
A Formalisation of the Myhill-Nerode Theorem
based on Regular Expressions (Proof Pearl)

Chunhan Wu1, Xingyuan Zhang1, and Christian Urban2

1 PLA University of Science and Technology, China
2 TU Munich, Germany

Abstract. There are numerous textbooks on regular languages. Nearly all of
them introduce the subject by describing finite automata and only mentioning
on the side a connection with regular expressions. Unfortunately, automata are
difficult to formalise in HOL-based theorem provers. The reason is that they need
to be represented as graphs, matrices or functions, none of which are inductive
datatypes. Also convenient operations for disjoint unions of graphs and func-
tions are not easily formalisiable in HOL. In contrast, regular expressions can
be defined conveniently as a datatype and a corresponding reasoning infrastruc-
ture comes for free. We show in this paper that a central result from formal lan-
guage theory—the Myhill-Nerode theorem—can be recreated using only regular
expressions.

1 Introduction

Regular languages are an important and well-understood subject in Computer Science,
with many beautiful theorems and many useful algorithms. There is a wide range of
textbooks on this subject, many of which are aimed at students and contain very detailed
‘pencil-and-paper’ proofs (e.g. [7]). It seems natural to exercise theorem provers by
formalising the theorems and by verifying formally the algorithms.

There is however a problem: the typical approach to regular languages is to intro-
duce finite automata and then define everything in terms of them. For example, a regular
language is normally defined as one whose strings are recognised by a finite determin-
istic automaton. This approach has many benefits. Among them is the fact that it is easy
to convince oneself that regular languages are closed under complementation: one just
has to exchange the accepting and non-accepting states in the corresponding automaton
to obtain an automaton for the complement language. The problem, however, lies with
formalising such reasoning in a HOL-based theorem prover, in our case Isabelle/HOL.
Automata are built up from states and transitions that need to be represented as graphs,
matrices or functions, none of which can be defined as an inductive datatype.

In case of graphs and matrices, this means we have to build our own reasoning in-
frastructure for them, as neither Isabelle/HOL nor HOL4 nor HOLlight support them
with libraries. Even worse, reasoning about graphs and matrices can be a real hassle
in HOL-based theorem provers. Consider for example the operation of sequencing two
automata, say A1 and A2, by connecting the accepting states of A1 to the initial state of
A2:

A1 A2 ⇒ A1 A2

2 Chunhan Wu, Xingyuan Zhang, and Christian Urban

On ‘paper’ we can define the corresponding graph in terms of the disjoint union of the
state nodes. Unfortunately in HOL, the standard definition for disjoint union, namely

A1] A2
def
= {(1, x) | x ∈ A1} ∪ {(2, y) | y ∈ A2} (1)

changes the type—the disjoint union is not a set, but a set of pairs. Using this definition
for disjoint union means we do not have a single type for automata and hence will not be
able to state certain properties about all automata, since there is no type quantification
available in HOL (unlike in Coq, for example). An alternative, which provides us with
a single type for automata, is to give every state node an identity, for example a natural
number, and then be careful to rename these identities apart whenever connecting two
automata. This results in clunky proofs establishing that properties are invariant under
renaming. Similarly, connecting two automata represented as matrices results in very
adhoc constructions, which are not pleasant to reason about.

Functions are much better supported in Isabelle/HOL, but they still lead to similar
problems as with graphs. Composing, for example, two non-deterministic automata in
parallel requires also the formalisation of disjoint unions. Nipkow [9] dismisses for this
the option of using identities, because it leads according to him to “messy proofs”. He
opts for a variant of (1) using bit lists, but writes

“All lemmas appear obvious given a picture of the composition of au-
tomata. . . Yet their proofs require a painful amount of detail.”

and

“If the reader finds the above treatment in terms of bit lists revoltingly con-
crete, I cannot disagree. A more abstract approach is clearly desirable.”

Moreover, it is not so clear how to conveniently impose a finiteness condition upon
functions in order to represent finite automata. The best is probably to resort to more
advanced reasoning frameworks, such as locales or type classes, which are not available
in all HOL-based theorem provers.

Because of these problems to do with representing automata, there seems to be no
substantial formalisation of automata theory and regular languages carried out in HOL-
based theorem provers. Nipkow [9] establishes the link between regular expressions and
automata in the context of lexing. Berghofer and Reiter [2] formalise automata working
over bit strings in the context of Presburger arithmetic. The only larger formalisations
of automata theory are carried out in Nuprl [4] and in Coq [5].

In this paper, we will not attempt to formalise automata theory in Isabelle/HOL, but
take a different approach to regular languages. Instead of defining a regular language
as one where there exists an automaton that recognises all strings of the language, we
define a regular language as:

Definition 1. A language A is regular, provided there is a regular expression that matches
all strings of A.

The reason is that regular expressions, unlike graphs, matrices and functions, can be
easily defined as inductive datatype. Consequently a corresponding reasoning infras-
tructure comes for free. This has recently been exploited in HOL4 with a formalisa-
tion of regular expression matching based on derivatives [11] and with an equivalence

Myhill-Nerode using Regular Expressions 3

checker for regular expressions in Isabelle/HOL [8]. The purpose of this paper is to
show that a central result about regular languages—the Myhill-Nerode theorem—can
be recreated by only using regular expressions. This theorem gives necessary and suffi-
cient conditions for when a language is regular. As a corollary of this theorem we can
easily establish the usual closure properties, including complementation, for regular
languages.

Contributions: There is an extensive literature on regular languages. To our best knowl-
edge, our proof of the Myhill-Nerode theorem is the first that is based on regular ex-
pressions, only. We prove the part of this theorem stating that a regular expression has
only finitely many partitions using certain tagging-functions. Again to our best knowl-
edge, these tagging-functions have not been used before to establish the Myhill-Nerode
theorem.

2 Preliminaries

Strings in Isabelle/HOL are lists of characters with the empty string being represented
by the empty list, written []. Languages are sets of strings. The language containing
all strings is written in Isabelle/HOL as UNIV. The concatenation of two languages is
written A · B and a language raised to the power n is written An. They are defined as
usual

A · B def
= {s1 @ s2 | s1 ∈ A ∧ s2 ∈ B} A0 def

= {[]} An+1 def
= A · An

where @ is the list-append operation. The Kleene-star of a language A is defined as the

union over all powers, namely A?
def
=

⋃
n An. In the paper we will make use of the

following properties of these constructions.

Proposition 1.
(i) A? = {[]} ∪ A · A?
(ii) If [] /∈ A and s ∈ An+1 then n < |s|.
(iii) B · (

⋃
n An) = (

⋃
n B · An)

In (ii) we use the notation |s| for the length of a string; this property states that if [] /∈ A
then the lengths of the strings in An+1 must be longer than n. We omit the proofs for
these properties, but invite the reader to consult our formalisation.3

The notation in Isabelle/HOL for the quotient of a language A according to an equiv-
alence relation ≈ is A �≈. We will write [[x]]≈ for the equivalence class defined as
{y | y ≈ x}.

Central to our proof will be the solution of equational systems involving equivalence
classes of languages. For this we will use Arden’s Lemma [3], which solves equations of
the form X = A · X ∪ B provided [] /∈ A. However we will need the following ‘reverse’
version of Arden’s Lemma (‘reverse’ in the sense of changing the order of A · X to
X · A).

3 Available at http://www4.in.tum.de/∼urbanc/regexp.html

http://www4.in.tum.de/~urbanc/regexp.html

4 Chunhan Wu, Xingyuan Zhang, and Christian Urban

Lemma 1 (Reverse Arden’s Lemma).
If [] /∈ A then X = X · A ∪ B if and only if X = B · A?.

Proof. For the right-to-left direction we assume X = B · A? and show that X = X · A ∪
B holds. From Prop. 1(i) we have A? = {[]} ∪ A · A?, which is equal to A? = {[]} ∪ A?

· A. Adding B to both sides gives B · A? = B · ({[]} ∪ A? · A), whose right-hand side is
equal to (B · A?) · A ∪ B. This completes this direction.

For the other direction we assume X = X · A ∪ B. By a simple induction on n, we
can establish the property

(∗) X = X · An+1 ∪ (
⋃

m∈{0..n} B · Am)

Using this property we can show that B · An ⊆ X holds for all n. From this we can infer
B · A? ⊆ X using the definition of ?. For the inclusion in the other direction we assume
a string s with length k is an element in X. Since [] /∈ A we know by Prop. 1(ii) that s /∈
X · Ak+1 since its length is only k (the strings in X · Ak+1 are all longer). From (∗) it
follows then that s must be an element in

⋃
m∈{0..k} B · Am. This in turn implies that

s is in
⋃

n B · An. Using Prop. 1(iii) this is equal to B · A?, as we needed to show. ut

Regular expressions are defined as the inductive datatype

r ::= NULL | EMPTY | CHAR c | SEQ r r | ALT r r | STAR r

and the language matched by a regular expression is defined as

L(NULL)
def
= ∅

L(EMPTY)
def
= {[]}

L(CHAR c)
def
= {[c]}

L(SEQ r1 r2)
def
= L(r1) · L(r2)

L(ALT r1 r2)
def
= L(r1) ∪ L(r2)

L(STAR r)
def
= L(r)?

Given a finite set of regular expressions rs, we will make use of the operation of gen-
erating a regular expression that matches the union of all languages of rs. We only need
to know the existence of such a regular expression and therefore we use Isabelle/HOL’s
fold graph and Hilbert’s ε to define +rs. This operation, roughly speaking, folds ALT
over the set rs with NULL for the empty set. We can prove that for a finite set rs

L(+rs) =
⋃

(L ‘ rs) (2)

holds, whereby L ‘ rs stands for the image of the set rs under function L.

3 The Myhill-Nerode Theorem, First Part

The key definition in the Myhill-Nerode theorem is the Myhill-Nerode relation, which
states that w.r.t. a language two strings are related, provided there is no distinguishing
extension in this language. This can be defined as a tertiary relation.

Definition 2 (Myhill-Nerode Relation). Given a language A, two strings x and y are
Myhill-Nerode related provided

Myhill-Nerode using Regular Expressions 5

x ≈A y
def
= ∀ z. (x @ z ∈ A) = (y @ z ∈ A)

It is easy to see that≈A is an equivalence relation, which partitions the set of all strings,
UNIV, into a set of disjoint equivalence classes. To illustrate this quotient construction,
let us give a simple example: consider the regular language containing just the string
[c]. The relation ≈{[c]} partitions UNIV into three equivalence classes X1, X2 and X3

as follows

X1 = {[]} X2 = {[c]} X3 = UNIV − {[], [c]}

One direction of the Myhill-Nerode theorem establishes that if there are finitely
many equivalence classes, like in the example above, then the language is regular. In
our setting we therefore have to show:

Theorem 1. If finite (UNIV�≈A) then ∃ r. A = L(r).

To prove this theorem, we first define the set finals A as those equivalence classes from
UNIV�≈A that contain strings of A, namely

finals A
def
= {[[s]]≈A | s ∈ A} (3)

In our running example, X2 is the only equivalence class in finals {[c]}. It is straightfor-
ward to show that in general A =

⋃
finals A and finals A ⊆ UNIV�≈A hold. Therefore

if we know that there exists a regular expression for every equivalence class in finals A
(which by assumption must be a finite set), then we can use + to obtain a regular
expression that matches every string in A.

Our proof of Thm. 1 relies on a method that can calculate a regular expression for
every equivalence class, not just the ones in finals A. We first define the notion of one-
character-transition between two equivalence classes

Y cZ=⇒ X
def
= Y · {[c]} ⊆ X (4)

which means that if we concatenate the character c to the end of all strings in the equiv-
alence class Y, we obtain a subset of X. Note that we do not define an automaton here,
we merely relate two sets (with the help of a character). In our concrete example we
have X1

cZ=⇒ X2, X1
dZ=⇒ X3 with d being any other character than c, and X3

dZ=⇒ X3 for
any d.

Next we construct an initial equational system that contains an equation for each
equivalence class. We first give an informal description of this construction. Suppose
we have the equivalence classes X1,. . . ,Xn, there must be one and only one that contains
the empty string [] (since equivalence classes are disjoint). Let us assume [] ∈ X1. We
build the following equational system

X1 = (Y11, CHAR c11) + . . . + (Y1p, CHAR c1p) + λ(EMPTY)
X2 = (Y21, CHAR c21) + . . . + (Y2o, CHAR c2o)

...
Xn = (Yn1, CHAR cn1) + . . . + (Ynq, CHAR cnq)

6 Chunhan Wu, Xingyuan Zhang, and Christian Urban

where the terms (Yij , CHAR cij) stand for all transitions Yij
cijZ=⇒ Xi. There can only be

finitely many terms of the form (Yij , CHAR cij) in a right-hand side since by assump-
tion there are only finitely many equivalence classes and only finitely many characters.
The term λ(EMPTY) in the first equation acts as a marker for the initial state, that is the
equivalence class containing [].4 Overloading the function L for the two kinds of terms
in the equational system, we have

L(Y, r)
def
= Y · L(r) L(λ(r)) def

= L(r)

and we can prove for X2..n that the following equations

Xi = L(Yi1, CHAR ci1) ∪ . . . ∪ L(Yiq, CHAR ciq). (5)

hold. Similarly for X1 we can show the following equation

X1 = L(Y11, CHAR c11) ∪ . . . ∪ L(Y1p, CHAR c1p) ∪ L(λ(EMPTY)). (6)

holds. The reason for adding the λ-marker to our initial equational system is to obtain
this equation: it only holds with the marker, since none of the other terms contain the
empty string. The point of the initial equational system is that solving it means we will
be able to extract a regular expression for every equivalence class.

Our representation for the equations in Isabelle/HOL are pairs, where the first com-
ponent is an equivalence class (a set of strings) and the second component is a set of
terms. Given a set of equivalence classes CS, our initial equational system Init CS is
thus formally defined as

Init rhs CS X
def
= if [] ∈ X

then {(Y, CHAR c) | Y ∈ CS ∧ Y cZ=⇒ X} ∪ {λ(EMPTY)}
else {(Y, CHAR c) | Y ∈ CS ∧ Y cZ=⇒ X}

Init CS
def
= {(X, Init rhs CS X) | X ∈ CS}

(7)

Because we use sets of terms for representing the right-hand sides of equations, we can
prove (5) and (6) more concisely as

Lemma 2. If (X, rhs) ∈ Init (UNIV�≈A) then X =
⋃
L ‘ rhs.

Our proof of Thm. 1 will proceed by transforming the initial equational system into one
in solved form maintaining the invariant in Lem. 2. From the solved form we will be
able to read off the regular expressions.

In order to transform an equational system into solved form, we have two opera-
tions: one that takes an equation of the form X = rhs and removes any recursive occur-
rences of X in the rhs using our variant of Arden’s Lemma. The other operation takes

4 Note that we mark, roughly speaking, the single ‘initial’ state in the equational system, which
is different from the method by Brzozowski [3], where he marks the ‘terminal’ states. We
are forced to set up the equational system in our way, because the Myhill-Nerode relation
determines the ‘direction’ of the transitions—the successor ‘state’ of an equivalence class Y
can be reached by adding a character to the end of Y. This is also the reason why we have to
use our reverse version of Arden’s Lemma.

Myhill-Nerode using Regular Expressions 7

an equation X = rhs and substitutes X throughout the rest of the equational system ad-
justing the remaining regular expressions appropriately. To define this adjustment we
define the append-operation taking a term and a regular expression as argument

(Y, r2) / r1
def
= (Y, SEQ r2 r1) λ(r2) / r1

def
= λ(SEQ r2 r1)

We lift this operation to entire right-hand sides of equations, written as rhs / r. With
this we can define the arden-operation for an equation of the form X = rhs as:

Arden X rhs
def
= let

rhs ′= rhs − {(X, r) | (X, r) ∈ rhs}
r ′= STAR (+{r | (X, r) ∈ rhs})

in rhs ′ / r ′

(8)

In this definition, we first delete all terms of the form (X, r) from rhs; then we calculate
the combined regular expressions for all r coming from the deleted (X, r), and take
the STAR of it; finally we append this regular expression to rhs ′. It can be easily seen
that this operation mimics Arden’s Lemma on the level of equations. To ensure the
non-emptiness condition of Arden’s Lemma we say that a right-hand side is ardenable
provided

ardenable rhs
def
= ∀Y r. (Y, r) ∈ rhs −→ [] /∈ L(r)

This allows us to prove a version of Arden’s Lemma on the level of equations.

Lemma 3. Given an equation X = rhs. If X =
⋃
L ‘ rhs, ardenable rhs, and finite rhs,

then X =
⋃
L ‘ (Arden X rhs).

Our ardenable condition is slightly stronger than needed for applying Arden’s Lemma,
but we can still ensure that it holds troughout our algorithm of transforming equations
into solved form. The substitution-operation takes an equation of the form X = xrhs
and substitutes it into the right-hand side rhs.

Subst rhs X xrhs
def
= let

rhs ′= rhs − {(X, r) | (X, r) ∈ rhs}
r ′=+{r | (X, r) ∈ rhs}

in rhs ′∪ (xrhs / r ′)

We again delete first all occurrences of (X, r) in rhs; we then calculate the regular
expression corresponding to the deleted terms; finally we append this regular expression
to xrhs and union it up with rhs ′. When we use the substitution operation we will arrange
it so that xrhs does not contain any occurrence of X.

With these two operations in place, we can define the operation that removes one
equation from an equational systems ES. The operation Subst all substitutes an equa-
tion X = xrhs throughout an equational system ES; Remove then completely removes
such an equation from ES by substituting it to the rest of the equational system, but first
eliminating all recursive occurrences of X by applying Arden to xrhs.

8 Chunhan Wu, Xingyuan Zhang, and Christian Urban

Subst all ES X xrhs
def
= {(Y, Subst yrhs X xrhs) | (Y, yrhs) ∈ ES}

Remove ES X xrhs
def
= Subst all (ES − {(X, xrhs)}) X (Arden X xrhs)

Finally, we can define how an equational system should be solved. For this we will
need to iterate the process of eliminating equations until only one equation will be left
in the system. However, we do not just want to have any equation as being the last one,
but the one involving the equivalence class for which we want to calculate the regular
expression. Let us suppose this equivalence class is X. Since X is the one to be solved, in
every iteration step we have to pick an equation to be eliminated that is different from
X. In this way X is kept to the final step. The choice is implemented using Hilbert’s
choice operator, written SOME in the definition below.

Iter X ES
def
= let

(Y, yrhs) = SOME (Y, yrhs). (Y, yrhs) ∈ ES ∧ X 6= Y
in Remove ES Y yrhs

The last definition we need applies Iter over and over until a condition Cond is not
satisfied anymore. This condition states that there are more than one equation left in
the equational system ES. To solve an equational system we use Isabelle/HOL’s while-
operator as follows:

Solve X ES
def
= while Cond (Iter X) ES

We are not concerned here with the definition of this operator (see Berghofer and Nip-
kow [1]), but note that we eliminate in each Iter-step a single equation, and therefore
have a well-founded termination order by taking the cardinality of the equational sys-
tem ES. This enables us to prove properties about our definition of Solve when we ‘call’
it with the equivalence class X and the initial equational system Init (UNIV�≈A) from
(7) using the principle:

invariant (Init (UNIV�≈A))
∀ES. invariant ES ∧ Cond ES −→ invariant (Iter X ES)
∀ES. invariant ES ∧ Cond ES −→ card (Iter X ES) < card ES
∀ES. invariant ES ∧ ¬ Cond ES −→ P ES

P (Solve X (Init (UNIV�≈A)))

(9)

This principle states that given an invariant (which we will specify below) we can prove
a property P involving Solve. For this we have to discharge the following proof obliga-
tions: first the initial equational system satisfies the invariant; second the iteration step
Iter preserves the invariant as long as the condition Cond holds; third Iter decreases the
termination order, and fourth that once the condition does not hold anymore then the
property P must hold.

The property P in our proof will state that Solve X (Init (UNIV�≈A)) returns with a
single equation X = xrhs for some xrhs, and that this equational system still satisfies the
invariant. In order to get the proof through, the invariant is composed of the following
six properties:

Myhill-Nerode using Regular Expressions 9

invariant ES
def
= finite ES (finiteness)
∧ ∀ (X, rhs)∈ES. finite rhs (finiteness rhs)
∧ ∀ (X, rhs)∈ES. X =

⋃
L ‘ rhs (soundness)

∧ ∀X rhs rhs ′. (X, rhs) ∈ ES ∧ (X, rhs ′) ∈ ES −→ rhs = rhs ′

(distinctness)
∧ ∀ (X, rhs)∈ES. ardenable rhs (ardenable)
∧ ∀ (X, rhs)∈ES. rhss rhs ⊆ lhss ES (validity)

The first two ensure that the equational system is always finite (number of equations and
number of terms in each equation); the third makes sure the ‘meaning’ of the equations
is preserved under our transformations. The other properties are a bit more technical,
but are needed to get our proof through. Distinctness states that every equation in the
system is distinct. Ardenable ensures that we can always apply the Arden operation.
The last property states that every rhs can only contain equivalence classes for which
there is an equation. Therefore lhss is just the set containing the first components of an
equational system, while rhss collects all equivalence classes X in the terms of the form

(X, r). That means formally lhss ES
def
= {X | (X, rhs) ∈ ES} and rhss rhs

def
= {X | (X,

r) ∈ rhs}.
It is straightforward to prove that the initial equational system satisfies the invariant.

Lemma 4. If finite (UNIV�≈A) then invariant (Init (UNIV�≈A)).

Proof. Finiteness is given by the assumption and the way how we set up the initial
equational system. Soundness is proved in Lem. 2. Distinctness follows from the fact
that the equivalence classes are disjoint. The ardenable property also follows from the
setup of the initial equational system, as does validity. ut

Next we show that Iter preserves the invariant.

Lemma 5. If invariant ES and (X, rhs) ∈ ES and Cond ES then invariant (Iter X
ES).

Proof. The argument boils down to choosing an equation Y = yrhs to be eliminated and
to show that Subst all (ES− {(Y, yrhs)}) Y (Arden Y yrhs) preserves the invariant. We
prove this as follows:

∀ ES. invariant (ES ∪ {(Y, yrhs)}) implies invariant (Subst all ES Y (Arden Y yrhs))

Finiteness is straightforward, as the Subst and Arden operations keep the equational
system finite. These operations also preserve soundness and distinctness (we proved
soundness for Arden in Lem. 3). The property ardenable is clearly preserved because
the append-operation cannot make a regular expression to match the empty string. Va-
lidity is given because Arden removes an equivalence class from yrhs and then Subst all
removes Y from the equational system. Having proved the implication above, we can
instantiate ES with ES − {(Y, yrhs)} which matches with our proof-obligation of
Subst all. Since ES = ES − {(Y, yrhs)} ∪ {(Y, yrhs)}, we can use the assumption to
complete the proof. ut

10 Chunhan Wu, Xingyuan Zhang, and Christian Urban

We also need the fact that Iter decreases the termination measure.

Lemma 6. If invariant ES and (X, rhs) ∈ ES and Cond ES then card (Iter X ES) <
card ES.

Proof. By assumption we know that ES is finite and has more than one element. There-
fore there must be an element (Y, yrhs) ∈ ES with (Y, yrhs) 6= (X, rhs). Using the
distinctness property we can infer that Y 6= X. We further know that Remove ES Y yrhs
removes the equation Y = yrhs from the system, and therefore the cardinality of Iter
strictly decreases. ut

This brings us to our property we want to establish for Solve.

Lemma 7. If finite (UNIV�≈A) and X ∈ UNIV�≈A then there exists a rhs such that
Solve X (Init (UNIV�≈A)) = {(X, rhs)} and invariant {(X, rhs)}.

Proof. In order to prove this lemma using (9), we have to use a slightly stronger in-
variant since Lem. 5 and 6 have the precondition that (X, rhs) ∈ ES for some rhs. This
precondition is needed in order to choose in the Iter-step an equation that is not X = rhs.
Therefore our invariant cannot be just invariant ES, but must be invariant ES ∧ (∃ rhs.
(X, rhs) ∈ ES). By assumption X ∈ UNIV�≈A and Lem. 4, the more general invariant
holds for the initial equational system. This is premise 1 of (9). Premise 2 is given by
Lem. 5 and the fact that Iter might modify the rhs in the equation X = rhs, but does not
remove it. Premise 3 of (9) is by Lem. 6. Now in premise 4 we like to show that there
exists a rhs such that ES = {(X, rhs)} and that invariant {(X, rhs)} holds, provided the
condition Cond does not holds. By the stronger invariant we know there exists such a
rhs with (X, rhs) ∈ ES. Because Cond is not true, we know the cardinality of ES is 1.
This means ES must actually be the set {(X, rhs)}, for which the invariant holds. This
allows us to conclude that Solve X (Init (UNIV�≈A)) = {(X, rhs)} and invariant {(X,
rhs)} hold, as needed. ut

With this lemma in place we can show that for every equivalence class in UNIV�≈A
there exists a regular expression.

Lemma 8. If finite (UNIV�≈A) and X ∈ UNIV�≈A then ∃ r. X = L(r).

Proof. By the preceding lemma, we know that there exists a rhs such that Solve X
(Init (UNIV�≈A)) returns the equation X = rhs, and that the invariant holds for this
equation. That means we know X =

⋃
L ‘ rhs. We further know that this is equal to⋃

L ‘ (Arden X rhs) using the properties of the invariant and Lem. 3. Using the validity
property for the equation X = rhs, we can infer that rhss rhs ⊆ {X} and because the
Arden operation removes that X from rhs, that rhss (Arden X rhs) = ∅. This means
the right-hand side Arden X rhs can only consist of terms of the form λ(r). So we can
collect those (finitely many) regular expressions rs and have X = L(+rs). With this we
can conclude the proof. ut

Lem. 8 allows us to finally give a proof for the first direction of the Myhill-Nerode
theorem.

Myhill-Nerode using Regular Expressions 11

Proof (of Thm. 1). By Lem. 8 we know that there exists a regular expression for every
equivalence class in UNIV�≈A. Since finals A is a subset of UNIV�≈A, we also know
that for every equivalence class in finals A there exists a regular expression. Moreover
by assumption we know that finals A must be finite, and therefore there must be a finite
set of regular expressions rs such that

⋃
finals A = L(+rs). Since the left-hand side is

equal to A, we can use+rs as the regular expression that is needed in the theorem. ut

4 Myhill-Nerode, Second Part

We will prove in this section the second part of the Myhill-Nerode theorem. It can be
formulated in our setting as follows:

Theorem 2. Given r is a regular expression, then finite (UNIV�≈L(r)).

The proof will be by induction on the structure of r. It turns out the base cases are
straightforward.

Proof (Base Cases). The cases for NULL, EMPTY and CHAR are routine, because we
can easily establish that

UNIV�≈∅ = {UNIV}
UNIV�≈{[]} ⊆ {{[]}, UNIV − {[]}}
UNIV�≈{[c]} ⊆ {{[]}, {[c]}, UNIV − {[], [c]}}

hold, which shows that UNIV�≈L(r) must be finite. ut

Much more interesting, however, are the inductive cases. They seem hard to solve di-
rectly. The reader is invited to try.

Our proof will rely on some tagging-functions defined over strings. Given the in-
ductive hypothesis, it will be easy to prove that the range of these tagging-functions is

finite (the range of a function f is defined as range f
def
= f ‘ UNIV). With this we will

be able to infer that the tagging-functions, seen as relations, give rise to finitely many
equivalence classes of UNIV. Finally we will show that the tagging-relations are more
refined than≈L(r), which implies that UNIV�≈L(r) must also be finite (a relation R1 is
said to refine R2 provided R1 ⊆ R2). We formally define the notion of a tagging-relation
as follows.

Definition 3 (Tagging-Relation). Given a tagging-function tag, then two strings x and
y are tag-related provided

x =tag= y
def
= tag x = tag y .

In order to establish finiteness of a set A, we shall use the following powerful prin-
ciple from Isabelle/HOL’s library.

If finite (f ‘ A) and inj on f A then finite A. (10)

It states that if an image of a set under an injective function f (injective over this set) is
finite, then the set A itself must be finite. We can use it to establish the following two
lemmas.

12 Chunhan Wu, Xingyuan Zhang, and Christian Urban

Lemma 9. If finite (range tag) then finite (UNIV�=tag=).

Proof. We set in (10), f to be X 7→ tag ‘ X. We have range f to be a subset of Pow
(range tag), which we know must be finite by assumption. Now f (UNIV�=tag=) is
a subset of range f, and so also finite. Injectivity amounts to showing that X = Y under
the assumptions that X, Y ∈ UNIV�=tag= and f X = f Y. From the assumptions we
can obtain x ∈ X and y ∈ Y with tag x = tag y. Since x and y are tag-related, this in turn
means that the equivalence classes X and Y must be equal. ut

Lemma 10. Given two equivalence relations R1 and R2, whereby R1 refines R2. If finite
(UNIV�R1) then finite (UNIV�R2).

Proof. We prove this lemma again using (10). This time we set f to be X 7→ {[[x]]R1
| x

∈ X}. It is easy to see that finite (f ‘ UNIV�R2) because it is a subset of Pow (UNIV�
R1), which is finite by assumption. What remains to be shown is that f is injective on
UNIV�R2. This is equivalent to showing that two equivalence classes, say X and Y, in
UNIV�R2 are equal, provided f X = f Y. For X = Y to be equal, we have to find two
elements x ∈ X and y ∈ Y such that they are R2 related. We know there exists a x ∈ X
with X = [[x]]R2

. From the latter fact we can infer that [[x]]R1
∈ f X and further [[x]]R1

∈ f
Y. This means we can obtain a y such that [[x]]R1

= [[y]]R1
holds. Consequently x and y

are R1-related. Since by assumption R1 refines R2, they must also be R2-related, as we
need to show. ut

Chaining Lem. 9 and 10 together, means in order to show that UNIV�≈L(r) is finite,
we have to find a tagging-function whose range can be shown to be finite and whose
tagging-relation refines ≈L(r). Let us attempt the ALT-case first.

Proof (ALT-Case). We take as tagging-function

tagALT A B x
def
= ([[x]]≈A , [[x]]≈B)

where A and B are some arbitrary languages. We can show in general, if finite (UNIV�
≈A) and finite (UNIV�≈B) then finite (UNIV�≈A × UNIV�≈B) holds. The range
of tagALT A B is a subset of this product set—so finite. It remains to be shown that
=tagALT A B= refines ≈A ∪ B. This amounts to showing

tagALT A B x = tagALT A B y −→ x ≈A ∪ B y

which by unfolding the Myhill-Nerode relation is identical to

∀ z. tagALT A B x = tagALT A B y ∧ x @ z ∈ A ∪ B −→ y @ z ∈ A ∪ B (11)

since both =tagALT A B= and ≈A ∪ B are symmetric. To solve (11) we just have to
unfold the definition of the tagging-function and analyse in which set, A or B, the string
x @ z is. The definition of the tagging-function will give us in each case the information
to infer that y @ z ∈ A ∪ B. Finally we can discharge this case by setting A to L(r1) and
B to L(r2). ut

The pattern in (11) is repeated for the other two cases. Unfortunately, they are slightly
more complicated. In the SEQ-case we essentially have to be able to infer that

Myhill-Nerode using Regular Expressions 13

. . . x @ z ∈ A · B −→ y @ z ∈ A · B

using the information given by the appropriate tagging-function. The complication is to
find out what the possible splits of x @ z are to be in A · B (this was easy in case of A ∪
B). To deal with this complication we define the notions of string prefixes

x ≤ y
def
= ∃ z. y = x @ z x < y

def
= x ≤ y ∧ x 6= y

and string subtraction:

[] − y
def
= [] x − []

def
= x cx − dy

def
= if c = d then x − y else cx

where c and d are characters, and x and y are strings.
Now assuming x @ z ∈ A · B there are only two possible ways of how to ‘split’ this

string to be in A · B:

x ′ x − x ′ z

x z

x @ z ∈ A · B

(x − x ′) @ z ∈ Bx ′∈ A

x z ′ z − z ′

x z

x @ z ∈ A · B

x @ z ′∈ A (z − z ′) ∈ B

Either there is a prefix of x in A and the rest is in B (first picture), or x and a prefix of z
is in A and the rest in B (second picture). In both cases we have to show that y @ z ∈ A
· B. For this we use the following tagging-function

tagSEQ A B x
def
= ([[x]]≈A , {[[(x − x ′)]]≈B | x

′≤ x ∧ x ′∈ A})

with the idea that in the first split we have to make sure that (x − x ′) @ z is in the
language B.

Proof (SEQ-Case). If finite (UNIV�≈A) and finite (UNIV�≈B) then finite (UNIV�
≈A × Pow (UNIV�≈B)) holds. The range of tagSEQ A B is a subset of this product
set, and therefore finite. We have to show injectivity of this tagging-function as

∀ z. tagSEQ A B x = tagSEQ A B y ∧ x @ z ∈ A · B −→ y @ z ∈ A · B
There are two cases to be considered (see pictures above). First, there exists a x ′ such
that x ′∈ A, x ′≤ x and (x − x ′) @ z ∈ B hold. We therefore have

[[(x − x ′)]]≈B ∈ {[[(x − x ′)]]≈B | x
′≤ x ∧ x ′∈ A}

and by the assumption about tagSEQ A B also

[[(x − x ′)]]≈B ∈ {[[(y − y ′)]]≈B | y
′≤ y ∧ y ′∈ A}

That means there must be a y ′ such that y ′∈ A and [[(x − x ′)]]≈B = [[(y − y ′)]]≈B . This
equality means that x − x ′≈B y − y ′ holds. Unfolding the Myhill-Nerode relation and
together with the fact that (x− x ′) @ z ∈ B, we have (y− y ′) @ z ∈ B. We already know
y ′∈ A, therefore y @ z ∈ A · B, as needed in this case.

Second, there exists a z ′ such that x @ z ′ ∈ A and z − z ′ ∈ B. By the assumption
about tagSEQ A B we have [[x]]≈A = [[y]]≈A and thus x ≈A y. Which means by the
Myhill-Nerode relation that y @ z ′∈ A holds. Using z− z ′∈ B, we can conclude also in
this case with y @ z ∈ A · B. We again can complete the SEQ-case by setting A to L(r1)
and B to L(r2). ut

14 Chunhan Wu, Xingyuan Zhang, and Christian Urban

The case for STAR is similar to SEQ, but poses a few extra challenges. When we analyse
the case that x @ z is an element in A? and x is not the empty string, we have the
following picture:

x ′max x − x ′max za zb

x z

x @ z ∈ A?

(x − x ′max) @ za ∈ Ax ′max ∈ A? zb ∈ A?

(x − x ′max) @ z ∈ A?

We can find a strict prefix x ′ of x such that x ′∈ A?, x ′< x and the rest (x− x ′) @ z ∈ A?.
For example the empty string [] would do. There are potentially many such prefixes, but
there can only be finitely many of them (the string x is finite). Let us therefore choose
the longest one and call it x ′max. Now for the rest of the string (x − x ′max) @ z we
know it is in A?. By definition of A?, we can separate this string into two parts, say
a and b, such that a ∈ A and b ∈ A?. Now a must be strictly longer than x − x ′max,
otherwise x ′max is not the longest prefix. That means a ‘overlaps’ with z, splitting it
into two components za and zb. For this we know that (x − x ′max) @ za ∈ A and zb ∈
A?. To cut a story short, we have divided x @ z ∈ A? such that we have a string a with
a ∈ A that lies just on the ‘border’ of x and z. This string is (x − x ′max) @ za.

In order to show that x @ z ∈ A? implies y @ z ∈ A?, we use the following tagging-
function:

tagSTAR A x
def
= {[[(x − x ′)]]≈A | x

′< x ∧ x ′∈ A?}

Proof (STAR-Case). If finite (UNIV�≈A) then finite (Pow (UNIV�≈A)) holds. The
range of tagSTAR A is a subset of this set, and therefore finite. Again we have to show
injectivity of this tagging-function as

∀ z. tagSTAR A x = tagSTAR A y ∧ x @ z ∈ A? −→ y @ z ∈ A?

We first need to consider the case that x is the empty string. From the assumption we can
infer y is the empty string and clearly have y @ z ∈ A?. In case x is not the empty string,
we can divide the string x @ z as shown in the picture above. By the tagging-function
we have

[[(x − x ′max)]]≈A ∈ {[[(x − x ′)]]≈A | x
′< x ∧ x ′∈ A?}

which by assumption is equal to

[[(x − x ′max)]]≈A ∈ {[[(y − y ′)]]≈A | y
′< y ∧ y ′∈ A?}

and we know that we have a y ′ ∈ A? and y ′< y and also know x − x ′max ≈A y − y ′.
Unfolding the Myhill-Nerode relation we know (y − y ′) @ za ∈ A. We also know that
zb ∈ A?. Therefore y ′@ ((y − y ′) @ za) @ zb ∈ A?, which means y @ z ∈ A?. As the
last step we have to set A to L(r) and complete the proof. ut

Myhill-Nerode using Regular Expressions 15

5 Conclusion and Related Work

In this paper we took the view that a regular language is one where there exists a reg-
ular expression that matches all of its strings. Regular expressions can conveniently be
defined as a datatype in HOL-based theorem provers. For us it was therefore interesting
to find out how far we can push this point of view. We have established in Isabelle/HOL
both directions of the Myhill-Nerode theorem.

Theorem 3 (The Myhill-Nerode Theorem).
A language A is regular if and only if finite (UNIV�≈A).

Having formalised this theorem means we pushed our point of view quite far. Using this
theorem we can obviously prove when a language is not regular—by establishing that
it has infinitely many equivalence classes generated by the Myhill-Nerode relation (this
is usually the purpose of the pumping lemma [7]). We can also use it to establish the
standard textbook results about closure properties of regular languages. Interesting is
the case of closure under complement, because it seems difficult to construct a regular
expression for the complement language by direct means. However the existence of
such a regular expression can be easily proved using the Myhill-Nerode theorem since

s1 ≈A s2 if and only if s1 ≈A s2

holds for any strings s1 and s2. Therefore A and the complement language A give rise
to the same partitions. Proving the existence of such a regular expression via automata
using the standard method would be quite involved. It includes the steps: regular ex-
pression ⇒ non-deterministic automaton ⇒ deterministic automaton ⇒ complement
automaton⇒ regular expression.

While regular expressions are convenient in formalisations, they have some limita-
tions. One is that there seems to be no method of calculating a minimal regular expres-
sion (for example in terms of length) for a regular language, like there is for automata.
On the other hand, efficient regular expression matching, without using automata, poses
no problem [10]. For an implementation of a simple regular expression matcher, whose
correctness has been formally established, we refer the reader to Owens and Slind [11].

Our formalisation consists of 780 lines of Isabelle/Isar code for the first direction
and 460 for the second, plus around 300 lines of standard material about regular lan-
guages. While this might be seen as too large to count as a concise proof pearl, this
should be seen in the context of the work done by Constable at al [4] who formalised
the Myhill-Nerode theorem in Nuprl using automata. They write that their four-member
team needed something on the magnitude of 18 months for their formalisation. The esti-
mate for our formalisation is that we needed approximately 3 months and this included
the time to find our proof arguments. Unlike Constable et al, who were able to follow
the proofs from [6], we had to find our own arguments. So for us the formalisation was
not the bottleneck. It is hard to gauge the size of a formalisation in Nurpl, but from
what is shown in the Nuprl Math Library about their development it seems substan-
tially larger than ours. The code of ours can be found in the Mercurial Repository at
http://www4.in.tum.de/∼urbanc/regexp.html.

Our proof of the first direction is very much inspired by Brzozowski’s algebraic
method used to convert a finite automaton to a regular expression [3]. The close con-

http://www4.in.tum.de/~urbanc/regexp.html

16 Chunhan Wu, Xingyuan Zhang, and Christian Urban

nection can be seen by considering the equivalence classes as the states of the minimal
automaton for the regular language. However there are some subtle differences. Since
we identify equivalence classes with the states of the automaton, then the most natural
choice is to characterise each state with the set of strings starting from the initial state
leading up to that state. Usually, however, the states are characterised as the strings
starting from that state leading to the terminal states. The first choice has consequences
about how the initial equational system is set up. We have the λ-term on our ‘initial
state’, while Brzozowski has it on the terminal states. This means we also need to re-
verse the direction of Arden’s Lemma.

We briefly considered using the method Brzozowski presented in the Appendix
of [3] in order to prove the second direction of the Myhill-Nerode theorem. There he
calculates the derivatives for regular expressions and shows that for every language
there can be only finitely many of them (if regarded equal modulo ACI). We could have
used as tagging-function the set of derivatives of a regular expression with respect to
a language. Using the fact that two strings are Myhill-Nerode related whenever their
derivative is the same, together with the fact that there are only finitely such derivatives
would give us a similar argument as ours. However it seems not so easy to calculate
the set of derivatives modulo ACI. Therefore we preferred our direct method of using
tagging-functions. This is also where our method shines, because we can completely
side-step the standard argument [7] where automata need to be composed, which as
stated in the Introduction is not so easy to formalise in a HOL-based theorem prover.
However, it is also the direction where we had to spend most of the ‘conceptual’ time,
as our proof-argument based on tagging-functions is new for establishing the Myhill-
Nerode theorem. All standard proofs of this direction use arguments over automata.

References
1. S. Berghofer and T. Nipkow. Executing Higher Order Logic. In Proc. of the International

Workshop on Types for Proofs and Programs, volume 2277 of LNCS, pages 24–40, 2002.
2. S. Berghofer and M. Reiter. Formalizing the Logic-Automaton Connection. In Proc. of the

22nd International Conference on Theorem Proving in Higher Order Logics, volume 5674
of LNCS, pages 147–163, 2009.

3. J. A. Brzozowski. Derivatives of Regular Expressions. J. ACM, 11:481–494, 1964.
4. R. L. Constable, P. B. Jackson, P. Naumov, and J. C. Uribe. Constructively Formalizing

Automata Theory. In Proof, Language, and Interaction, pages 213–238. MIT Press, 2000.
5. J.-C. Filliâtre. Finite Automata Theory in Coq: A Constructive Proof of Kleene’s Theorem.

Research Report 97–04, LIP - ENS Lyon, 1997.
6. J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relation to Automata.

Addison-Wesley, 1969.
7. D. Kozen. Automata and Computability. Springer Verlag, 1997.
8. A. Kraus and T. Nipkow. Proof Pearl: Regular Expression Equivalence and Relation Algebra.

To appear in Journal of Automated Reasoning, 2011.
9. T. Nipkow. Verified Lexical Analysis. In Proc. of the 11th International Conference on

Theorem Proving in Higher Order Logics, volume 1479 of LNCS, pages 1–15, 1998.
10. S. Owens, J. Reppy, and A. Turon. Regular-Expression Derivatives Re-Examined. Journal

of Functional Programming, 19(2):173–190, 2009.
11. S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order

and Symbolic Computation, 21(4):377–409, 2008.

	Introduction
	Preliminaries
	The Myhill-Nerode Theorem, First Part
	Myhill-Nerode, Second Part
	Conclusion and Related Work

