex is fresh with respect to this induction context
(see highlighted box). Over this induction context we have control when we set up an
induction: if we want to employ the variable convention in our formal proofs, we just need
to instantiate this induction context appropriately.

Before we can describe our proofs in detail we need two more definitions. We need
to formalise Crary’s notion of logical equivalence, written� ` s is t : T, and the logical
equivalence of two simultaneous substitutions, say�1 and�2, over a context� . The latter
is a derived concept and will be written as� 0 ` � is � 0 over� . The former is defined by
recursion over the size of the types. The clauses are as follows:

6

Narboux and Urban

� ` s is t : TUnit
def
= true

� ` s is t : TBase
def
= � ` s, t : TBase

� ` s is t : (T1 ! T2)
def
= 8� 0 s0 t 0: � � � 0^ valid � 0^ � 0 ` s0 is t 0 : T1 �!

� 0 ` (App s s0) is (App t t0) : T2

using in the last clause the notion of a weaker context, written� � � 0 (for � 0 to be
weaker than� , every (name,type)-pair in� must also appear in� 0). Logical equivalence
for simultaneous substitutions over a context� is defined as

� 0 ` � is � 0 over�
def
= 8 x T: (x;T) 2 set� �! � 0 ` �(Var x) is � 0(Var x) : T

With this we have all necessary definitions in place.

5 Proofs

The first mayor property we need to establish is transitivity for algorithmic term equiva-
lence and algorithmic path equivalence. These proofs are not detailed in Crary’s notes and
we diverged in our formalisation from the proofs he had in mind. We first show that type
unicity holds for algorithmic path equivalence

Lemma 5.1 (Type Unicity)
If � ` s$ t : T and � ` s$ u : T 0 then T = T 0:

and subsequently show symmetry for both the algorithmic path equivalence and the algo-
rithmic term equivalence.

Lemma 5.2 (Algorithmic Symmetry)
If � ` s, t : T then � ` t , s : T:
If � ` s$ t : T then � ` t $ s : T:

Both proofs are by relatively straightforward inductions over� ` s, t : T and� ` s$ t : T.
This then allows us to prove transitivity, where we need the strong induction principle in
order to get the induction through.

Lemma 5.3 (Algorithmic Transitivity)
If � ` s, t : T and � ` t , u : T then � ` s, u : T:
If � ` s$ t : T and � ` t $ u : T then � ` s$ u : T:

Proof. By mutual induction over� ` s, t : T and� ` s$ t : T where we instantiate
the induction context with the termu. In the QAP-App-case we then have the induction
hypotheses

ih1: 8u: � ` q$ u : T1!T2 �! � ` p$ u : T1!T2

ih2: 8u: � ` t , u : T1 �! � ` s, u : T1

and the assumptions

(i): � ` App q t$ u : T2 and (ii): � ` p$ q : T1!T2

From the first assumption we obtain by inversion of the typing rule anr, T 0

1 andv such that

7

Narboux and Urban

(iii): � ` q$ r : T 0

1!T2 (iv): � ` t , v : T 0

1

andu = App r v hold. From the second assumption we obtain� ` q $ p : T1!T2 by
symmetry of$ (Lemma5.2), and then can use this and(iii) to find out by the type unicity
of$ (Lemma5.1) thatT 0

1!T2 = T1!T2 holds. This in turn implies thatT 0

1 = T1, which
allows us to use(iii) and(iv) in the induction hypotheses. This gives us

� ` s, v : T1 and � ` p$ r : T1!T2 .

Hence we know that� ` App p s$ u : T2 holds by the rule QAP-App and the equationu
= App r v.

The case QAT-Base uses the fact that normalisation produces unique results, that is ift
+ q andt + q0 thenq = q0.

In the QAT-Arrow case we have� ` t , u : T1!T2 and thus can infer that the judge-
ment(x; T1)::� ` App t(Var x), App u(Var x) : T2 holds. By induction we obtain fur-
ther that(x; T1)::� ` App s(Var x), App u(Var x) : T2 holds. Finally we can infer the
proof obligation in this case, namely� ` s, u : T1!T2, provided we knowx#(� ;s;u).
The freshness for� ands is given by the side-conditions of QAT-Arrow. The freshness
for u is given by the strong induction principle (recall that we instantiated the induction
context withu). Thus we are done. 2

Next we prove closure under weak-head reductions, but we restrict our argument to the
single step case (Crary proves closure under multiple steps) as this is easier to prove (ac-
tually it can be derived automatically by Isabelle’s automatic search tools) and is sufficient
for our formalisation.

Lemma 5.4 (Algorithmic Weak-Head Closure)
If � ` s, t : T and s0

; s and t 0
; t then � ` s0, t 0 : T:

This lemma is by a simple induction over� ` s, t : T. The following lemma establishes
a kind of weakening property for the judgements of the algorithm.

Lemma 5.5 (Algorithmic Monotonicity)
If � ` s, t : T and � � � 0 and valid � 0 then � 0 ` s, t : T:
If � ` s$ t : T and � � � 0 and valid � 0 then � 0 ` s$ t : T:

Proof. By mutual induction using the strong induction principle. This time we instantiate
the induction context with� 0. The only interesting case (that is the one which is not
automatic) analyses the rule QAT-Arrow: There we have by assumption� � � 0 from
which we can infer(x;T1)::� � (x;T1)::�

0. In order to apply the induction hypotheses, we
need the fact thatvalid ((x; T1)::�

0) holds. At this point the usual induction would start
to become ugly since explicit renamings need to be performed. However we based our
argument on the strong induction principle with the induction context being instantiated
with � 0. This gives usx # � 0 from which we can easily infer the desired fact. We can
then conclude in this case with appealing to the induction hypotheses. 2

The next lemma will help us to establish the fact that logical equivalence implies algorith-
mic equivalence.

Lemma 5.6 (Algorithmic Path Equivalence implies Weak-Head-Normal Form)
If � ` s$ t : T thens 6; andt 6;.

8

Narboux and Urban

This is by straightforward induction on� ` s$ t : T. The main lemma in Crary’s proof is
then stated as follows (where we had to include in our formal version of this lemma that�

is valid).

Lemma 5.7 (Main Lemma)
If � ` s is t : T and valid � then � ` s, t : T:
If � ` p$ q : T then � ` p is q: T:

Proof. The proof is by simultaneous induction overT generalising over� , s, t, p andq.
The non-trivial case is forT = T1 ! T2. For the first property we have the induction
hypotheses

ih1: 8� s t: � ` s is t : T2 ^ valid � �! � ` s, t : T2

ih2: 8� s t: � ` s$ t : T1 �! � ` s is t : T1

and the assumptions� ` s is t : T1!T2 andvalid � . We choose a freshx (fresh w.r.t.� ,
s andt). We can thus derive thatvalid ((x; T1)::�) holds and hence(x; T1)::� ` Var x
$ Var x : T1. From this we can derive(x; T1)::� ` Var x is Var x: T1 using the second
induction hypothesis. Using the our assumptions we can then derive(x; T1)::� ` App s
(Var x) is App t(Var x) : T2 which by the first induction hypothesis leads to(x; T1)::� `

App s(Var x), App t (Var x) : T2. Because we chosenx to be fresh, we can then derive
� ` s, t : T1!T2, as needed. The proof for the other property uses Lemma5.5, but we
omit the details. 2

In his notes Crary carefully designs the logical equivalence so that it has the following
property:

Lemma 5.8 (Logical Monotonicity)
If � ` s is t : T and � � � 0 and valid � 0 then � 0 ` s is t : T:

whose proof is by induction on the definition of the logical equivalence, appealing in the
TBase-case to Lemma5.5. From logical monotonicity we can deduce the following corol-
lary:

Corollary 5.9 (Logical Monotonicity for Substitutions)
If � 0 ` � is � 0 : � and � 0� � 00 and valid � 00 then � 00 ` � is � 0 : � :

The next three lemmas infer some properties about logical equivalence needed in the
fundamental theorems. They are all by relatively routine inductions over the typeT , so we
only state them here.

Lemma 5.10 (Logical Symmetry)
If � ` s is t : T then � ` t is s : T:

Lemma 5.11 (Logical Transitivity)
If � ` s is t : T and � ` t is u : T then � ` s is u: T:

Lemma 5.12 (Logical Weak Head Closure)
If � ` s is t : T and s0

; s and t 0
; t then � ` s0 is t 0 : T:

Note that in Lemma5.12we prove again only the case of closure under single weak-head
reductions since this is sufficient for the the fundamental theorems, which are shown next.

9

Narboux and Urban

Theorem 5.13 (Fundamental Theorem 1)
If � ` t : T and � 0 ` � is � 0 : � and valid � 0 then � 0 ` �(t) is � 0(t) : T:

Proof. By induction over the definition of� ` t : T . We use the strong induction principle
for typing and instantiate the induction context so that binders avoid the substitutions� and
�0. This will give us the two facts

(�) (x; s)::�(t) = �(t)[x:=s] and (x; s)::� 0(t) = � 0(t)[x:=s]

which state how we can pull apart a simultaneous substitution such that we obtain a separate
single substitution. These facts will be crucial in our induction argument since the left-hand
sides correspond to what we have by the induction hypotheses and the right-hand sides will
correspond to what we have to prove. These facts do, however, not hold for generalx, only
for ones that are fresh for the substitution. Since we can assume thatx is fresh for� and�0,
our argument goes through smoothly. In the T-Lam-case we have the induction hypothesis

ih: 8� 0 � � 0: � 0 ` � is � 0 : (x; T1)::� ^ valid � 0�! � 0 ` �(t2) is � 0(t2) : T2

and we can assume� 0 ` � is � 0 : � and further thatx # (� ; �; � 0) (the first freshness
assumption comes from the T-Lam rule; the second and third from the strong induction).
We need to show that� 0 ` �(Lam x.t2) is � 0(Lam x.t2) : T1!T2 holds. For this it is
sufficient to show for all� 00, s0 andt0 that

� 00 ` App(Lam x.�(t2)) s0 is App(Lam x.� 0(t2)) t 0 : T2

whereby we can assume that� 0� � 00, � 00` s0 is t 0 : T1 andvalid � 00. From these assump-
tions we obtain by Lemma5.8 that� 00 ` � is � 0 : � holds and by the freshness conditions
also that� 00` (x; s0)::� is (x; t 0)::� 0 : (x; T1)::� (we proved that logical equivalence can be
so extended in a side-lemma). Now by induction hypothesis we can infer that

� 00 ` (x; s0)::�(t2) is (x; t 0)::� 0(t2) : T2

holds. Now we can apply the facts mentioned under(�) to obtain

� 00 ` �(t2)[x:=s0] is � 0(t2)[x:=t 0] : T2

Since we know that

App(Lam x.�(t2)) s0
; �(t2)[x:=s0]

App(Lam x.� 0(t2)) t 0
; � 0(t2)[x:=t 0]

hold, we can apply Lemma5.12to conclude with� 00 ` App(Lam x.�(t2)) s0 is App(Lam
x.� 0(t2)) t 0 : T2. This completes, the proof as the T-Lam-case is the only non-automatic
case in our formal proof. 2

The second fundamental lemma shows that logical equivalence is closed under simultane-
ous substitutions.

Theorem 5.14 (Fundamental Theorem 2)
If � ` s� t : T and � 0 ` � is � 0 : � and valid � 0 then � 0 ` �(s) is � 0(t) : T:

Proof. By strong induction over the definition of the definitional equivalence� ` s� t :
T. The induction context is again instantiated with� and�0. There are several interesting

10

Narboux and Urban

cases. However we only show the cases for Q-Abs, Q-Beta and Q-Ext.
In the first case we have the induction hypothesis

ih: 8� 0 � � 0: � 0 ` � is � 0 : (x; T1)::� ^ valid � 0�! � 0 ` �(s2) is � 0(t2) : T2

and need to show that

� 0 ` �(Lam x.s2) is � 0(Lam x.t2) : T1!T2

holds. Because by the strong induction principle, we can assume thatx # (�; � 0), we are
able to immediately move the substitutions under the lambdas, i.e. we have to proceed with
showing

� 0 ` Lam x.�(s2) is Lam x.� 0(t2) : T1!T2.

This can be done by establishing� 00 ` App (Lam x.�(s2)) s0 is App(Lam x.� 0(t2)) t 0 : T2

for all � 00, s0 andt0. The reasoning is similar to Theorem5.13and therefore omitted.
In the second case we need to establish that� 0 ` �(App(Lam x.s1) s2) is � 0(t1[x:=t2])

: T2 holds. Again, by the convenience afforded by the strong induction principle we can
immediately move the substitution inside the terms, that is we have to show

� 0 ` App(Lam x.�(s1)) �(s2) is � 0(t1)[x:=� 0(t2)] : T2

We omit the other details, because they just amount to using the induction hypotheses and
adjusting substitutions appropriately.

In the third case we do not have additional freshness assumptions about� and�0 (we
do not need them in this case). However, the side-conditions aboutx being fresh fors and
t will turn out to be crucial. The reason is that we can then simplify the terms

(��) (x; s0)::�(s) = �(s) and (x; t 0)::� 0(t) = � 0(t)

The induction hypothesis in this case is

8� 0 � � 0: � 0 ` � is � 0 over(x;T1)::� ^ valid � 0

�! � 0 ` �(App s(Var x)) is � 0(App t(Var x)) : T2.

and we have the assumptions that� 0` � is � 0 : � , valid � 0 andx # (� ; s; t). We show that
� 0` �(s) is � 0(t) : T1!T2 holds which by the assumption about the validity of� 0 amounts
to showing that

� 00 ` App�(s) s0 is App� 0(t) t 0 : T2

holds for all� 00, s0 andt0, using the assumption about� 0� � 00, � 00` s0 is t 0 : T1 andvalid
� 00. Using Lemma5.8we can infer that

� 00 ` � is � 0 : �

holds, from which we obtain

� 00 ` (x; s0)::� is (x; t 0)::� 0 : (x; T1)::� .

Using the induction hypothesis gives us then

� 00 ` (x; s0)::�(App s(Var x)) is (x; t 0)::� 0(App t(Var x)) : T2.

11

Narboux and Urban

Moving the substitutions inside and using the facts(��) we can conclude with

� 00 ` App�(s) s0 is App� 0(t) t 0 : T2

This completes the proof. 2

Completeness of the algorithm is now a simple consequence of the Theorem5.14by using
the fact that� ` Var x is Var x: T holds by Lemma5.7and that� ` [] is [] : � holds.

Corollary 5.15 (Completeness)
If � ` s� t : T then � ` s, t : T:

Thus we have formally verified that the algorithm says “yes” for all equivalent terms. The
soundness property is left as an exercise in [3]. We have not formalised this part.

6 About the Formalisation

We can generally remark that having a formalised proof allows one to quickly test changes
whether they affect the whole proof. This proved convenient for testing if lemmas or defini-
tions need to be strengthened or can be weakened. Having the formal proof at our disposal
also made it easy to compile this paper, as Isabelle has an extensive infrastructure for using
formal definitions in papers and providing sanity checks. This is especially useful to keep
formalisations and papers synchronised. The inductive rules and the statements of the lem-
mas and theorems presented in this paper have been generated from the formal definitions.

More specifically we can say that our formalisation follows a good deal the informal
reasoning of Crary (see Figure1 which shows the first fundamental lemma as an example
in the Isar proof language [12]). The strong induction principles proved crucial in order
to get the inductions through. Such strong induction principles are derived automatically
for any nominal datatype (which can at the moment only include lambda-type of bindings,
but they can occur iterated and can bind different kinds of variables). The strong induction
principles are also derived automatically for inductive definition satisfying certain freshness
conditions (see [10]).

The only sore point we see in our formalisation is the lack of automation in inversion
lemmas. While this is not a serious problem in the formalisation of Crary’s chapter (we
only need one such inversion lemma and that can be proved in 5 lines), it can be painful in
other formalisations. We hope this problem can be solved in the future. To see what the
issues are, re-consider the T-Lam-rule:

x # � (x; T1)::� ` t : T2

� ` Lam x.t: T1!T2

T-Lam

and assume that we have given the typing judgement� ` Lam x.t : T . In in formal
reasoning we can match this judgement against all typing rules, which is only successful in
case of T-Lam. The informal matching would then produce that there exists anT1 andT2

such thatT = T1!T2 and that (x; T1)::� ` t : T2 as well asx # � hold. However, this
is not how we can proceed in the nominal datatype package, where terms are�-equivalent
classes. There we obtain for the assumption� ` Lam x.t : T the “matcher” that there
exists� 0, x0, t0, T 0

1
andT 0

2
so that� = � 0, Lam x.t= Lam x0.t 0 andT = T 0

1
! T 0

2
. As

properties we obtain� 0 ` Lam x0.t : T 0 andx0 # � 0. Solving these equation would be no

12

Narboux and Urban

theorem fundamental-theorem-1:
assumesa1: � ` t : T
and a2: � 0 ` � is � 0 over�
and a3: valid � 0

shows� 0 ` �(t) is � 0(t) : T
usinga1 a2 a3
proof (nominal-induct� t T avoiding: � � 0 arbitrary: � 0 rule: typing:strong-induct) (**)
case(T-Lam x� T1 t2 T2 � �

0 � 0)

havevc: x# � x# � 0 by fact (variable convention)
havefs: x#� by fact (freshness condition from the rule)
haveasm1: �

0 ` � is � 0 over� by fact
have ih:

V
� � 0 � 0: [[� 0 ` � is � 0 over(x;T1)::� ; valid � 0]] =) � 0 ` �(t2) is � 0(t2) : T2

by fact (induction hypothesis)
show� 0 ` �(Lam x . t2) is � 0(Lam x . t2) : T1!T2 usingvc (*)
proof (simp; intro strip) (unfolding the definition of logical equivalence)
fix � 00 s0 t 0

assumesub: � 0� � 00

and asm2: �
00` s0 is t 0 : T1

and val: valid � 00

from asm1 val subhave� 00 ` � is � 0 over� using logical-subst-monotonicityby blast
with asm2 vc fshave� 00 ` (x;s0)::� is (x;t 0)::� 0 over(x;T1)::� (*)
usingequiv-subst-extby blast

with ih val have� 00 ` ((x;s0)::�)(t2) is ((x;t 0)::� 0)(t2) : T2 by auto
with vchave� 00`�(t2)[x::=s0] is � 0(t2)[x::=t 0] : T2 by (simp add: psubst-subst) (*)
moreover
haveApp(Lam x .�(t2)) s0

; �(t2)[x::=s0] by auto
moreover
haveApp(Lam x .� 0(t2)) t 0

; � 0(t2)[x::=t 0] by auto
ultimately show � 00` App(Lam x .�(t2)) s0 is App(Lam x .� 0(t2)) t 0 : T2

using logical-weak-head-closureby auto
qed

qed (auto) (all other cases are automatic)

Fig. 1. The complete formalised proof of the first fundamental lemma (Lemma5.13) in the readable Isar proof-language. In
the places marked with a single star, one appeals in informal reasoning to the variable convention about the binderx. This
variable convention is given in our proof by the strong induction principle and by declaring thatx should avoid� and�0 (see
line marked with two stars). The factlogical-subst-monotonicityis Corollary5.9; equiv-subst-extestablishes that for a fresh
x one can extend the logical equivalence of simultaneous substitutions; andpsubst-substis a lemma that allows us to pull
apart a simultaneous substitution in order to obtain a single substitution. We can do this provided the variable convention
aboutx holds.

problem if we had term-constructors that are injective (that is a characteristics of standard,
unquotioned datatypes). However, our constructors for�-equivalence classes are clearly
not injective. What we have to do is to analyseLam x.t= Lam x0.t 0 according to the built-
in notion of the nominal datatype package for�-equivalence. We end up with two cases:
one is simple and the other needs explicit renamings. However these reasoning maneuvers
should really be performed automatically by the nominal datatype package.

13

Narboux and Urban

7 Conclusion

We presented a formalisation of Crary’s case study about logical relations. This is in ad-
dition to the usual strong normalisation proof of the simply-typed lambda-calculus, which
has been part of the nominal datatype package for quite some time. It remains to be seen
whether the nominal datatype package is up to the task of formalising strong normalisation
for System F, where also types have binders. In this case the definition of logical relations
is not completely trivial like in the completeness proof we presented above.

We are aware of work by Schürmann and Sarnat about formalising logical relation
proofs in Twelf [7]. This involves a clever trick of implementing an object logic in Twelf
and coding the logical relation proof in this object logic. We unfortunately do not know
how convenient this style of reasoning is. We are also aware that Aydemir et al [2] use
a locally nameless approach (which goes back to work by McKinna and Pollack [5]) to
representing binders and work on formalising programming language theory. It would be
interesting to compare in detail our formalisation and the approach taken by Aydemir et al.
Our initial opinion is that in our formalisation we do not have to deal with the concepts of
openandclosedterms; and that we do not have to discard anypre-terms.

The sources of our formalisation are included in the nominal datatype package (see
http://isabelle.in.tum.de/nominal/). From the web-page of the first author
one can also download a longer version of the documented proofs.

Acknowledgements:
We thank Karl Crary for the discussions about his proof. We are also very grateful to
Carsten Scḧurmann who made us aware of typos and omissions in an early version of this
paper.

References

[1] T. Altenkirch. A Formalization of the Strong Normalisation Proof for System F in LEGO. InProc. of TLCA, volume
664 ofLNCS, pages 13–28, 1993.

[2] B. Aydemir, A. Chargúeraud, B. C. Pierce, and S. Weirich. Engineering Aspects of Formal Metatheory, 2007.
Submitted for publication.

[3] K. Crary. Logical Relations and a Case Study in Equivalence Checking. In B. C. Pierce, editor,Advanced Topics in
Types and Programming Languages, pages 223–244. MIT Press, 2005.

[4] R. Harper and D. Licata. Mechanizing Metatheory in a Logical Framework.Journal of Functional Programming,
2007. To appear.

[5] J. McKinna and R. Pollack. Pure Type Systems Formalized. InProc. of the International Conference on Typed Lambda
Calculi and Applications (TLCA), number 664 in LNCS, pages 289–305. Springer-Verlag, 1993.

[6] A. M. Pitts. Nominal Logic, A First Order Theory of Names and Binding.Information and Computation, 186:165–193,
2003.

[7] C. Scḧurmann and J. Sarnat. Towards a Judgemental Reconstruction of Logical Relation Proofs. Submitted, 2007.

[8] W. W. Tait. Intensional Interpretations of Functionals of Finite Type I.Journal of Symbolic Logic, 32(2):198–212,
1967.

[9] C. Urban and S. Berghofer. A Recursion Combinator for Nominal Datatypes Implemented in Isabelle/HOL. InProc. of
the 3rd International Joint Conference on Automated Reasoning (IJCAR), volume 4130 ofLNAI, pages 498–512, 2006.

[10] C. Urban, S. Berghofer, and M. Norrish. Barendregt’s Variable Convention in Rule Inductions. InProc. of the 21th
International Conference on Automated Deduction (CADE), 2007. To appear.

[11] C. Urban and C. Tasson. Nominal Techniques in Isabelle/HOL. InProc. of the 20th International Conference on
Automated Deduction (CADE), volume 3632 ofLNCS, pages 38–53, 2005.

14

http://isabelle.in.tum.de/nominal/

Narboux and Urban

[12] M. Wenzel. Isar — A Generic Interpretative Approach to Readable Formal Proof Documents. InProc. of the 12th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs), number 1690 in LNCS, pages 167–
184, 1999.

15

	Introduction
	Terms, Types and Substitution
	Typing and Definitional Equivalence
	The Equivalence Checking Algorithm
	Proofs
	About the Formalisation
	Conclusion
	References

