Abstract

Herbelin presented (at CSL’94) a simple sequent calculus for minimal implicational logic,
extensible to full first-order intuitionistic logic, with a complete system of cut-reduction rules
which is both confluent and strongly normalising. Some of the cut rules may be regarded as
rules to construct explicit substitutions. He observed that the addition of a cut permutation
rule, for propagation of such substitutions, breaks the proof of strong normalisation; the
implicit conjecture is that the rule may be added without breaking strong normalisation. We
prove this conjecture, thus showing how to model beta-reduction in his calculus (extended
with rules to allow cut permutations).

1 Introduction

Herbelin gave in [12] a calculus for minimal implicational logic, using a notation
for proof terms that, in contrast to the usual lambda-calculus notation for natural
deduction, brings head variables to the surface. It is thus a sequent calculus, with
the nice feature that its cut-free terms are in a natural 1-1 correspondence with the
normal terms of the simply typed A-calculus. Other intuitionistic connectives can be
added without difficulty.

The cut rules of the calculus are in part analogous to explicit substitution con-
structors [15, 17] and certain auxiliary operators (e.g. list concatenation); the only
exception is a rule that in some circumstances constructs an auxiliary term and in oth-
ers constructs a term analogous to a f-redex. Herbelin showed strong normalisation
and confluence of a complete system of rules for eliminating cuts, observed that the
addition of a further “cut permutation” rule, needed to allow explicit substitutions to
propagate properly, as required for the simulation of g-reduction of the untyped A-
calculus, would break (in the typed case) the strong normalisation proof, thus raising
the question of whether it also broke the strong normalisation result. In the present
paper we answer this question; strong normalisation holds for the calculus with the
addition of this rule (and of other cut permutation rules, to retain confluence). In
fact, we identify a fragment of the calculus that corresponds to ordinary untyped
A-calculus, and show that the addition of the extra constructors and reduction rules
preserves strong normalisation of the fragment.

Herbelin’s calculus can thus be seen in two ways:

1. In the cut-free case it is a natural basis [6] for automated proof search in logic
programming, since it is a sequent calculus but free from the permutation prob-
lems of Gentzen’s calculus;

2. In the general case, when extended with appropriate cut permutation rules, it
can simulate f-reduction without losing strong normalisation and thus, with its
strong proof-theoretic foundations, may be a natural basis for implementation
of functional languages.

Our proof uses standard techniques, e.g. from [2]. That paper uses recursive path
ordering techniques to show the strong normalisation of a similar calculus. It has been
argued that such techniques are inappropriate, since the systems dealt with there and
here are not first-order. In response, we make two points: (1) that, to show strong



normalisation, the method of translation to a first-order system in [2] is adequate—in
order not to obscure our argument, we omit the details of this translation, of which
the conscientious reader is welcome to fill in the missing details; and (more seriously)
(2) that our appeal to the critical pair lemma of first-order rewriting (to show that our
purification system is locally confluent) is a shorthand for an argument, as implicitly
made elsewhere (e.g. in [2]), that handles first-order terms modulo a-conversion; a
formal treatment can be derived as a special case of the critical pair lemma in [16]
for certain higher-order systems.

In other words, the details of the issues with variable names are omitted for simplic-
ity; instead the usual, but informal, practice of the Barendregt Variable Convention
is employed (i.e. we use a suitable chosen representative for an a-equivalence class
and require a certain hygiene in our proofs). In [20] it has been shown in the context
of the A-calculus that this informal practice can be completely formalised, but at
the expense of making explicit many details left implicit by the variable convention.
Alternatively, one might use the technique presented in [11], where a general theory
is provided which (in essence) allows one to strengthen induction hypotheses for rea-
soning with terms involving binding constructors. This strengthening ensures that
the validity of predicates one deals with in proofs is invariant under interchanging, or
swapping, of bound variable names.

Some other details can be found in the appendices of [§], an earlier version of the
present paper.

2 Technical Background

We use a notation developed in [7], since it distinguishes the different kinds of cut
term and in proofs emphasises the role of the stoup formula. For comparison, we offer
also the syntax for terms used in Herbelin’s paper [12]. The syntax of the calculus
is as follows: formulae (also called types) A are as in implicational logic, there are
(term-)variables x,y, ..., there are two kinds Ms, M of proof-term and two kinds of
sequent, one with and one without a stoup formula, which is written in the first case
below the sequent arrow. Ms is used in the stoup sequents; although the notation
may suggest a list, not all terms Ms are lists. Notions of “free” and “bound” and
variable conventions are as usual, with variable binding not just in A-terms but also
in cuts and cuty terms. Contexts I' are finite functions from variables to formulae;
I,z : A indicates the extension, by the assignment of A to z, of a context I' in which
there is no assignment to . [M] abbreviates (M :: []).

Syntax of cut-free terms

Ms 0| (M ::Ms)
M == (x;Ms) | e M

Syntax of cut-free terms [Herbelin’s notation]

I == [ | =21
t = (z0) | (Azd)



Logical/ Typing rules
= M:A T - Ms:C

FZBB (M :: Ms): C

SD Az

r-—1:4

F’I:A_Z_}MS:B Sel z:A=>M:B R
Iz: A= (z;Ms):B ¢ T= e M:ADB '~

We explain the meaning of the two kinds of judgment as follows, restricting for
simplicity to the cut-free case. T'= M : B can (of course) be interpreted as “M
has an interpretation as a normal natural deduction proof of B from the assumptions
declared in T'”; similarly T' - M s : B should be interpreted as “M s is interpretable
as a list of normal natural deductions, all using assumptions declared in T', occurring
as minor premisses on a chain of D —elim steps starting from the assumption A and
ending with the conclusion B”.

Syntax of cut terms (type information is omitted in the type-free case)

Ms = cut{f(Ms,Ms) | cuty(M,z.Ms)
M = cuti(M,Ms) | cuty(M,z.M)

Syntax of cut terms [Herbelin’s notation]

I o= (al) | lz:=1]
t o= (t) | (t[z:=1])

Logical/Typing rules for Cuts

F—— Ms:A T'— Ms':C I'=M:A The:A-— Ms:C
B A B
A ! CUtl A Cutz
[ == cutf (Ms, Ms') : C [ = cuty(M,z.Ms) : C
= M:A F‘;,*MSIBCM P=M:A Ta:A=M:B
[ = cutfy(M,Ms) : B e [ = cuty(M,z.M') : B h

Restricted to the special case where its arguments are just term lists, cut; is an
explicit “append” operator; cut4 is an explicit substitution operator which might be
written as in M'[z := M]; cuts is similarly an explicit substitution operator which
might be written as in Ms[z := M]; and cuts can be regarded as an explicit “gen-
eralised application” operator, an explicit version of what we will later write as in
{M}Ms. They are, in other words, explicit versions of four functions we will use
later when defining implicit substitution on the terms of the calculus: for details, see
section 5.

Rules for cut-reduction
Let AO denote the system of “auxiliary operation” rules 1, 3,5(a), 5(¢c) on terms, and
ES the system of “explicit substitution” rules 2,4, 5(b), 5(d) on terms:
1. (a) cuti([], Ms) ~ Ms
(b) cut (M :: Ms), Ms') ~ (M :: cutft(Ms, Ms'))



2. (a) cufé’(M z. [) ~ ]
(b) cutd (M, z.(M' :: Ms)) ~ (cuty (M, z.M') :: cutf (M, z.Ms))
3. (a) (‘ufé'((m Ms), Ms') ~ (x; cut{(Ms, Ms'))
(b) cuts (Ay.M,[]) ~ Ay.M
4. (a) cuti(M,z.(y; Ms)) ~ (y;cutd (M, z.Ms)) (y # )
(b) cutd (M, x.(x; Ms)) ~ cuty (M, cuts (M, z.Ms))
(c) cutd (M, y.M') ~ Ay.cuty (M, z.M')
5. (a) cutf(cut? (Ms, Ms'), Ms") ~ cut?(Ms, cuti! (Ms', Ms"))
(b) cuts (M, z.cut? (Ms, Ms')) ~ cut®? (cuts (M, z.Ms), cutd (M, z.Ms'))
(c) cuts (cut? (M, Ms), Ms') ~ cutB (M, cut{ (Ms, Ms'))
)

cut{ (M, z.cutB (M', Ms)) ~ cutB (cut (M, z.M"), cutd (M, z. Ms))

The last of all these rules, 5(d), is the one mentioned in the introduction as the proper

propagation of an explicit substitution, e.g. inside a “beta-redex”. Rules 5(a)...(c)

are added to ensure confluence once that rule is added. We allow rule applications

inside terms, i.e. we in fact consider the contextual closures of all rules, as usual.
We need to consider one further rule, deliberately omitted from group 3:

B C1Lt§433()\1:.]\/[, (M' 2 Ms)) ~ cut® (cut (M’ x. M), Ms)

which generates a cut4-instance; to simulate ordinary beta-reduction, this may need
to propagate into its body M ; the latter may be a cutz-term, hence the utility of rule
5(d), and so on.

Herbelin [12] showed that a system of rules, essentially (1...4+4 B) with different
terminology, is complete, confluent and (for typed terms) strongly normalising. Note
that the rules in 5 are NOT required for completeness: without them, a strategy that
(more or less) ignores cuts whose arguments are cuts is imposed.

A simpler (but less direct) proof of his SN theorem using the multiset path ordering
theorem is given in [7]; the termination comes from the ordering of all the cut operators
as greater than the non-cut operators, with cut? > cut® for A > B and with cuty =
cuty > cutz = cuty for cut operators with the same type annotation.

The addition of any of the rules in 5 breaks both of these proofs, because of the
switching of the types.

Note that there are no rules allowing permutation of cuts or cuts operators with
cuty or cuty operators.

Routinely, “Subject Reduction” holds for all these reduction rules; thus, all the
results (e.g. confluence) that we state or prove for untyped terms hold also for the
typed terms.

3 Pure Terms
There are two obvious (and in fact equivalent) candidates for the class of terms that

we will use to interpret lambda terms: those free of (AO + ES)-redexes and those
free of all instances (other than B-redexes) of cut.



Definition 1 ((AO + ES)-normality; purity)

1. A term is (AO + ES)-normal iff it is free of all (AO + ES)-redexes;

2. A term is pure iff it is free of all instances (other than B-redexes) of cut.

By induction, (AO + ES)-normal terms Ms are of the form [] or M :: Ms'. Pure
terms are (AO + ES)-normal, since all (AO 4+ ES)-redexes are instances of cut; but
the converse also holds:

Proposition 2 (AO + ES)-normal terms Ms, M are pure.

Proof The Ms case depends just on the M case. We proceed by induction and case
analysis; we show that if an (AO 4+ ES)-normal term M is an instance of cut, then it
is a redex; our inductive hypothesis is that all smaller (AO + ES)-normal terms are
pure. Consider the cases for M an instance of cut:

1. cuts((x; Ms) Ms) is a 3(a)-redex;

2. cuty(Az.M',[]) is a 3(b)-redex;

3. cutg(Ax. M’ (M" :: Ms)) is a B-redex;
4. cutg(cuts(M', Ms), Ms') is a 5(c)-redex;

5. cutg(cuty(M', &.M"), Ms) is not allowed, since (by inductive hypothesis) the
term cut,(M', x.M") is pure, contrary to its being a (non B-redex) cut-term;

6. cuty(M', x.(z; Ms)) is a 4(a) or 4(b)-redex;

-1

(
ceuty,(M' 2 Ay.M") is a 4(c)-redex;

8. cut,(M', z.cuts(M", Ms)) is a 5(d)-redex;

9. cuty, (M’ z.cut,(M" y.M"")) is not allowed, for the same reason as in (5) above.

It follows that the (A0 + ES)-normal (i.e. pure) terms M are of the form (y; Ms),
Ax.M' or cutg(Ay.M', (M" :: Ms)).

Definition 3 (Implicit substitution; concatenation; generalised application)
For pure terms Ms, Ms', M, M’, and for the variable x, we define by simultaneous in-
duction on the structure of Ms (resp. Ms, resp. M, resp. M')

1. The concatenation' Ms@QMs' of Ms with Ms';

2. The implicit substitution [M /x]Ms of M for z in Ms;
3. The generalised application {M } Ms of M to Ms;

4. The implicit substitution [M/2]M’ of M for z in M’.

I This is just the usual concatenation of lists, included here for completeness.



as follows:

[[@Ms' =
(M" :: Ms")@Ms' 2 (M" :: (Ms"@Ms'"))
M) £
[M/2z](M" :: Ms") = ([M/2)M" :: [M/z]Ms")
{(y; Ms")} Ms 2 (y; (Ms"@Ms))
Dy MY 2 agMm”
{QAy. M"Y (M 2 Ms") = cuts(Ay.M", (M"" 2 Ms"))
{euts(Ay. M, (M" :: Ms'))} Ms 2 cutg(Ay. M", (M :: (Ms"@Ms)))
[M/x)(y: Ms") 2 ( [M/2)MS") (y # )
(M/a)(e; Ms) & (MY[M /)M
[M/2)(0\y.M") 2 Ay [M/z]M"
(M/x]euts(Ay.M", (M" . Ms")) £ cutg(Ay. [M/x]M", ([M/x)M"" . [M]x]Ms")).

Note that the mutual induction is straightforward; first, concatenation is well-
defined (as usual); second, generalised application has a definition depending only
on concatenation; finally, the two forms of implicit substitution depend on simpler
instances of themselves and of each other and on instances of generalised application.

4 Strong Normalisation and Confluence of AO+ ES

Proposition 4 The system AO + ES is strongly normalising (SN).

Proof A lexicographic path order suffices, completely ignoring all the type informa-
tion, with the cuts = cuty operators equal, and greater than cuty; = cutz, and with
all cut operators greater than the non-cut operators. We rely throughout on the ex-
position of the lexicographic path order given in [1], with its extra condition LPO-1,
rather than that in [2]. For an alternative proof, avoiding the implicit need either to
translate into a first-order system or to use the theory of termination in higher-order
rewrite systems, we may just use a polynomial interpretation, see Appendix A of [8].
However, our ‘proof’ using the LPO method seems to be more enlightening.

Proposition 5 The system AO + ES is confluent.

Proof By Proposition 4, it suffices to check the local confluence; for details see
Appendix B of [8], bearing in mind the need to appeal to Newman’s Lemma (which
holds for arbitrary reduction relations) and (e.g.) to a Critical Pair Lemma (e.g. that

in [16]).



Definition 6 For a term Ms or M, its purification is its (AO + ES)-normal form,
written Ms (resp. M).

Lemma 7 If M ~%,, pe M', then M = M. (Similarly for Ms.)
Proof Trivial.

Proposition 8 Let M, M', Ms, Ms' be pure terms. Then

L cuty(Ms,Ms') ~%o,ps MsQMs';
2. cuty(M,xz.Ms) ~%orps [M/x]Ms;
3. cuty(M,Ms)  ~%oyps {M}Ms;

4. cuty(M,x.M')  ~%oyps [M/z]M'.

Proof The first part is trivial; the third part is proved by induction; the remaining
two parts are proved by a simultaneous induction on the heights of the LHS terms.
For details see Appendix C of [8].

The above may be regarded as a weak normalisation result (for AO + ES), since
we may use it to purify any innermost (non-B)-redex, repeating this operation until
all such redexes are eliminated.

5 Lambda Calculus

We give two equivalent versions of the lambda calculus; first, the standard one and,
second, one very similar to the Herbelin notation but found also in [14].
First, lambda terms N are defined by the grammar

N == z|(Az.N)|(NN)
Second, lambda terms J and lists Js of lambda terms are defined by the grammar

J (z Js) | (Az.J) | (Az.J)J Js)
Js =[] (J  Js)

in which, if we omit the last production for J, we get just the normal terms. Note that,
for example, a term of the form ((Az.J)J'Js) is NOT the term list ((Az.J) = (J' =2 Js));
it is a term. The structure of this inductive definition is intended to make certain
parts of the normalisation proof in [14] easy.

The equivalence between the two notations is routinely shown using the translation
(.)° : N — J and the auxiliary function (.)°® : N x Js — J defined as follows:
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No definition of substitution is given in [14]; essentially, the translation to standard
notation is used, then the standard definition is used, then one translates back. We
remedy this minor oversight as follows:

We define implicit substitution [J/z]Js of J for z in Js (and similarly for substi-
tution in J’') as follows, by induction on the structure of Js (resp. J'); we need an
auxiliary definition of a term {J}.Js, by induction on the structure of J (and a sub-
sidiary induction in one case on Js), to apply the term J to the list Js of arguments
in the usual way (this is not the construction of a list, but of a term):

/2l 2
[J/2)(J' = Js) 2 ([J/a)T" [T/ x)Js)
{(y Js')} s 2 (y (Js'@Js))
QeI = (wd)
(Qw ) 2 ds) 2 (M) Js)
{(Oy )T TS 2 (Ayd)T (Js@Js'))
/el Js) = (y[J/2lJs) (y# )
[J/z](z Js) 2 {J}J/x]Js
/200’ 2 (wld/2)))
[J/2)(hy.J)T"Js) 2 (gl T/l (7)) [T /2] Js))

where @ 1is for the standard function that concatenates two lists.

Termination of this definition is as in the previous section. The equivalence be-
tween this definition and the usual definition of substitution (with the usual notation)
is a tedious exercise.

B-reduction is thus the reduction of a term by careful replacement of a subterm

(the g-redez) of the form ((Az.J)J'Js) by the reduct {[J'/«]J}Js in a single step.

Proposition 9 For A-terms J and term lists Js', Js”, the following holds:
(I} = (T} (5 @)

Proof Routine induction on the size of J and case analysis, using associativity of

@.

6 Interpretation of Lambda Calculus

We give two equivalent interpretations of the lambda calculus, in each case using only
the pure terms. The first (.)* uses the traditional presentation of the lambda calculus;
the second (.)* uses that from [14] outlined above.



Definition 10 [Interpretation 1] We define the interpretation (.)* of A-terms N as
the pure terms of the form M, as follows:

@ £ (@)
Az Ny 2 (Az.N%)
(NN* 2 Cuty (N5, [N7])

By Proposition 8, we may rephrase the last clause as

(NN'y* 2 {N*}N%],

Definition 11 [Interpretation 2] We define the interpretations (.)* of A-terms J as
the pure terms of the form M and (.)*® of term-lists Js as the pure terms of the form
Ms, as follows:

(x Js)* = (x; Js**)
AeJ)* 2 (Ax.JY)
((Az.J)J'Js)* = cutg(Az.J®, (J'* :: Js**))
I

(J :: Js)** (J® i Js**)

Proposition 12 For A-terms J, J' and term lists Js, Js', the following hold:

1. (Js@Js')** = Js**@Js'**;
2. ([J/2]Js)** = [J* /] Js**;
3. ({J}Js)* = {J*}Js*;

4. ([J/2)T)® = [J* ],

Proof Routine.

Lemma 13

(N, Js)°® = {N®}Js

Proof By induction on the size of N and cases; application terms are handled by
Proposition 9.

Lemma 14

((N, JS)OO)o — {N<>°}Js"
Proof By Proposition 8 and Lemma 13.

Lemma 15

((N, N'© JS)OO). = {N0°}(N’<>° i Js*?)



Proof By instantiating Lemma 14 and using the last clause of the definition of (.)**

Corollary 16
(N, [N"°])°)* = {NO*}[N"e*]

Proposition 17 The two interpretations of the lambda calculus are the same, i.e.
for every term N, N®® = N*.

Proof By induction on the size of N and case analysis:
La®= (D)) =D = 0" =(0=
2. (A2.N)®* = ((Az.N),[)°°)* = (Az.N'©)* = (Az.N'®*) = (Az.N"*) = (\z.N')*

3. (N/N//)Oo — ((( N“) [])<><>) ((NI [N//O])OO)o — {NIOo}[N//Oo]
_ {N'*}[N”*] _ (N'N”)

in which all equations are definitional or inductive, except for one appeal to Corol-
lary 16.

7 Simulation of g-reduction
Proposition 18 For pure terms M, M’ and Ms,

cuty(cuty (M, 2. M), Ms) ~% o, ps {{M'/z]M} Ms.
Proof By Proposition 8.

Theorem 19 If J; ~+3 Jo in the A-calculus, then J? reduces to J3 by a B-reduction
followed by 0 or more (AO + ES) reductions.

Proof Consider first the case where J; is the f-redex, and so of the form ((Az..J)J' Js),
for terms J, J' and term list Js. Thus, Jo = {[J'/z]J}Js. By Proposition 18, the
reduct

cutg(cut, (J'*, z.J*), Js**)

of the B-redex J} = cutg(Az.J*, (J'* :: Js**)) is (AO+ES)-reducible to {[J'*/z]J* } Js**.
By Proposition 12, this is just J3. The general case, where the reduction is not at
the root position of Ji, follows by induction on the structure of Ji.

In other words, the system (AO + ES + B) of rules acting on the untyped terms
stmulates B-reduction of the untyped A-calculus; similarly for typed terms and the
typed A-calculus.

8 [(-reduction

We may now define a rule 8 on pure terms, typed or untyped, omitting the types in
the latter case, as the contextual closure of the following rule:

I3 cut{ 2B Az M, M’ :: Ms) ~g cutB(cuty (M, x. M), Ms)

10



Note that, in the untyped case, the RHS of this is, by Proposition 18, just
{[M'/z]M}Ms. The correspondence between pure untyped terms and the terms
of the untyped A-calculus routinely extends to G-reduction.

Thus, a f-reduction is a single B-reduction followed by purification, i.e. zero or
more (AO + ES)-reductions to normal form.

Proposition 20 The system, on pure typed terms, consisting just of the rule /3 is
SN.

Proof Use, for example, the proof, in different notation, in [14].

If we had a direct proof of Proposition 20, then we would have shown the strong
normalisation of the simply-typed A-calculus.

Definition 21 For any term M, we define [|M|| to be the maximal length of all
B-reduction sequences from M if the latter is 8-SN; otherwise we define || M || = co.
(Similarly for Ms.)

Corollary 22 For every typed term M, we have || M || < co. (Similarly for Ms.)
Proof By Proposition 20 and Konig’s Lemma.

Lemma 23 For pure terms M, Ms, M', M", Ms', with M ~7% M' and Ms ~} Ms’,
we have

1. {M}Ms ~5  {M'}Ms;
2. {M}Ms  ~75  {M}Ms';
3. [M/z]Ms ~%  [M'[z]Ms;
4. [M/z]Ms ~} [M/x]Ms';
5. [M/z]M" ~%  [M'[z]M";
6. [M"/2]M ~5 [M"[z]M".

Proof These follow from consideration of the untyped A-calculus: for example, sub-
stitution into a f-redex leaves it as a G-redex.

Lemma 24 For pure terms M, M', Ms with M ~»3 M’ we have {M } Ms ~5 {M'}Ms.

Proof By induction on the definition of {.}. (generalised application). The essential
idea is that any f-redex in M is still a f-redex in {M } Ms, even though M may well
not be a subterm of { M} Ms.

9 Adding B-reduction

We will show that the addition of the B-rule upsets neither confluence nor, provided
we stick at least to (e.g.) typed terms, termination. A key ingredient in both of
these proofs is the Projection Lemma, i.e. that a root B-reduction translates (under
purification) to exactly one @-reduction.

Lemma 25 cutg(Az. M, (M’ :: Ms)) ~g cutg(cut,(M', . M), Ms).

11



Proof The LHS = cuty(Az.M, (M’ :: Ms)), the latter (as a B-redex) being pure;

this B-reduces to the term cutg(cut,(M’,z.M), Ms). By Lemma 7, this equals the
RHS.

Lemma 26 (Projection Lemma) If M ~5 M’ at the root position, then M ~»5 M.
Proof Apart from the names of variables, this is just a restatement of Lemma 25.
Corollary 27 For terms M, M', Ms, we have (if the RH S < 00)

[|cutg(Az. M, (M’ 2 Ms))|| > || cuts(cut, (M’ z. M), Ms)||.

We also need to know that an arbitrary B-reduction translates, after purification,
to zero or more fB-reductions.

Proposition 28 The following hold:
1. If Ms ~sg Ms', then %«»g Ms';
2.t M ~p M, thenM'\» M.

Proof By simultaneous inductions on the size of Ms or M, and case analysis:

1. (a) M : trivial;
(b) Ms = (M Ms"): routine use of inductive hypothesis;
(c) Ms = cut,(Ms", Ms'""): similar to the first two parts of case 2(c) below.
(d) Ms = cuto(M" 2. Ms'""): similar to the case 2(d) below.
2. (a) M = Xz.M": routine;
(b) M = (z; Ms"): routine;
() M = cuty(M", Ms"): there are three cases:

i. the B-reduction is of M to M'"": by inductive hypothesis, M/’ ~% M
whence, by Lemma 23 (1), {M"} Ms" ~5 {M"'}Ms". Now,

cuty(M", Ms'") = cuty(M", Ms'") = {M""} Ms"

by Lemma 7 and Proposition 8 (3) respectively; and similarly

cuts(M"', Ms") = cutz(M"', Ms'") = {M'""} Ms"

whence M 'v> M.
ii. the B—reductlon is of Ms" to Ms'': similar, using Lemma 23 (2).

iii. the B-reduction is at the root of M: we use the Projection Lemma.

(d) M = cut,(M" 2. M""): there are two cases, dealt with as in (c), using
Lemma 23 (5) and (6).

It is now easy to show that the system (AO + ES + B) is confluent, using the
confluence of B-reduction in the A-calculus.

12



Theorem 29 The system (AO + ES + B) is confluent.

Proof Suppose that M ~% 5. psyp M1 and M ~% 5. g5, p Ma. Then, by Lemma
7 and Proposition 28, both M «»E My and M ME M, whence, by confluence of
B-reduction in the A-calculus, for some (pure) term M° we have M, «»;‘3 M?° and
My ~% M°. But then, both M; '\”;10+E5+B M?° and also M, "”ZO+ES+B Me°.
(Similarly for Ms.)

10 Strong Normalisation

Definition 30 (Bounded terms) A term M (or Ms) is bounded iff for every sub-
term M’ or Ms' thereof, || M'|| < oo (resp. || Ms'|| < o0).

Proposition 31 (Boundedness)
1. Every typed term is bounded;
2. Every (AO + ES + B)-SN term is bounded;

3. For pure terms, 8-SN is equivalent to “bounded”.

Proof We consider the three parts in order:

1. Trivial, since every subterm of a typed term is typed and the purification of a
typed term is typed, and (by Proposition 20) every pure typed term is G-SN.

2. Consider a subterm M of an (AO+ ES + B)-SN term; it also is (AO+ ES + B)-
SN and so is its purification M. But then any infinite sequence of B-reductions
from M can be seen, by Corollary 18, as a sequence of (AO+ FES+ B)-reductions,
including infinitely many B-reductions. (Similarly for subterms Ms.)

3. Pure B-SN terms are bounded, since, for every subterm M of such a term, M
is pure and $-SN; so M (= M) is -SN (and similarly for subterms Ms). The

converse 1s even more trivial.

Our aim now is to prove Theorem 39, i.e. the converse of part (2) of Proposition

31
Lemma 32 For all terms M, M', Ms, Ms':
1. ¥ M ~ 40485 M' then || M| = || M'|;
2. If Ms ~a04+rs Ms' then || Ms|| = || Ms'||;
3. If M ~p M' then | M| > || M'|];
4. If Ms ~>p Ms' then || Ms|| > || Ms'||.

Proof The first part is trivial, since M = M’; the second part is similar. The other
two parts use Proposition 28.
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Definition 33 (Cosy occurrence; cosy embedding) An occurrence of a proper
subterm in a term is cosy iff no cuty or cuty constructors intervene on the path to the
root, apart from a possible occurrence at the subterm itself. A term is cosily embedded
mn a term iff it has a cosy occurrence in the latter term.

For example, in a term of the form cut, (cuty(M, x.Ms), cuty(M, x.Ms')), the two
cuty subterms are the only cosily embedded proper subterms; and in a term of the
form cuty (M, x.Ms), no proper subterms are cosily embedded.

Lemma 34 For all terms M, Ms, Ms':
L (a) || = Ms) | > || M
(b) [[(M =2 Ms) || = [| Ms|];
2. (& Ms) || = || Ms ]
3. [[Ae M| = M];

4. (a) [Jeut;(Ms, Ms")[| = || Ms|[;
(b) [leut,(Ms, Ms') || > [| Ms'|[;

5. |leuts(M, Ms)|| > [| M ||;
6. | cuts(M, Ms)|| > || Ms||.

Proof 1. Because (M :: Ms) = (M :: Ms);
2. Because m = (z; Ms);
3. Because \z.M = \z.M;
4. Because, by Proposition 8 (1), W = Ms@QMs';

5. Since cuty(M, Ms) = cuty(M, Ms) and || M || = || M ||, we may, without loss of
generality, assume that the terms M and Ms are pure; we now just appeal to
Lemma 24.

6. Without loss of generality, for the same reason as in (5), M and Ms may be
assumed to be pure. If Ms = [], then the result is trivial. Otherwise, we argue
by induction on the size of M and case analysis. Consider the possible forms of

M:

(a) M = (x; Ms"), whence by rule 3(a) it suffices to observe that
| o5 M @A) | = || M|+ | Ms

b) M = Xx.M'; so cut;(M,Ms) is pure and has Ms as a sub-term, whence
3
| cutg(M, Ms) || > [| Ms|[;

(c) M = cuty(M', Ms"); so, by rule 5(c), cuts(M, Ms) = cuts(M', Ms"@QMs)
and, by inductive hypothesis, ||cuts(M', Ms"@Ms)|| > ||Ms"@QMs| >
[| Ms]|.

14



Corollary 35 If a term M is cosily embedded in M’ then ||[M]| < ||M’||, and
similarly for other combinations such as M cosily embedded in Ms, etc.

Proof By the lemma, using induction on the number of constructors between the
subterm and the term.

On the other hand, whenever || M || > 0, we have
| M| £ |leuty(M,2.[))[| = 0

and

[ M| £ || cuts(M, 2. Xy.(y; ) || = 0.
Corollary 36 We have the following:

1. For each of the (AO + ES)-reduction rules L ~ R, and for each non-variable
subterm S of R, and instantiation 6 of the variables in the rule, we have || L? || >

[15° 115

2. For the B-reduction rule L ~» R, and for each non-variable subterm S of R, and
instantiation @ of the variables in the rule, we have || L? || > ||.S? ||, the inequality
being strict if either side is finite.

Proof 1. By Lemma 32 (1 or 2), we have ||L?|| = ||R?||. Tt now suffices to
note that, for each rule I ~» R, each non-variable proper subterm of R is cosily
embedded.

2. By Lemma 26, assuming || L? || < oo, we have || L?|| > || R?||; as before, the only
non-variable proper sub-term S of R is cosily embedded.

This corollary is the crux of the present paper: it gives us information about the
(AO+ ES+ B) rules that will be exploited when we show that the rules are decreasing
w.r.t. a suitably chosen ordering. Note that the above corollary tells us just about
reductions at the root position; for reductions at non-root positions, it says nothing.

Corollary 37 Bounded terms are closed under (AO + ES 4 B)-reduction.

Proof Let M be bounded and let R be a rule in (AO+ES+B) such that M ~gr M’.
Consider a subterm M" of M'; we must show that || M"|| < co. Comparing the
position of M in M’ to that of the reduct, we find three cases:

1. The reduct occurs as a subterm of M”; so we can pull M” back to a subterm
M* of M, with M* ~» M". Since M is bounded, || M*|| < co. By Lemma 32,
| M7} < oo

2. The reduct has M" as a proper subterm, and M’ is obtained by instantiation of
a variable in the rule R; thus already M" is a subterm of M, which is bounded,
so || M"]] < oo.

3. The reduct has M" as a proper subterm, and M" is obtained by instantiation
of a non-variable subterm of the RHS of the rule R; by Corollary 36, || M"|| <
[| M*|| for some term M* which is in fact a subterm of M, so ||M"|| < oo.
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We now consider the bounded cut terms superfixed not, as before, with types
but with, for each such term M, the natural number || M || (and similarly for terms
Ms). We again order the cut operators by cut” > cut™ for n > m, use the suffices
(4 =2 > 3 = 1) as before for ordering cut operators with the same superfix, and
order all cut operators as greater than all non-cut operators. There are now infinitely
many operators; but for a given bounded term, with only finitely many cut sub-terms,
we can compute an upper bound for all their superfixes; by Corollary 36, this bound
suffices for all terms reachable from the term by any of the reduction rules, so we can
w.l.o.g. assume that our signature is finite, as required for use of the fact that the
lexicographic path ordering generated below is a simplification ordering and thus is
well-founded.

From this ordering on this (finite) signature we generate the lexicographic path
ordering “>71,po” on all terms. As in [2], we can avoid the problem of the LPO tech-
niques not being applicable to higher-order systems by translation into a terminating
(but non-confluent) intermediate system where the bound variables are omitted. How-
ever in order not to obscure our argument, we will not give this translation, but rather
apply the LPO techniques directly to our higher-order system.

Proposition 38 If M’ is a bounded term and M’ ~404rs+ M", then M’ >1po
M". (Similarly for Ms.)

Proof Tt suffices to consider only reductions at root position, since >1po is closed
under contextual closure. In fact, the previous proof (of Proposition 4) for (AO+ ES)
now works almost unchanged. We consider the rule B in order to illustrate the
method: let

M' = cut§ (Az. M, (M"" :: Ms)) ~p cuth(cuti(M" z.M), Ms) = M"

be an instance of rule B. By Corollary 27, we have m > r; similarly m > s by this
and by Corollary 36 (2). Then, since m > r, we just need to compare M’ with the
two main subterms of M. That M’ >ppo cuti(M"', x.M) follows because m > s
and M M are variables properly occurring in M'; that M’ >y po Ms is trivial, the
latter being a variable properly occurring in M’. It follows that M’ >7po M".

Theorem 39 Every bounded term is (A0 + ES + B)-SN.
Proof By the well-foundedness of >1po and Proposition 38.
Corollary 40 Every typed term is (AO + ES + B)-SN.
Proof By Proposition 31 (1) and the above theorem.

(This answers Herbelin’s question.)

Corollary 41 The calculus of terms Ms, M with the (AO 4+ ES + B)-reduction rules
preserves strong normalisation w.r.t. the calculus of pure terms under f-reduction.
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11 Comments

Our cut-reductions 5(c), 5(d) for Herbelin’s explicit substitution calculus already
appeared, in different notation, as the rules A22 and A44 in Espirito Santo’s [9]; this
paper inter alia

1. establishes a 1-1 correspondence, concerning both terms and reductions, be-
tween the lambda calculus and his calculus Ay of terms (similar to our calculus
of pure terms);

2. shows that Ay can be extended to a calculus )\}_} of terms which, in our notation,
have no instances of cut; and cuts. These two operators are treated as defined
functions; our category of terms Ms can thus be replaced by that of term lists.
This corresponds to a certain strategy of reducing cuty and cuts terms to terms
normal w.r.t. our rules 1 and 2; our rules 5(a) and 5(b) are then superfluous.
Moreover, cutz and cutq terms are, following a reduction step, dealt with im-
mediately by auxiliary functions, defined by equations, rather than by use of
explicit operations.

However, the issue of whether B-reductions can be combined in an arbitrary fashion
with (AO + ES)-reductions is not addressed; this appears to us to be the main issue
raised by Herbelin’s paper, with its emphasis on explicit concatenations and explicit
substitutions. We gratefully acknowledge José Espirito Santo’s helpful comments
illuminating the content of his paper. Further details of his work are in his thesis [10].

Vestergaard and Wells [21] have considered explicit substitution calculi based on
Gentzen’s L-systems, with de Bruijn indices rather than variable names and with
“weak correspondences” with some known explicit substitution calculi. Their calculi
are not powerful enough to simulate g-reduction; in fact, their results are that some
existing explicit substitution calculi (modified slightly) can simulate their new calculi
rather than wvice-versa.

It would be interesting to have a direct strong normalisation proof for the above
calculus (with rules (AO + ES 4+ B)) and to compare it with those for the simply-
typed A-calculus of [14, 18]. Such a proof might, for example, use the reducibility
method of Tait and Girard; indeed, such a proof is available for a more complex
calculus, the Apfi-calculus of Herbelin [13]. Herbelin (private commmunication, March
2001) conjectured that our SN result for (AO + ES + B) also follows from his SN
result in the paper just cited, mentioning however that a similar conjecture for the
strong normalisability of Parigot’s Ap-calculus turned out to be mistaken. We have
no opinion on this conjecture; in any case, it is good to have a more elementary proof.

Herbelin’s calculus also appears in the work of Cervesato and Pfenning [4], in the
guise of a “spine calculus”; no theory of explicit substitutions therein appears to have
been worked out, although some implementation of such substitutions is apparently
in the Twelf implementation. We thank Tliano Cervesato for bringing this report to
our attention.

There are of course issues in the explicit substitution world that are not addressed
by the above, such as the questions of optimality, of sharing and of confluence on open
terms. We make no claims about superiority of the system (AO + ES+ B) over other
explicit substitution calculi; we remark merely that it has a simple proof-theoretic
pedigree.
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Appendix D of [8] shows that our calculus simulates the Ax-calculus [3], in the
weak sense that every reduction of the latter translates to one or more reductions in
our system, thus (with some minor extra effort) proving SN for the typed fragment of
Ax. As seen above, in the case of the ordinary A-calculus, there is a stronger sense in
which one might simulate such a system, in order to prove preservation of strong nor-
malisation for the simulated system. We have however not been able to identify a class
of “weakly pure” terms of our calculus (and appropriate reductions thereon) to match
the Ax terms and reductions in the same way that the “pure” terms (and $-reduction)
match the ordinary terms (and f-reduction) of the A-calculus. The stumbling block
is (again) the need to push an explicit substitution into an application term; consider
(e.g.) the translated term cut,(N*, z.cuts(N'*,[N"*])) where the * superscript indi-
cates the translation and the overbar denotes a notion of “weak purification” extend-

ing the notion of purification as applied to the translates of substitution-free A-terms.
The obvious candidate reduction is by 5(d) to cuts(cut,(N*, z.N"™), cut,(N*, 2. N'"*)),
but the weak purification in the LHS prevents this, typically merging the term N'*
with the list [N""*] (whereas in the reduct they are separate).

On the other hand, [13] reports the simulation of Ax in the Aufi-calculus; further
work is therefore required to clarify this issue.

Finally, not so much as an afterthought but as a reference back to earlier work [6]
relating Herbelin’s cut-free calculus to proof search, we mention again our interest in
the discrepancy between calculi organised for logic programming, i.e. for cut-free proof
search, and those organised for functional programming, i.e. for proof normalisation.
The work in the present paper is intended to narrow the gap between the two kinds
of calculi; but issues like confluence on open terms have yet to be addressed before
the gap may be regarded as satisfactorily closed.
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