Fundamenta Informaticae XX (2001) 1-33 1
10S Press

Strong Normalisation of Cut-Elimination in Classical Logic

C. Urban

Institut de Mat@matiques de Luminy,
CNRS Marseille,

Marseille, France.

urban@iml .univ-mrs.fr

G. M. Bierman
Computer Laboratory,
University of Cambridge,
Cambridge, UK.

gmb@cl.cam.ac.uk

Abstract. In this paper we present a strongly normalising cut-elimination procedure for classical
logic. This procedure adapts Gentzen's standard cut-reductions, but is less restrictive than previ-
ous strongly normalising cut-elimination procedures. In comparison, for example, with works by
Dragalin and Danos et al., our procedure requires no special annotations on formulae and allows
cut-rules to pass over other cut-rules. In order to adapt the notion of symmetric reducibility can-
didates for proving the strong normalisation property, we introduce a novel term assignment for
sequent proofs of classical logic and formalise cut-reductions as term rewriting rules.

Keywords: Classical Logic, Cut-Elimination, Strong Normalisation, Symmetric Reducibility Can-
didates.

2 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

1. Introduction

Gentzen showed in his seminal paper [13] that all applications of the cut-rule can be eliminated from

proofs in the sequent calculi LK and LJ. He not only proved that all occurrences of this rule can be

eliminated, but also gave a simple procedure for doing so. This procedure consists of proof transforma-
tions, or cut-reductions, that do not eliminate all cut-rules from a proof immediately, rather replace every

instance of the cut-rule with simpler cut-rules, and by iteration one eventually ends up with a cut-free

proof, also called a normal form. Since Gentzen’s paper nidanyptsitze (cut-elimination theorems)

have appeared for various sequent calculus formulations. Each of them proves termination of a partic-
ular cut-elimination procedure. In this paper we shall introduce a novel cut-elimination procedure for a

sequent calculus of classical logic, whose design is motivated by the following three criteria:

1. the cut-elimination procedure shouldt restrict the collection of normal forms reachable from a
given proof such that “essential” normal forms are no longer reachable,

2. the cut-elimination procedure should $teongly normalisingi.e., all possible reduction strategies
should terminate, and

3. the cut-elimination procedure should allow cut-rules to pass over other cut-rules.

At the time of writing, we are not aware of any other cut-elimination procedure for a sequent calculus
of classical logic that satisfies all three criteria. So in the remainder of this introduction we shall justify
these criteria.

Typically, cut-elimination procedures for classical logic are non-deterministic, in the sense that ap-
plying different cut-reductions may lead to different normal forms. With respect to our first criterion,
most cut-elimination procedures, including Gentzen'’s original, are thus quite unsatisfactory since they
terminate only if a particular strategy for cut-elimination is employed. Common examples being an
innermost reduction strategy, or the elimination of the cut with the highest rank. An unpleasant conse-
guence of these strategies is that they restrict heavily the number of normal forms reachable from a given
proof. However, the normal forms reachable from a proof play an imporfdetif we wish to extend
the proposition-as-types analogy to classical logic. Therefore our first two criteria.

As a first attempt for a strongly normalising cut-elimination procedure one might simply take an
unrestricted version of Gentzen’s cut-elimination procedure; that is by removing the strategy. Unfortu-
nately, this would, as stated earlier, allow infinite reduction sequences, one of which is illustrated in the
following example taken from [9, 12].

Example 1.1. Consider the proof
ArFA AFA\/ ArFA Al—A/\
AVAF A A Lt A AR AN Rt
AvAr A OE TAv anA O
AVAF ANA

The problem lies with the lower cut-rule—a commuting cut—which needs to be permuted upwards. (A
cut-rule is said to be a logical cut when both cut-formulae are introduced by axioms or logical inference
rules; otherwise the cut-rule is said to be a commuting cut.) There are two possible cut-reductions: either
the cut-rule can be permuted upwards in the left proof branch or in the right proof branch. If one is not

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 3

careful, applying these cut-reductions in alternation can lead to arbitrary big normal forms and to non-
termination. For example, consider the reduction sequence starting with the proof above and continuing
as follows

- AvA AvA L,
ArA _Avd,, A AvANA Contr, A4 AvA o
AVA- A A A ANA LA Ar-AnA "
AVAF A, ANA ArAnA contt
AVAF ANA ANA Cut

AVAEANA

Cut

Contrg

where the cut-rule is permuted to the left, creating two copies of the right subproof. Now permute the
upper cut-rule to the right, which gives the following proof.

ArA AvA., ArA Ar4 ,
ArA A4, AVArAA L TA AR ANA o R
AVAFAA T AVA, A A, ANA ut

AVAAVAY A A ANA Cut ArA A4,
AVAF A A ANA < L A AV AN
AVAr A, ANA R A ANA L
AVAF ANA, ANA Cut
AVAF ApnA SOt

This proof contains an instance of the cut-reduction applied in the first step (bold face). Even worse, this
instance is bigger than in the proof we started with, and so in effect we can construct reduction sequences
with possibly infinitely big normal forms. O

It seems difficult to avoid the infinite reduction sequence given in the example above using an unre-
stricted Gentzen-like formulation of the cut-reductions. A number of people, for example [6, 7, 9, 10, 17],
have managed to develop strongly normalising cut-elimination procedures, but they all impose fairly
strong restrictions on the cut-reductions. Here is one common restriction: consider the following cut-
reduction, which allows a cut-rule (Suffix 2) to pass over another cut-rule (Suffix 1).

L cut, _ ...|—...|_...|—

o - Cug —

~ Cuty
L

=~ Cut;

Clearly, this cut-reduction would immediately break strong normalisation because the reduct is again an
instance of this reduction, and we can loop by constantly applying it. Thus a common restriction is to
not allow in any circumstance a cut-rule to pass over another cut-rule. However such a restriction limits,
for example, in the intuitionistic case the correspondence between cut-elimination and beta-reduction. In
particular, strong hormalisation of beta-reduction cannot be inferred from the strong normalisation result
of the cut-elimination procedure, as noted in [11, 17]. Therefore our third criterion. We shall design
our cut-elimination procedure so that cut-rules can pass over other cut-rules without breaking the strong
normalisation property. As a pleasing result, we can simulate beta-reduction and infer strong normali-
sation of the simply-typed lambda calculus from the strong normalisation result of our cut-elimination
procedure. The details of this result appeared in [25].

4 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

Danos et al. allow cut-rules to pass over other cut-rules in their strongly normalising cut-elimination
procedure given for the sequent calculus’tf9, 18]. So this cut-elimination procedure satisfies our
second and third criterion, but as we shall see it violates the first. Ifi &ery formula (and its subfor-
mulae) are required to be coloured with either ‘or * —’. Here is an instance of a cut-rule in 'K

AX BAC BANCYE D
Av D

Cut

Recall the problematic infinite reduction sequence shown in Example 1.1. This reduction sequence is
avoided in their procedure by devising a specific protocol for cut-elimination, which uses the additional
information provided by the colours. If in a commuting cut the coledt is attached to the cut-formula,
then the commuting cut is permuted to the left, and similarly for thé ¢olour (hence the use of an
arrow to denote a colour!). By enforcing that commuting cuts can be permuted into one direction only,
the infinite reduction sequence cannot be constructed.

However, there are two annoying restrictions in their cut-elimination procedure ftst, biéth of
which violate our first criterion.

e First, there is a problem with the compositionality of the colour annotation, in the sense that some
cut-rules require the same colour annotation for their cut-formulae: the choice of a colouring can
permeate through a proof. In particular, the colour annotation has to respect, using terminology
introduced for LKY, identity classe§23, Page 107]. For example, when annotating colours to the
following LK-proof

BvB
- B B,T+A,B :
TFA B Cut BE
T ut

all the occurrences oB must have the same colour. In effect, the normal forms that arise by
permuting both cut-rules towards the axiom, where they merge into a single cut-rule, cannot be
obtained using the cut-elimination procedure of Danos et al.

e Second, the colour annotation is invariant under cut-reductions. Thus whenever an instance of the
cut-rule is duplicated in a reduction sequence, the colour annotation prevents both instances from
reducing differently. Figure 1 gives an example of such a reduction sequence that exists in LK, but
not in LK%,

Making the cut-elimination procedure dependent on the colour annotations is, in fact, a very strong
restriction: the colours ensure that the cut-elimination procedure becomes confluent; that is deterministic.
The confluence result is an essential property in the strong normalisation proof given by Danos et al.,
because it enabled them to exploit the strong normalisation result for proof nets in linear logic. The
colours are used ingeniously to map every't4groof to a corresponding proof-net in linear logic and
every cut-elimination step to a series of reductions on proof-nets [14].

The strongly normalising cut-elimination procedure we shall present in this paper includes the stan-
dard Gentzen-like cut-reductions for logical cuts. The cut-reductions dealing with commuting cuts, on
the other hand, will be simplified versions of the reductions presented by Danos et al. (we remove the

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 5

A A Ai—A\/ A A Ai—A/\
AVAF AVA AVAFAVA | AVAFA, A 'k A, ArApA E
(AVA)V(AVA) - AVA, AVA “AvAr A COMR Taang Contt
(AVA)W(AVA) - AVA AVA- AN Cut

(AVA)V(AVA) - ANA

Contrg

Cut

AFA AvA,, AvA AvA, Ar-A Ard, AFA ArA
AVAF 4, A A AFANA B TAVAFAA A, Ar AN
AVAF A SOk Trraaa SOt Tae a4 GO i ana
AVAF AN Cut AVAFANA |,
(AVA)VV(AVA) - AVA, AVA g
(AVA)V(AVA)-AVA

AR

Contry,
Cut™*

Contrg

A-A Al—A/\ A A Al—A/\ A-A Al—A\/ A-A Al—Av
A AFANA B TATAVANA R TAVAVALA E 0 TAVAVAA T
TArApA O™ “aeana [COM Tavara ©OM avar a4 COM
AVAF ANA, ANA L AVA, AVAF ANA R

AVA- ApA COontir AVACANA

Contry,

(AVA)V(AVA) - ANA, ANA
(AVA)V(AVA) - ANA

Contrg

Figure 1. The displayed LK-proofs are taken from a reduction sequence that starts with the first proof and ends
with the third proof—a normal form. The second proof is an intermediate step. The cut-rules in the top proof are
eliminated in such a way that first the right subproof is duplicated creating two instances of the cut-rule marked with

a star (second proof). Subsequently, each copy of this cut-rule is reduced applying different cut-reductions. This
reduction sequence is impossible using a cut-elimination procedure that depends on colour annotations, because
the colours prevent the two copies of the cut-rule reducing differently. In effect, starting from the first proof the
normal form is not reachable in 'K

colour annotations). In consequence, we shall show that the colours’fnalé unnecessary to ensure
strong normalisation of cut-elimination. As mentioned earlier, a pleasing consequence is that, in general,
more normal forms can be reached from a given proof containing cut-rules. Unfortunately, the generality
of our reduction system means that strong normalisation is much more difficult to prove; it cannot, for
example, be proved by a translation into proof-nets. In the end, we found it extremely useful to develop a
term calculus for sequent derivations. This then allowed us to adapt directly a powerful proof technique
from the term rewriting literature.

The paper is organised as follows. In Section 2 we shall introduce a sequent calculus where the
inference rules are inspired by Kleene’s sequent calculus G3a [19] and the sequent calculus G3c of [24].
One distinguishing feature of our calculus is that the structural rules are completely implicit in the form
of the logical rules. In effect, our contexts are sets, as in type-theorynatmdultisets, as in LK and
LJ. We shall annotate the corresponding sequent proofs with terms and formulate the cut-reductions as
term rewriting rules. A detailed strong normalisation proof will be given in Section 3. The proof adapts
Barbanera and Berardi's technique of symmetric reducibility candidates [2]. In Section 4 we shall give
some details of how to extend the strong normalisation result to the first-order fragment of classical logic.
Section 5 will conclude and give suggestions for further work.

6 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

2. Terms, Judgements, Rewrite Rules and Substitution

In this section we shall introduce a sequent calculus for classical logic and develop a strongly normalising
cut-elimination procedure. In order to present the strong normalisation proof in a convenient form,
we shall annotate our sequent proofs with terms and formalise the cut-elimination procedure as a term
rewriting system. In particular, we are able to express a proof transformation as a special sort of proof
substitution.

Our sequents consist of two contexts—amecedenand asuccedent-both of which are sets of
(label,formula) pairs. Since there are two sorts of contexts, it will be convenient to separate the labels
into namesandco-namesin what followsa, b, ¢, . .. will stand for co-names and . , z, y, z for names.
Consequently, contexts are either built up by (name,formula) pairs or (co-name,formula) pairs. We shall
call the formereft-contextsand the lateright-contexts Furthermore, we shall employ some shorthand
notation for contexts: rather than writing, for exampléz, B), (v, C), (z, D)}, we shall simply write
x:B,y:C,z:D andreferto{z, y, z} as thedomainof this context.

Whereas in LK the sequents consists of an antecedent and succedent only, in our sequent calculus
the sequents have another componentrm Terms encode the structure of a sequent proof, and thus
allow us to define a complete cut-elimination procedure as a term rewriting system. Other proposals for
terms, for example [3, 21], do not encode the structure of proofs and so would seem less useful for our
purposes. The set of raw tern¥, is defined by the grammar

M,N == Ax(z,a) Axiom
| Cut({a:BYM, (x:B)N) Cut
| Notr((z:B)M,a) Not-R
| Notz, ((a:B)YM, x) Not-L
| Andg((a:B)M, (b:C)N , c) And-R
| And? ((z:B)M,) And-L; i=1,2
| Or%((a:B)M, b) Or-R; i=1,2
| Orp((x:B)M, (y:C)N, z) Or-L
| Impp((x:B){a:CYM, b) Imp-R
|

Imp; ({a:B)M, (x:C)N, y) Imp-L

wherez, y, z are taken from a set of names awdb, ¢ from a set of co-names3 andC' are types
(formulae) given by the grammar

Bu=A|-B|BAB|BVB|BOB

in which A ranges over propositional symbols.

We use round brackets to signify that a name becomes bound and angle brackets that a co-name
becomes bound. In what follows we shall often omit the types on the bindings for brevity, regard terms
as equal up to alpha-conversions and adopt a Barendregt-style convention for the names and co-names.
These conventions are standard in term rewriting. Notice however that names and co-names are not the
same notions as a variable in the lambda-calculus: whilst a variable can be substituted with a term, a
name or a co-name can only be “renamed”. Rewriting a natog, in a termA/ is written asM [z +— y],
and similarly rewriting a co-name to b is written asM [a — b]. The routine formalisation of these
rewriting operations is omitted. For our terms we have the relatively standard notions of free names and
free co-names. Given a term, s&, its set of free names and free co-names is writteR &% /) and
FC(M), respectively. Another useful notion is as follows.

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 7

Definition 2.1. A term, M, introduceshe name: or co-name, if and only if M is of the form

forz: Ax(z,c) fore: Ax(z,c)
Noty,((a)S, z) Notr((@)S, c)
And} ((@)S, 2) Andg((@)S, BT, c)
Orp((@)S, T, 2) Orly (@S, ¢)
Imp; ({@)S, ()T, z) Impp((@)a)S,c)

A term freshlyintroduces a name, if and only if none of its proper subterms introduces this name. In
other words, the name must not be free in a proper subterm. Similarly for co-names. O

As we shall see later, this definition corresponds to the traditional notion of the main formula of an
inference rule.

Thus sequents, dyping judgementsn our sequent calculus are of the fofhe M » A, wherel is
a left-context,M a term andA a right-context. A term)/, is said to bewell-typed if I' > M > A can
be derived given the inference rules shown in Figure 2. For the rest of the paper we shall assume that all
terms are well-typed and writ€ to denote the set of all well-typed terms. Notice however that there are
a number of subtleties concerning contexts implicit in the rules for forming typing judgements. First, we
assume the convention that a context is ill-formed, if it contains more than one occurrence of a name or
co-name. For example the left-context B, x : C' is not allowed. Hereafter, this will be referred to as
the context convention, and it will be assumed that all inference rules respect this convention.

Second, we have the following conventions for forming contexts in Figure 2: a comma in a conclu-
sion stands for the set union and a comma in a premise stands fdisfbimt set union. Consider for
example thed z-rule.

x:B,L'eMveAja:C 5
T o mpp(@ (@M, b) > A, b: BoC

This rule introduces the (co-name,formula) gailB > C in the conclusion, and consequentlys a free
co-name inmpx((z){a)M,b). Howeverb can already be free in the subteff, in which casé : BOC
belongs taA. Thus the conclusion of the p-rule is of the form

Lelmpr((@)a)M,b)> A@b: BOC

where® denotes set union. Note that: B anda : C' in the premise ar@ot part of the conclusion
because they are intended to become bound. Hence the premise must be of the form

z:BI'cMvrA®Ra:C

where® denotes disjoint set union. If the tedmp;((x){(a) M, b) freshly introduce$: BOC, then the
Dr-rule is as follows

r:BI"MrA®a:C 5
T > Impg(@/(@M,b) > A@b: BoC ~°

whereb: BOC is notinA.

8 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

AX F1‘>M‘>A17CLZB x:B,FQDNDAQ

z:B,T'> Ax(z,a) > A,a: B T, T > Cut(@ M, @N) > Ay, A Cut
I'eMv>Aja:B _ z:B,I'>cM»>A _
z:-B,oNot,(@M,z)> A T[> Notp(@M,a)>A,a:=B
x: B, I'>Mv>A AL (i=1.2) I'>Mv>A,a:B F>N>A,bch
- L;(i=1,
y: B1ABy, > And} ((©)M,y) » A I>Andr({@M, ()N, c) > A, c: BAC R
r:BT>M>A y:C,T>NeA '>Mv>Aa:B; Vi (i=12)

L

z:BVC,T v Orp ()M,)N, z) > A Lo Orbs((a)M,b) > A,b: B;VBs

T'eMv>Aja:B x:C,FDNDAD z:B, v M>Aa:C 5
y:BoC,T > Imp, (@M, @N,y) > A~ T o Impg (@i @M, b) > A b: BoC

Figure 2. Inference rules for the propositional fragment of classical logic.

There is one point worth mentioning in the cut-rule, because it is the only inference rule in our
sequent calculus that does not share the contexts, but requires that two contexts are joined on each side
of the conclusion. Thus we take this rule to be of the following form.

I'MFAT®a:B z2:BRIsFA,
MA@ A

Cut

In consequence, this rule is only applicable, if it does not break the context convention, which can always
be achieved by renaming some labels appropriately. Note that we do not require that cut-rules have to be
“fully” multiplicative: the I';’s (respectively the) ;’s) can share some formulae.

We add now two new syntactic categories of terms. Theynatgroof annotations, but play an
important ble in the definition of proof substitution and in the strong normalisation proof.

Definition 2.2. Let M andN be terms, therfw: B)M and{a:C)N are callechamed ternmandco-named
term, respectively. More formally we have the following two families of sets indexed by types:

def { (x:B)M ‘ M € T with the typing judgementz : B,T > M > A }

Ty def {<a:C>N ‘ N € T with the typing judgement’ > N > A, a: C } -

Next we focus on the term rewriting rules. One reason for introducing terms is that they greatly
simplify the formalisation of the cut-reduction rules, most notably the rules for commuting cuts. In
the propositional fragment of the sequent calculus LK there are 508 different cases of commuting cuts!
Traditional treatments, for example [12, 13, 15], either omit these cut-reductions entirely or present only
a handful of cases. This is unfortunate as a careful study of these reductions sheds some light on the
problems of non-termination of cut-elimination. Using the notion of proof substitution, which we shall
introduce below, the cut-reductions necessary for dealing with commuting cuts can be formalised in only
twenty clauses. Clearly, this is an advantage of our use of terms.

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 9

Before we formalise the notion of proof substitution, let us give some intuition behind this operation.
Consider the following sequent proof where we have omitted the terms and labels for brevity.

*
, BVC,DrE,BC A B,FrB,c ™ aFkB,chX,
m{ BvCr DoE,BvC ™ BVCv DSE, BVC VR BVC,F-B,C_ P im
L L,y

(BVC)V(BVC)+-DDE, BVC BvVC ,FAGv B,C
(BVC)V(BVC), FAGv DDE, B,C

Cut

The cut-formula (shaded formula) is neither introduced irttizerule nor inAy,, . Therefore the cut-rule
is, by definition, a commuting cut. In; the cut-formula is introduced in the axioms marked with a
star, and inry, respectively, in the inference rule marked with a disc. Eliminating the cut-rule in the
proof above means either to permute the derivatipmo the places marked with a star and replace the
corresponding axioms with,, or to permuter; and “cut it against” the inference rule marked with a
disc. In the former case the derivation being permuted is duplicated.

We realise these operations at the term level with two symmetric forms of substitution, which we
shall write as

Plz:B:={a:B)Q] or S[b:B:= (y:B)T].

If they are clear from the context, the type annotations in substitutions will be often omitted for brevity.
Returning to our motivating example, assume thatand N are the terms corresponding to the
subproofsr; andws. Thus the terms have the following typing judgements.

z:(BVC)V(BVC) » M » a: DDE,b: BVC
y:BVC,z: FANG » N » ¢:B,d:C

Consequently, we have the typing judgement
z:(BVC)V(BVC),z: FAG v Cut((OM,(y)N) » a: DDE,c:B,d:C

for the conclusion of the example proof. The tedfb := (y)N] denotes then the following proof,
where we have again omitted all terms and labels for brevity.

BEDFEBC™ CFDrEBC™

B,F+-DoE,B,C C,F+D>SE,B,C C\X BVC,F,Dv E,B,C VL

BVC,FvDSE,B,C L BVC,FAG,DvE,B,C

BVC,FAGF DOE, B,C BVC,FAG-DOE,B,C |
(BvC)V(BVC),FN\GvDDE, B,C

AX

AL,

Ly R

L

Similarly the symmetric cas& [y := (b) M| denotes the proof

BVC. D E,BvC ™

BVCrDoE,BVC ™ BvCrDoE, Bve
(BVC)V(BVC)+ DOE, BVC g
(BVC)V(BVC), F+DoE, B,C

(BVC)V(BVC),EAFv-DDE,B,C

B.FrB.C ™

C.FrB,.C CX
BVC,FFB,C

L

Cut

Ly

10 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

Before we give the definition of the substitution, it is instructive to look at some further examples.
As we have seen, commuting cuts need to permute, or “jump”, to the places where the cut-formula is
a main formula. At the level of terms this means the cuts need to be permuted to every subterm which
introduces the cut-formula. Therefore, whenever a substitution is “next” to a term in which the cut-
formula is introduced, the substitution becomes an instance @utyerm constructor. In the following
two examples we shall writer] and|r] for the substitutionéc := (x) P] and[z := (b)Q)], respectively.

Andg (@M, BN, c)[o] = Cut((©Andg((@ M[o], &) No],), @)P)
Imp; (@M, ()N, x)[r] = Cut((t)Q, @)Impy ({a) M[7], (y) N[r],z))

In the first term the formula labelled withis the main formula and in the second the formula labelled
with z is the main formula. So in both cases the substitutions “expand” to cuts, and in addition, the
substitutions are pushed inside the subterms. This is because there might be several occurtences of
andz: both labels need not have been freshly introduced. An exception applies to axioms, where the
substitution is defined differently, as shown below.

(B P)] = Plb—a]
Ax(z,a)la == Q] = Qly—x]

Recall thatP[b+— a] stands for the tern® in which every free occurrence of the co-nais rewritten

to a (similarly Q[y — x]). We are left with the cases where the name or co-name that is being substituted
for is not a label of the main formula. In these cases the substitutions are pushed inside the subterms or
vanish in case of the axioms. Suppose the substitlitibis not of the form[z := ...] and[a := ...],

then we have the following clauses.

>
Bay
B
2
E)

|

Orp((@)M,(y)N, z)[o] = Org((x) M[o], () Nlo], 2)
Ax(z,a)[o] = Ax(z,a)

Figure 3 gives the complete definition of substitution. We do not need to worry about inserting contrac-
tion rules when a term is duplicated, since our contexts are sets of labelled formulae, and thus contractions
are made implicitly. Another simplification is due to our use of the Barendregt-style naming convention,
because we do not need to worry about possible capture of free names or co-names. Let us now introduce
some useful terminology for substitutions.

Terminology 2.1. We shall write[o] to range over substitutions of the fofm:= (a)Q] and[b := ()T7.
In the first case we say is the domain ofo], written asdom([o]), and the co-named tert)Q is the
co-domain of{o], written ascodom([o]). Similarly for the second case. 0

Next we focus on the cut-reductions for logical cuts. Consider an instance of; any,, -cut for
which a néwve definition of reduction might be

Cut((c)Andp({a) M, (BN, c), i And} (@) P,y)) — Cut((@)M, (x)P) .

Unfortunately, there is a problem with this reduction rule. In our sequent calculus the structural rules
areimplicit: this means that not only does the calculus have fewer inference rules, but more importantly,
we have a very convenient way to define substitution (we do not need explicit contractions when a term

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

11

1 Ax(z,0)[c = @)P] € Ply—a]

2 Ax(y,a)ly = (@ P] € Ple—al

3 Not ()M, a)[a yp] & Cut(<a)NotR((ﬂs)M[a .= () P],a),)P)

4 Not,, (@M, z)[z == (&P] %' Cut((0 P, @Not({a)M]z := () P],z))

5. Andp({@M, BN, c)[c:= P] " Cut((c AndR(@ M[c := ()P], ®N|c :=) P],),) P)
6 And: ((:,;M Py = ©P] L Cut((oP, wAnd (@)M[y = (©P],y))

7 Orfp((@M,)[c = @ P] € Cut((c OrR< Mle = @)P),c),)P)

8. Orn((@M, N, 2)[z = ©P] L Cut((oP, 2)Or(w)M[z := (P],)Nz := (& P], 2))
9. Impp((@){a)M,b)[b:= P] Cut((b ImpR(Na)M b := (y)P],b), (y)P)

10. Impy({@ M, (@)N,y)ly :== (e P] = gef Cut({0 P, (Wlmpy (la) My := (&P, (@)N|y := (&P, y))
Otherwise:

11. Ax(z,a)o] &' Ax(z,a)

12, Cut((@ M, @N)[o] €' Cut((@ M[o], @) Nlo))

13, NotR((a:)M, a)[o] £ Notg((@) M[o],a)

14, NotL(,2)[0] L Noty (ta) Mlo], z)

15. Andg (@M, BN, c)jo] L Andg((@) Mo], & Nlol,c)

16. And: ((:CM o] L Andi () Mlo],y)

17. OrR(M ,b)[o] L' Or (@) M]o],b)

18. OrL (@M,)N, 2)[o] £ Or((x) M[o], W) Nlo],)

19. ImpR((x M, b) o] € Impp(@)i@ M[o],b)

20. Imp, (@M, @N,y)[o] L Imp, (@) M[o], @) Nlo],y)

Figure 3. Proof substitution.

12 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

is duplicated). On the other hand, there is a subtle side-effect of this design decision. Consider the

following instance of the redex above

I‘1>MDA1,C:B/\C’,a:B FleDAl,bSC I:B,FQDPDAQ
T > Andr((@M,)N, c) > Ay, c: BAC "y BAC, Ty e And} (@)P,y) > A,
'y, Ty > Cut(¢@And g ((@ M, (YN, c), @Andy (@) P, y)) > A, Ay

Ay

Cut

wherec is a free co-name ifM/. Our nave reduction rule would yield

T'yoM>A,c:BAC,a:B x:B,T9>Pr A,
'y, To > Cut({a) M, (@)P) » Ay, Ag, ¢: BAC

Cut.

Herec has become free in the conclusion! The problem is that the original proof, despite first appear-

ances, is not a logical cut, but in fact a commuting cut, and should really be reduced to
Andg({a) M, (b)N, c)[c := (And} (@) P,y)] .

Consequently, we ensure that logical reduction rules apply only where the cut-fornfidshilyintro-
duced. Figure 4 gives our cut-reductions for logical cuts, denoted-by, and commuting cuts, denoted

by —<-. We automatically assume that the reductions are closed under context formation, which is a
standard convention in term rewriting. For the cut-reductions there are a few remarks worth pointing out.

Remark 2.3. There are a few subtleties in the fourth reduction rule.

e First, there are two ways to reduce a cut-rule having an implication as the cut-formula. Consider

the following cut-instance

z:BeMva:C 5 >Nvec:B y:C>Pro
> Imp g ((@)a)M,b) »b: BOC f z:BDC v lmp ({OON, ()P, z) >
> Cut((WImpr((@)ad M, b), (DImpy (N, WP, z)) >

which can be reduced to either of the following cut-instances.

>Nvee:B ac:Bl>M>a:C’Cut x:BeMva:C y:CePr cut
> Cut((eN,@M)va:C y:CePro cut >Nec:B z:BrCut({@M,yP)r
> Cut({a)Cut({N, (@)M),) P) » ! > Cut((e) N, (@)Cut({a) M, () P)) »

Therefore we have included two reductions, which entails that our cut-elimination procedure is

non-deterministic.

e Second, special care needs to be taken so that there is no clash between bound and free (co-)names.

The termimppg((@)(a)M, b) bindsz anda simultaneously; however in the reducts the cut-rules
bind = anda, separately. Therefore in the first reduction rule we need to ensure ihatot a
free co-name irc) N and in the second rule thatis not a free name ify) P. This can always be
achieved by renaming andx appropriately: they are binders impy((x){(a)M,b). We assume
that the renaming is done implicitly in the cut-elimination procedure. O

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 13

Logical Cuts (i = 1,2)

1. Cut((@Notg((@)M,a),)Notz (BN, y)) —— Cut(BN, (x)M)
if Notg((z)M, a) andNoty, ((b)N,y) freshly introduce: andy

2. Cut((WAndg((a1) My, (ag) M2, b), (And} ((2)N,y)) —— Cut({a;) M;, (x)N)
it Andp({ay) My, {as)Ms,b) andAnd’ ((x)N,y) freshly introduceb andy

3. Cut(mOrh (@M, b),))Orp ((x1) Ny, (x2)Na,y)) —— Cut((a)M, (z;)N;)
if Orly((a)M,b) andOrp,((x1) Ny, (x2) Na, y) freshly introduceh andy

4. Cut(®Impp(@)a)M,b), ()lmp, ((ON,)P, z))
—Ls Cut({a)Cut(@N, (@)M), (i) P) or
—Ls Cut({e)N, (@)Cut({a) M, (y) P))

if Impg((x)(a)M,b) andlmp; ((e)N, (y) P, z) freshly introduceb andz

5. Cut({@)M, (@)Ax(x,b)) —— M[a+—b]

if M freshly introduces

o

Cut({a)Ax(y, a), @) M) —— M[z—y]

if M freshly introduces:

Commuting Cuts

7. Cut({@M, @)N)
—<— M]Ja := (x)N] if M does not freshly introduce, or
—<— N[z := (@M] if N does not freshly introduce

Figure 4. Cut-reductions for logical and commuting cuts.

14 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

We are now ready to formulate our cut-elimination procedure. We shall define it in terms of an abstract
reduction system [1].

Definition 2.4. (Cut-Elimination Procedure)
The cut-elimination procedur@, <) is an abstract reduction system where:

e T is the set of terms, and
e <4t consists of the reductions for logical cuts and commuting cuts, i.e.,

cut d:efl U —<

O

Notice that—— and —<— are closed under context formation. Te¢mmpletenessf <% is simply the
fact, obvious by inspection, that every term beginning with a cut matches at least one left-hand side of
the reduction rules. So each irreducible term, also called a normal form, is cut-free.

We should like to prove that the cut-reductions satisfy the subject reduction property, which states
that a term reduces to a term with the same typing judgement.

Proposition 2.5. (Subject Reduction)
SupposéV! is a term with the typing judgemeiit> M > A andM < N, thenN is a term with the
typing judgement’ > N > A.

Proof: By inspection of the reduction rules. O

3. Proof of Strong Normalisation

In this section we shall give the details for the strong normalisation proof of the reduction system
(T,-%Ls). The proof adapts the technique of the symmetric reducibility candidates from [2]. Unfor-
tunately, we cannot apply this technique directly to prove strong normalisati¢fi fe#l-), because to
strengthen an induction hypothesis we need the property

for b not free in(a) P andx not free in(y)Q. However, this property doast hold for the substitution
operation given in Figure 3. This means that “independent” substitutions, in general, do not commute!
The (only) problematic case is wheb¢ is of the formAx(x, b); for example

Ax(z,b)[x := (@) P][b:= Q] = Pla—b][b:= (y)Q], but
Ax(z,b)[b = Q][x := (@) P] = Qy—=z][z := (@ P].
Clearly, there is no reason for the two resultant terms to be equal. To remedy this situation we shall
define an auxiliary cut-reduction systeffT, -2“%), which has a more subtle definition of substitution
including two special clauses to handle the problematic example above. Intuitively we should expect
Ax(z,b)[x = (@) P][b :=
X bl = @Plb:= WL L _ b 0.
Ax(z,b)[b = (YQ][z := (a) P]

The auxiliary substitution, written a&/{a := (x) N} and N{z := (@) M}, is defined as follows.

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 15

Definition 3.1. (Auxiliary Substitution)
The auxiliary substitution consists of the clauses

Cut((@ M, @) Ax(z, b)){b == P} L' Cut((

Ax(z, c){c := y)P} ® Cut(©Ax(z, ¢), () P)
Ax(y, a)fy == @ P} = Cut((e) y>Ax<y, a))
Cut(la)Ax(z, a), () M){z == P} % Cut() M{x B P})
((@)

YM {b (Y P}, (y)P)
and the clauses 3-20 shown in Figure 3, except|thjis replaced with{ __}. 0

For the auxiliary substitution we apply the same terminology as for substitutions of thelfoiisee
Terminology 2.1). Since we changed the substitution operation, we need to adapt the reduction rule for
commuting cuts. The modified rule is as follows

Cut(@M,@N) <= Ma:=@N} if M does not freshly introduce, or
< N{z:= (@M} if N does not freshly introduce.

The auxiliary cut-elimination procedure is then

Definition 3.2. (Auxiliary Cut-Elimination Procedure)
The auxiliary cut-elimination procedufd, -2“£) is an abstract reduction system where:

e T is the set of terms, and
e -2UZ, consists of the rules for the logical cuts and the modified reduction for commuting cuts, i.e.,

def /
aux, G611 U —<

O

Given the proof of Proposition 2.5, it is a routine matter to verify that this reduction system, too, satisfies
the subject reduction property. Let us now outline how we shall proceed in our strong normalisation
proof for (T, -24%5),

1. Define the sets of candidates over types using a fixed point construction (Definition 3.4).
2. Prove that candidates are closed under reduction (Lemma 3.12).

3. Show that a named or co-named term in a candidate implies strong normalisation for the corre-
sponding term (Lemma 3.13).

4. Extend the notion of safe substitution to simultaneous substitutions (Definition 3.15).
5. Prove that all terms are strongly normalising (Theorem 3.19).

Finally, we shall show that everf“--reduction maps onto a series-§#-reductions and thus prove
that (7, -4+ is strongly normalising, too.

First, we define for every type two candidates, writterf@3)]] and[(B)]. These candidates are
subsets of named or co-named terms, [@3)] C T,y and[(B)] € Tp). Whilst traditional notions of
candidates are defined by a simple induction over types, our candidates are inductively defined over types,
but also include fixed point operations. Before we give the definition of the candidates we shall introduce
some set operators, which fix certain closure properties for the candidates. Each of the operators is
defined over sets of (co-)named terms having a specific term constructor at the top-level.

16 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

Definition 3.3. (Set Operators)

axiovs sy £ { @BAXp.Y) | @BAKyb) e Tp |

axioms s, € L @BAKY.Y) | @BAX(yb) € T |
Note thatz can be equal tg, anda to b. Figure 5 gives the set operators that correspond to the other

term constructors. Additionally we have

BINDING () (X) def { (x:B)M ‘ forall (a:B)P € X . M{z := (a:B)P} € SN }

BINDING () (Y) &' { (@:BYM ’ forall (z:B)P € Y. M{a := (x:B)P} € SN }
where we use the notatidh € SN to indicate thafl" is strongly normalising (relative tg®“%). O

The set operators given in Figure 5 correspond to the properties we need to prove for showing that a
logical cut is strongly normalising, ar&iNDING is sufficient to prove strong normalisation for a com-

muting cut. In the definition of the candidates we use fixed points of increasing set operators. A set
operatorpp, is said to be:

increasing, ifandonlyif SC S = op(S) C op(S’), and
decreasing, ifandonlyif SCS = op(S) 2 op(9’).
We are now ready to define the set operatec and the candidates.

Definition 3.4. (Candidates)
The mutually recursive definition over types foEG and the candidates is as follows.

NEG(By-

NEG 4 (X) def _

NEGy(X) & NOTRIGHT ¢y ([(C)])
NEG(apy(X) L P AXIOMS (5 U BINDING 5)(X) U § ANDRIGHT (o p) ([(O)], [(D)])
NEG(c vey (X) & Uiz1.0 ORRIGHT, | ([(C)])
NEG(op) (X) & MPRIGHT o ()] [(D)])
NEG(pB)-

NEG(A)(X) def _

NEGL)(X) & NOTLEFT(~c) ([(C)])

NEG(c, acy) (X) def AXIOMS gy U BINDING (p)(X) U ¢ U= 12ANDLEFTZC nea) (LG
NEG(eyp) (X) & ORLEFT(cv) ([(C)], [(D)])
NEG(op) (X) % IMPLEFT 5) ([(C)], [(D)])
candidates:

(B] £ X
(B £ Nee (I(B)])

where X is the least fixed point of the operatoEG zyo NEGp . O

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

17

NOTRIGHT - gy (X)

NOTLEFT(-p)(X)

ANDRIGHT grc) (X, Y)

ANDLEFT(; . .+ (X)

ORRIGHT . (X)

ORLEFT(gv()(X,Y)

IMPRIGHT g5y (X,Y)

IMPLEFT(550) (X,Y)

(a:=B)Notg((x:B)M, a) |
Notg((z:B)M, a) freshly introduces:,
(x:BIM € X

(z:=B)Noty, ({a:BYM, z) |
Noty, ({a: BYM, z) freshly introduces,
(a:BYM € X

(c:BACYAndg({a:BYM, (b:C)N , ¢) |
Andgr({a:BYM, (b:C)N, ¢) freshly introduceg,
(a:BYM € X,
b:CYN €Y

(y:BiABo)AndY, ((x:B) M, y) |
And’ ((z:B;) M, y) freshly introduces,
(z:B)M € X

(b:B1VB2)Or% ((a: B;)M,b) |
Or%, ((a:B;) M, b) freshly introduces,
(a:ByM € X

(z:BVCO)Orp((z:BYM, (y:C)N, z) |
Orp((x:BYM, (y:C)N, z) freshly introduceg,
(x:B)M € X,
(y:C)N €Y

(b: BoC)mp g ((@:B)a:CYM,b) |
Impr((x:B){a:C)M,b) freshly introduce$,
forall z:C)PeY .

(z:B)M{a := ()P} € X,
forall (¢:B)Q € X .
(a:O)M{z :={0Q} €Y

(y:BOO)mpy (la:BYM, (x:C)N,y) |
Imp;, ({a:B)M, (x:C)N, y) freshly introduceg,
(a:B)M € X,
(x:C)N €Y

Figure 5. Definition of the set operators for the propositional connectives.

18 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

Remark 3.5. The least fixed point of the operatNEG) o NEG gy is defined since botBINDING (g
andBINDING () are decreasing operators. ConsequenthG, g, andNEG g, are decreasing. But then
NEG(p)o NEG(y must be increasing, and the least fixed paiptexists according to Tarski's fixed point
theorem. O

Two basic properties of the candidates are as follows.

Proposition 3.6. (i) [(B)] = NEG)([{B)]) (i) Axioms gy C [(B)]
[(B)] = NEG(z) ([(B)]) AXIOMS) C [(B)]
Proof: (i) follows from Definition 3.4, and (ii) holds trivially SInCREG is closed undeanxiomMs. O

Let us analyse some of the motivations behind the completely symmetric definition of the candidates.

Remark 3.7. Given the symmetry stated in Lemma 3.6(i), we have a simple method to check whether
a named or co-named term belongs to a candidate. For example, take a co-named term of the form
{(a:BACYM for which we wish to know whether it belongs to the candidg®AC)]. Because of the
equation[(BAC)] = NEGpacy ([(BAC)]) it is sufficient to show thata: BAC)M is an element in

NEG grcy ([(BAC)]). By definition of NEG gy we therefore have to show that BAC)M belongs

to at least one of the following three sets:

() AXIOMS prcy
(i) ANDRIGHT ¢y ([(B)], [{C)])

(iii) BINDING<BAC>([[(B/\C)])

This means thaiu: BAC) M must satisfy certain conditions depending on its top-level term constructor.
For example, in (i) it is required thédt: BAC)M is of the form(a: BAC)YAx(z, b); in (ii) of the form
(a:BACYAndr((0)S, (c)T',a) and it is presupposed thdb.S and (c)T" belong to[(B)] and to[[(C)],
respectively; in (iii) it is required thad/ is strongly normalising under any substitution @mwith a
named term belonging to the candid&AC)]. 0

In the next four lemmas we deduce some propertiegofand -““%. The first shows that the standard
substitution lemma holds for the auxiliary substitution (this lemma fails for substitutions of thedgyrm

Lemma 3.8. (Substitution Lemma)
For all M € T and two arbitrary proof substitution$g } and {7}, such thatlom({c}) is not free in
codom({1}), we haveM {c}{r} = M{r}{o{T}}.

Proof: By induction on the structure af/. The only case that is non-trivial is whedéd is an axiom,
the details of which are given below.

CaseM = Ax(z,b): Suppos€o} and{r} are of the form{z := (a) P} and{b := (y)Q}, respectively.
We analyse in turn the cas@s(z, b){o }{7} andAx(z, b){r}{o{7}}.
M{o}{r} = Cut({a) P, (x)Ax(z, b)){b := () Q}
= Cut((a) P{b := Q} ey
M{r}Ho{r}} = Cut((bAx(z, b))Q){z := (@) P{b := () Q}}
= Cut({a) P{b :=)Q},) Q{z := (@) P{b := (Q}})
= Cut((a) P{b :=)Q}, y)Q) because by assumptiang FN((y)Q) 0

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 19

Lemma 3.9. SupposeV/ € T andM -24Z; M.

(i) If M freshly introduces the name then/’ freshly introduces:.
(i) If M freshly introduces the co-namethen)’ freshly introduces.

Proof: If M freshly introduces a name or a co-name, tiiéncannot be of the fornCut(_,) (see
Definition 2.1). The lemma follows by inspection of the reduction rules‘6%. O

Lemma 3.10. For all termsM € T we have
(i) M{z:= (@Ax(y,a)} 5" Mx—y]
(i) M{a := (@)Ax(z,b)} 25" Mar— b]
Proof: By routine induction on the structure 61. O

Notation 3.1. The expressiod/ -2“L, —auz,0/1 ©r7 stands for eitheM = M’ or M 242,)y’ O

Lemma 3.11. For an arbitrary substitutiof}, if M 242, M’, thenM {o} 242,91 M/ {o}.

Proof: By induction on the structure dff. We illustrate the proof with one case whég o} = M'{cs}
is possible.

CaseM = Cut({a)Ax(y,a), (@)S): SupposeS freshly introducesr and assumgo} is of the form
{y := (©T}. Furthermore, lef\/ 44 M’ with M’ = S[z — y]. In the following calculation
the equivalence (‘0’-case) occursSfy := ()T} freshly introduces:.

M{o}

Cut({@)Ax(y, a), (@)S){y := (T}
= Cut((aT, (@) S{y == (T})
oz 0/1 Gy = (o) THax = (0T}

S Shegly = OT} = M'{o)

(*) because by Barendregt-style naming conventigh F'N ((c)T) 0
The next two lemmas establish important properties of the candidates. The first shows that the candidates

are closed under reductions, and the second shows how the candidates are linked to the property of strong
normalisation.

Lemma 3.12.

(i) If (a:BYM € [(B)] andM 2% M, then(a:B)M' € [(B)].
(i) If @:B)M € [(B)] andM 24 M, then(x:B)M' € [(B)].

Proof: We prove both cases simultaneously by induction on the degrée (dkfined as usual). By
Proposition 3.6(i) we need to analyse all possible sets wiaefe M/ could be member in. Four repre-
sentative cases for (i) are given below; the arguments for (ii) are similar and omitted.

20 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

Case AXIOMS gy (a:B)M cannot be imXIOMs g, because axioms do not reduce.

Case BINDING (y ([(B)]):

(1) (a:B)YM € BINDING) ([(B)]) by assumption
(2) M{a:=@:B)P}e SNforall (z:B)P € [(B)] by Definition 3.3
(3) M 2wz, MY by assumption
(4) Mf{a:= (@:B)P} 22,00 Mg .= (2:B)P} by Lemma 3.11
(5) M'{a:= @:B)P} € SN forall (x:B)P € [(B)] by (2) and (4)
(6) (a:B)M' € BINDING) ([(B)]) by Definition 3.3
(7) (a:B)M' € [(B)] by Definition 3.4

Case ANDRIGHT . py ([{O)], [{D)]), B = CAD:
(1) M =Andg((d8S,)T, a), M' = Andr({d)S’,)T, a) and

(a:CAD)M € ANDRIGHT cnpy (O], [{D)]) by assumption
2 s SandT' =T (the other case being similar) new assumption
(3) M freshly introduces, (d:C)S € [(C)] and(e:D)T € [(D)] by Definition 3.3
(4) M’ freshly introduces by Lemma 3.9
(5) (@S e [(O)] by induction
(6) (a:CAD)M' € ANDRIGHT o py ([(C)], [{D)]) by (4), (5) and Definition 3.3
(7) {a:CADYM' € [(CAD)] by Definition 3.4

Case IMPRIGHT o5 py ([(C)], [{D)]]), B =CoD:

1) M =Impr(@id)S,a), M'=Impr((@)d)S’, a), S22 S"and

(@:CODYM € IMPRIGHT (o5 ([(C)], [{D)]) by assumption

(2) M freshly introduces,
(d:D)S{z .= (e:CYQ} € [(D)] for all (e:C)Q € [(C)], and

(2:C)S{d := (z:D)P} € [(C)] for all (z:D)P € [(D)] by Definition 3.3
(3) M’ freshly introduces by Lemma 3.9
4 S{z:=(e:O)Q} <=0t §/fx = (e:C)Q},

S{d := (z:D)P} -2,/ 5/ .— (z:D)P} by Lemma 3.11

(5) (d:D)S{x = (e:CYQ} € [(D)] for all (e:CYQ € [(C)],
)S{d := (z:D)P} € [(C)] forall (z:D)P € [(D)]
by (2) and (4): ‘O’-case trivial, ‘1’-case by induction

(6) (@:CODYM' € IMPRIGHT 5 ([(C)], [{D)]) by (3), (5) and Definition 3.3
(7) {a:CoD)M' € [(CDD)] by Definition 3.4
O
Lemma 3.13.

(i) If (a:BYM € [(B)], thenM € SN.
(i) If (@:B)M € [(B)], thenM € SN.

Proof: The proof is similar to the one of Lemma 3.12. We shall give the details for four cases of (i).

Case AXIOMS) In this caselVl is an axiom, and therefore strongly normalising.

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 21

Case BINDING (py ([(B)]):

(1) {a:B)M € BINDING (g ([(B)]) by assumption
(2) M{a:=@:B)P} € SN forall (z:B)P € [(B)] by Definition 3.3
() (@:B)Ax(z,a) € [(B)] by Lemma 3.6(ii)
4) M{a:=@:B)Ax(z,a)} € SN by (2), (3) andP = Ax(zx, a)

(5) M{a:= @:BAx(z,a)} 55 M by Lemma 3.10
(6) MeSN by (4) and (5)

Case ANDRIGHT (¢ py ([(C)], [{D)]), B = CAD:
(1) M = Andg({d)S, ()T, a), (a:CAD)M € ANDRIGHT (o py ([(C)], [(D)]) by assumption

(2) (d:O)S € [(C)] andle:D)T € [(D)] by Definition 3.3
(3 SeSNandT € SN by induction
(4) Andr((d)S,(eT,a) € SN by (3)
Case IMPRIGHT 5y ([(O)], [{D)]), B = CDD:
1) = Impr((@)d) S, a), (@:CDD)M € IMPRIGHT 5y ([(C)], [(D)]) by assumption
(2) (:U:C)S{d = (z:D)P} € [(C)] forall (z:D)P € [(D)] by Definition 3.3
(3) (z:D)Ax(z,d) € [(D)] by Lemma 3.6(ii)
4) (:U:C)S{d = (z:D)Ax(z,d)} € [(O)] by (2), (3) andP = Ax(z, d)
(5) S{d:= (z:D)Ax(z,d)} € SN by induction
6) S{d:= (z:D)Ax(z,d)} 24> S by Lemma 3.10
(7) SeSN by (5) and (6)
(8) Impr(@)d)S,a) e SN by (7)
0

We are now in the position to prove that a cut is strongly normalising given that its immediate subterms
are strongly normalising and in a candidate corresponding to the cut-formula. The proof of this lemma
is inspired by a technique applied in [22]. Unfortunately, this proof is rather lengthy: the cases for the
logical reductions require relatively difficult arguments.

Lemma 3.14.
If M,N € SN and{(a:B)M € [(B)], (:B)N € [(B)], thenCut({a:B)M, (z:B)N) € SN.

Proof: We prove by induction that all terms to whi€hut({a) M, (x) N') reduces in one step are strongly
normalising. The induction proceeds over a lexicographically ordered induction value of the form
(6,1(M),I(N)), where¢ is the degree of the cut-formulB; ((M) andi(N) are the lengths of the
maximal reduction sequences starting frdfand NV, respectively. By assumption both/) andi(V)

are finite.

Inner Reduction:
(1) Cut({a)M,(x)N) 24 Cut({@)M', (x)N'),
(a:BYM € [(B)] and(z:B)N € [(B)] by assumption

22 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

(2) M -2z, M"andN = N’ (the other case being similar) new assumption
() (a:B)M' € [(B)] by Lemma 3.12
4 M eSN by Lemma 3.13
(5) Cut({(a)M',(x)N') € SN by induction,

the degree of the cut-formula is equal in both terms/buf’) < I(M)
In the following we show the cases where a reduction occurs on the top-level.
Commuting Reduction:
(1) Cut(@M,@N) - M{a := ()N} and(a:B)M € [(B)] by assumption

We know that the commuting reduction is only applicabléifdoes not freshly introduce This
implies that there are only two possibilities far: B) M to be in[(B)]: it can be inAXIOMS) or
in BINDING (5 ([(B)])-

In the first casél/ is an axiom that does not introdueeThusM{a := ()N} is equivalent taV/,
which we know is strongly normalising by assumption.

The proof for the second case is as follows.

(2) {a:B)M € BINDING (p)([(B)]) new assumption
(3) M{a:=y:B)P} e SNforall (y:B)P € [(B)] by Definition 3.3
(4) (@:B)N € [(B)] by assumption
(5) Mf{a:= @:B)N} € SN by (3), (4) andy)P = (z)N

The case wher€ut({a)M, (x)N') reduces taV{z := (a)M} is analogous. It remains to check for every
logical cut-reduction rule that the immediate reduct€of((a) M, (x)N) are strongly normalising. Here
we give just three cases to illustrate the proof. The difficult case is the logical redugtion,, because
both immediate reducts have two nested cuts.

Logical Reduction with Axioms: Cut((a)Ax(y, a), (x)N) reduces toN[z—y]. By assumption we
know that/V is strongly normalising, and therefoRé[x — y| must be strongly normalising.
Logical Reduction Ar/AL,, B = CAD:

(1) Cut((©M,yN) - Cut((@)S, @)U), M = Andg((a)S, 0T, c), N = And} (@)U,y),
M andN freshly introduce: andy, respectively,
(c:CADYM € [{CAD)] and(y:CAD)N € [(CAD)] by assumption

(2) ByLemma 3.6(i) we have:
{e:CAD)M € BINDING (¢ py ([(CAD)]) U ANDRIGHT (cap) ([{(C)], [{D)])
(y:CAD)N € BINDING (crp)([(CAD)]) U ANDLEFT%CAD)([[(C)]])

Now our argument splits into two cases depending on whether at least one(@fdhhd)) M and
(y:CAD)N belong toBINDING. Let us assume:CAD)M is in BINDING o py ([(CAD)]).

(3.1) (e:CAD)M € BINDING (cnpy ([(CAD)]) new assumption
(3.2) M{c:= P} e SN forall (z:CAD)P € [(CAD)] by Definition 3.3

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 23

(33) M{c:=@wN} e SN by (1), (3.2) and2)P = (y)N
(3.4) The following calculation shows th@tt((c)M, (y)N) € SN.

M{c := (y) N} = Andr({a)S, BT, c){c := (y) N}

)
= Cut({c AndR((a>S{c (N}, T{c := (y)N},c), yN)
= Cut({@?Andr({a) S, (O)T, ¢), (y)N) becausé// freshly introduces
= Cut((&M, ()N

If Cut({c)M, (y)N) is strongly normalising, then its reduCtit((a).S, (x)U) must be strongly nor-
malising, too. In cas@:CAD)N is in BINDING ¢ p) ([{CAD)]), we reason analogous.

If neither(c:CAD)M nor (y:CAD)N are inBINDING, then we proceed as follows.
(4.1) (c:CAD)M € ANDRIGHT (o) ([{(O)], [{D)]),

(y:CAD)N € ANDLEFT(CAD)([[(C)]) new assumption
(42) (a:0)S e [(C)]and@: O € [(C)] by Definition 3.3
(4.3) S andU are strongly normalising by Lemma 3.13
(4.4) Cut(ta:O)S,(@:ChU) € SN by induction (the degree decreased)

Logical ReductionDgr/Dr, B = CDOD:

1) M =Impgr(@)a)S,b), N =Imp, (T, U, z),
M andN freshly introduce andz, respectively,
(c:CDDYM € [(CoD)] and(y:CD>D)N € [(CDD)] by assumption

The termCut((b)M, (2)N) reduces to either

Cut({a) Cut({a)T, (@)S),U) or Cut({c)T, (@) Cut({a)S, U)) .

We have to show that both reducts are strongly normalising. We shall however only analyse the
first case in detalil.
(2) ByLemma 3.6(i) we have:

(b:CD>D)M € BINDING 5y ([(CDD)]) U IMPRIGHT (5 py ([(O)], [{D)])

(2:CDD)N € BINDING (c5p) ([(CDD)]) U IMPLEFT 50y ([(C)], [(D)])

Again the proof splits into two cases depending on whether the co-namedite€o D) M or
the named terniz : C>D)N belong toBINDING. Let us assumeéb:CDOD)M is an element in
BINDING (o~ py ([(CDD)]).

(3.1) (b:CDD)M € BINDING o~y ([(CDD)]) new assumption
(3.2) M{b:= WP} €SN forall (w:COD)P € [(CDOD)] by Definition 3.3
(3.3) M{b:=(2)N} € SN by (1), (3.2) andv)P = (2)N

(3.4) The following calculation shows th@tit((c) M, (y)N) € SN.

M{b := ()N} = Impg((@)a)S, b){b := ()N}
= Cut((DImpr((@){a)S{b := (2)N},b), (2)N)
= Cut((DImpr((@){a)S,b), (2)N) because\/ freshly introduce$
= Cut((WM, (2)N)

24 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

Therefore we know that the ter@ut((b)M, (2)N) is strongly normalising, and hence its reduct
Cut({a) Cut({aT, (x)S), (y)U) must be strongly normalising, too. In fact both reducts must be
strongly normalising. The case whereC> D)N belongs tBINDING (¢ py ([(CDD)]) is simi-

lar.

We now have to show that the reduct is strongly normalising in the case Wheate> D) M and
(z: CDD)N belong toIMPRIGHT (5 py ([(C)], [(D)]) and toIMPLEFT o) ([(C)], [(D)]), re-
spectively.

We first show that the inner cut of the reduct is strongly normalising.

(4.1) (b:CDODYM € IMPRIGHT o5 py ([(C)], [{D)]),

(2:CDD)N € IMPLEFT ¢ p) ([[<), 1D new assumption
4.2) (@:O)8{a:=w:D)P} € [(C)] forall (v:D)P € [(D)],

(c:OT € [(O)] by Definition 3.3
4.3) S{a:=(v: D)P} € SN andT € SN by Lemma 3.13
(4.4) Cut((aT,@S{a:= w:D)P}) € SN by induction (the degree decreased)

We required tha& is not free inie)T' (see Remark 2.3), and therefore we may move the substitution
on the top-level. Thus we have that

Cut((aT, (x)S{a := (v:D)P}) = Cut({)S){a = (v:D)P}.
(45) Cut(oT,@S){a:= w:D)P} € SN forall (w:D)P € [(D)] by (4.4)
(4.6) (a:D)Cut({a)T,(@)S) € [(D)] by Definition 3.3
Now we show that the outer cut is strongly normalising.
4.7) @:DU € [(D)] by (4.1) and Definition 3.3

(4.8) Cut(aT,(®)S) e SN andU € SN by Lemma 3.13
(4.9) Cut((l@Cut({aT, @)S), yU) € SN by induction (the degree decreased)

We reason analogous in the case where

Cut((WM, (2)N) = Cut({aT, (x) Cut({a)S, @)U)) .

We have shown that all immediate reduct<at({a) M, (x) N') are strongly normalising. Consequently,
Cut({a) M, (x)N') must be strongly normalising. Thus we are done. O

It is left to show that all well-typed terms are strongly normalising. In order to do so, we shall
consider a special class of substitutions, which are calde Two substitutions, sayo} and{7}, are
safe, if and only if the domain dfc} is not free in the co-domain dfr} and the domain ofr} is not
free in the co-domain ofc}. For examplgx := (a) P} and{b := (y)Q} are safe provided thatis not
free in(y)@Q andb is not free in(a) P. As explained earlier, the auxiliary substitution operatipn}, is
defined with the property in mind that safe substitutions can commute. A special case of the substitution
lemma for{_} (Lemma 3.8) ensures that for dif and any two safe substitutiogs } and{r} we have

M{op{r} = M{r}{o}.

We shall now extend the notion of safety from substitutions to simultaneous substitutions; that is to sets
of substitutions.

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 25

Definition 3.15. (Safe Simultaneous Substitutionsss)

0 isansss
cU{c} isansssifandonlyif ¢isansss dom({c}) & dom(5),
dom({c}) not free incodom(5), anddom(&) not free incodom({c}).
0

In the presence of our Barendregt-style naming convention and alpha-conversion, any set of substitutions
can be transformed into a safe simultaneous substitution. We shall, however, omit a formal proof and
rather give the reader the following example.

Example 3.16. Suppose we have a term, séf, and a safe simultaneous substitution, say

{{x (OAx(z,b)}, {a := (2)Ax(z, c)}}

and let us assume we have the substitufieh = {0 := (y)Ax(z,a)}. Clearly,6 U {¢} is not safe, and
thereforeM (6 U {c}) is an ill-defined expression. However, a andb are considered as binders and
thus can be rewritten. In effect, we can form the following safe versignf o }

Osafe= {{:1: (©Ax(z,b)}, {d' = (2)Ax(z, ¢)}, {b' := () Ax(z, a)}}

assuming that’, o’ and¥’ are fresh. Subsequently, we need to rewrite the corresponding names and
co-names inV/. Now the expressiotM [z +— z'][a a'][b— V] 5gateis Well-defined. 0

In the next lemma, we shall show that a specific substitution built up by axioms is an sss.

Lemma 3.17. Let 6 be of the form
{ U {z; = (O Ax(z;, ¢) } { U {a] = Ax(y,aj)}}
1=0,... ,n

where thex;’s anda;’s are distinct names and co-names, respectively. Substitaitisan sss.
Proof: By induction on the length of. O

Now we can show that every well-typed term together with a closing substitution is strongly normalising.
This is again a rather lengthy proof.

Lemma 3.18.

e For every well-typed terml/—not necessarily strongly normalising—with a typing judgement
I's M»>A, and

e for every sssg, such thatlom(T') U dom(A) C dom(5), i.e.,é is a closing substitutioh,and

e for every(z:B)P € codom(&) we require thatz: B)P € [(B)] and
e forevery(a:C)Q € codom(5) we require thata:Ch)Q € [(C)];

we haveM o € SN.

LAl free names and co-names bf are amongst the domain 6f

26

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

Proof: The proof proceeds by induction over the structur@fofWe shall give four representative cases,
in which we writeg, {c} for the setv U {c} and assuméo} ¢ 5.

CaseAx(z,a): We have to prove thaix(z,a) 7,{x := (b) P}, {a := (yQ} is strongly normalising for
arbitrary (co-)named termé: B)P € [(B)] and(y:B)Q € [(B)].

(1)
()
®3)
(4)
®)

Ax(z,a) 6,{z == P} {a = @Q} = Cut((hP, Q) by Definition of {_}

(b:B)P € [(B)] and(y:B)Q € [(B)] by assumption
P e SN andQ € SN by Lemma 3.13
Cut((WP, y)Q) € SN by Lemma 3.14
Ax(z,a) 6,{z := b P},{a = @Q} € SN by (1) and (4)

CaseAndr({a)M,(b)N,c): We have to prove thabndr({a)M,(B)N,c) 6,{c := (2)R} is strongly
normalising for an arbitrary named tetm BAC)R € [(BAC)].

1)
)
®3)
(4)

®)
(6)

(7)
(8)
9)

Andg (@M, (N, c) &, {c:=(2)R} =

Cut((0?Andg({a) M6,{c := ()R}, b) N&,{c:= ()R}, c), (2)R) Definition of {_}
M 6,{c:= (2)R},{a := (y) P} € SN for arbitrary(y: B)P € [(B)],

N 6,{c:= @R}, {b:= @)Q} € SN for arbitrary(z:C)Q € [(C)] by induction
(M&,{c:= (2)R}){a := (P} € SN,

(NG,{c:= (2)R}){b:= @)Q} € SN by (2) and sss
(a:B)(M&,{c:= (2)R}) € [(B)],

(b:C)(Né,{c:= (2)R}) € [(O)] by Definition 3.3
Andg({a)M & {c := (2)R}, ()N {c := (2) R}, ¢) freshly introduces by (1)

{(c: BACYAndr({a) M &, {c :=)R}, (B)Né,{c := (2)R}, c) € [(BAC)]
by (4), (5) and Definition 3.3

Andg((a)Mé,{c := (2)R}, BN, {c := ()R}, c) € SN, R € SN by Lemma 3.13
Cut((©Andg((@)Mé,{c == (DR}, N6, {c == (2)R},c), (2)R) € SN by Lemma 3.14
Andg((@M, BN, c) 6,{c = ()R} € SN by (1) and (8)

Caselmpg((z){a)M,b): We prove thatmpr((@)(a)M,b) 6,{b := (2)R} is strongly normalising for an
arbitrary named terrtx: BOC)R € [(BDC)].

(1)
)
®3)
(4)

®)
(6)

Imppr((@)a)M,b) 6,{b:= ()R} =

Cut((@Impp(@)Xa)Ma,{b:= (2)R},b), (2)R) by Definition of {_}
M 6,{b := ()R}, {a := P}, {z := (OQ} € SN

for arbitrary(y: B)P € [(B)] and{c:C)Q € [(C)] by induction
(M&,{b:= R}, {z = (Q}){a = WP} € SN,

(Mé,{b:=)R}, {a:= WP}){z:={Q} € SN by (2) and sss
(a:B) M&,{b:= ()R}, {z = (©Q} € [(B)]

(2:C) M&,{b:= (2)R},{a :=)P} € [(O)] by Definition 3.3
Impp((@)a)Ma,{b:= (2)R},b) freshly introduce$ by (1)

(b:BOO)mpg((@)a)Ma,{b:= (2)R},b) € [(BDC)] by (4) and (5) and Definition 3.3

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 27

(7) Impr((@ia)Mas,{b:= ()R}, b) € SN andR € SN by Lemma 3.13
(8) Cut({b)Impg(()(a) M, {b (2)R},b),(2)R) € SN by Lemma 3.14
©) Impp(@/@M,b)&,{b:= ()R} € SN by (1) and (8)

CaseCut({a)M, (x)N): Since we introduced in the definition ¢f_} two special clauses for cuts with
an axiom as immediate subterm, we have to distinguish two cases.

Subcase |: M is an axiom that freshly introduces the label of the cut-formula (the dade-
ing such an axiom is similar). We have to show that for arbitrary3) R € [(B)] the term
Cut({@)Ax(z,a), (y)N) & {a: := (b)R} is strongly normalising.

(1) Cut({a)Ax(z,a),)N) 6,{z = bR} =
Cut((BR, (y) N& {a; = ()R}) by Definition of {__}

(20 No&{z:= R} {y :== (&P} € SN for arbitrary(c:B)P € [(B)] by induction
) (No{r:= R}){y = (P} € SN by (2) and sss
(4) (y:B) No {x (R} € [(B)] by Definition 3.3
(5) No&,{z:=0bR}e SN andR € SN by Lemma 3.13
(6) Cut((WR (Na, {:c R}) e SN by Lemma 3.14
(7) Cut({a)Ax(z,a), y)N) 6,{x := bR} € SN by (1) and (6)

Subcase II: M and N are not axioms that freshly introduce the label of the cut-formula. We have
to prove thatCut((a) M, (z)N) ¢ is strongly normalising.

(1) Cut({@M,@)N) 6 = Cut((@Mé, @)NG) by Definition of {_}
(20 M 6,{a:= S} € SN for arbitrary(y: B)S € [(B)],
N 6,{x := (0T} € SN for arbitrary(b: B)T € [(B)] by induction
8 (Mé){a:= S}t e SN and(No){x := T} € SN by (2) and sss
(4) (a:B) M¢ € [(B)] and(z:B) N¢ € [(B)] by Definition 3.3
(5) Mo e SNandNG € SN by Lemma 3.13
(6) Cut({a) Mé,(x) N6) € SN by Lemma 3.14
(7) Cut(@M,@N)é € SN by (1) and (6)
0

We are now able to prove thé, -“%) is strongly normalising.
Theorem 3.19. For all well-typed terms®“%; is strongly normalising.

Proof: By Lemma 3.18 we know that for an arbitrary well-typed term, Aaywith the typing judgement
I'> M » A and an arbitrary safe simultaneous substitution ssayhere all free names and co-names are
amongst the domain af, the termM & is strongly normalising. Taking to be the safe simultaneous
substitution from Lemma 3.17 we can infer, using Lemma 3.10, &t -““** M, and we therefore
have thatM! is strongly normalising. Thus we are done. O

From this result we can deduce strong normalisatioliTore“ts), which is relatively straightforward
since every<“;-reduction maps onto a series-6f%-reductions. First we prove that {o} reduces to
or is equivalent ta\/ [o].

28 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

Lemma 3.20. For all M, N € T we have
(i) M{a:= (@)N} “5* M[a := (x)N]
(i) M{x:= (@N} 5" Mz := (@) N]

Proof: By induction on the structure df/. The non-trivial cases are where the definitiong of and
[] differ, one of which is given below.

CaseM = Cut((b) P, (Ax(y,a))

M{a := (x) N} = Cut((b) P, (Ax(y,a){a := ()N}
= Cut((b) P{a := (x)N}, (@)N)
o Cut(() Pla:= @N], @N)
Mla := (x)N] = Cut() P, (yAx(y, a))[a := (x)N]
Cut((b) Pla := (@)N], (y) Ax(y, a)]a := (@)N])
= Cut(¢b) Pla := (@)N], (y) N[z+—y])
()
= Cut((b) Pla := (x)N], (@)N)
(*) because by the Barendregt-style naming conventicannot be free iV. O

The next lemma shows that eves#s-reduction maps onto a series-§£%:-reductions.
Lemma3.21. ForallM, N € T, if M - N, thenM 242, N,

Proof: By induction on the structure of“-. We analyse all possible cases-8f--reductions.

Inner Reduction: Given thatM <“. N, there is a proper subterm i, say.S, which reduces t¢’.
This termS’ is a subterm ofV. We know by induction thaf -2%Z.* S’ and by context closure
that M 2wz, + N,

Logical Reduction: This case is obvious, because bet- and-2“Z; perform the same logical reduc-
tions.

Commuting Reduction: SupposeV/ —— N with M = Cut((a)S, ()T) andN = S[a := ()T}, then

[a
we know thatV/ —<— S{a := (x)T}. From Lemma 3.20 we have thd{a := (z)T} -2%.* N,
and thereforel/ -4, N, The symmetric case is analogous.
O

Now it is rather easy to show théT, -<“) is strongly normalising

Theorem 3.22. (Main Theorem)
For all well-typed terms<ts is strongly normalising.

Proof: Since-2“L, is strongly normalising for all well-typed terms, and whenever<“ N, we have
thatM 44=,* N, Consequently, the reducticf> must be strongly normalising. O

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 29

4. First-Order Classical Logic

In this section we extend the cut-elimination proced@e-<“t-) to the first-order fragment of classical
logic. To do so, we extend the notion of a formula by allowing atomic formulae to have arguments rang-
ing overexpressionaind introduce the quantifieksandd. We use ‘expression’ instead of ‘term’—the
standard terminology—in order to avoid confusion with our terminology introduced in previous sections.
Moreover, we use a sans serif font for expressions to clearly distinguish them from terms. The grammar
for expressions is

tu=x|ft...t

wherex is taken from a set ofariablesandf from a set of functional symbols. The formulae in the
first-order case are given by the grammar

B:=Aty...t, | "B | BAB | BVB | BOB | Vx.B | 3x.B

whereA ranges over predicate symbols, each of which take a fixed number of expressions as arguments,
and wherex ranges over variables.

Instances of the cut-rule with a quantified formula as cut-formula are eliminated such that in a sub-
proof a variable, also callegigenvariableis replaced by an expression. At the level of terms this means
some term constructors introduce an expression, which may appear in a substitution for an eigenvariable;
other term constructors bind a variable to signify that it is a placeholder for which an expression may be
substituted. The set of raw terniRY>, is obtained by extending the grammar®fgiven in Section 2
with the clauses

M,N == Forallg({a:B)lylM,Db) Forall-R
| Forall, ((z:B)M,t,y) Forall-L
| Existsp({a:B)M, t,b) Exists-R
| Existsy, ((z:B)lylM, y) Exists-L

in whichy is a variable and is an expression. In these terms, square brackets indicate that a variable be-
comes bound, and analogous to names and co-names we observe a Barendregt-style naming convention
for bound and free variables.

We now give the typing rules for the new terms and the corresponding cut-reductions. In both we
shall use the standard notion of (capture avoiding) variable substitution, writfgn-ast]; this notion
is defined over expressions, formulae and terms. The are four typing rules to govern the new term
constructors.

x:Bx:=t],>M>A v P>Mv>Aja:Blx:=Yy] v
y:Vx.B,T > Forall, ()M, t,y) > A ' © T > Forallg({@)lylM,b) > A, b:Vx.B

z:Bx:=y],I'>s M>A 5 e Mv> A a:Blx:=t] 5
y:Ix.B, T » Existsy, ((@)lylM,y) » A L T > Existsg({a) M, t,b) » A, b: Ix.B R

TheVy anddy, rules are subject to the usual proviso thatbes not appear free ihand A.
The cut-reductions are given next.

30 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

Definition 4.1. (Cut-Reductions for Quantifiers)
Cut((b)Forallg({a)lyl M, b), p)Forall, ()N, t, 1)) —— Cut({@) M|y := t], (x)N)

if Forallg({a)lylM, b) andForally ((x)N,t,y) freshly introduce: andx

({a ()
Cut((hExistsg((a) M, t,b), (y)Existsz (@)lyIN, y)) —— Cut((a)M, (x)Ny := t])
(

if Existsg((a)M,t,b) andExistsy, ((x)lylN, y) freshly introduce: andz
0

We identify, as usual, terms which differ only in their names of bound variables, because otherwise the
cut-reductions given above are not complete, in that some instances of the cut-rule cannot be eliminated.
An example of an LK-proof where a renaming of a variable is required during cut-elimination is given
in [19, 24]. In our calculus we assume that these renamings are done implicitly.

The definition of our proof substitution (see Figure 3) and the reduction can be extended to
R"3 in the obvious way. Therefore the details are omitted. Our strong normalisation proof given for the
propositional fragment of classical logic can be extended to include the rules dealing with the quantifiers;
for space reasons, however, we only give the set operators for the universal quantifier and omit the other
details.

(y:Vx.B)Forall, ((x:B[x := t)M,t,y) |
FORALLLEFT vy 5)(X) def Forally ((z: B[x := t)) M, t, y) freshly introduceg,
(z:Blx:=t)M € X
(b:Vx.B)Forallg({a: B[x := y]lylM,b) |
FORALLRIGHT v) (X) def Forallg({a: B[x := y])lylM, b) freshly introduce$,

forallt (x:B[x:=t)M € X

5. Conclusion

In this paper we have shown that only a slight reformulation of the standard cut-reductions is sufficient
to obtain a strongly normalising cut-elimination procedure for classical logic. Prior to our work some
strongly normalising cut-elimination procedures have been developed, but all of them impose some quite
strong restrictions. In consequence, all of them violate one or more criteria we put forward in the Intro-
duction. In particular, they restrict the normal forms reachable from a proof containing cuts, which we
feel is unfortunate as the normal forms play an importalg in investigating the computational content
of classical logic. Therefore we have improved the cut-elimination procedure of [9], mainly by removing
the restrictions imposed by the colour annotation on formulae.

It is important to notice that our cut-elimination procedure is non-deterministic. Consider Lafont's
now famous example [15, Page 151].

771{ |—:B . :B }
CB.C Weakg cr B WealC<L
- B.B ut

B

Contrg

Rewritten in our system, this proof would be represented by the €etitia) M, (x) N) whereM and N
correspond tar; andms, respectively, and whekeis not free inM andz is not free inNV. According to

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 31

our cut-elimination procedure, we may reduce this term to eittiar N, non-deterministically.

Another point to notice is that our substitution operation is a global proof transformation. (A trans-
formation is said to bdocal, if only neighbouring inference rules are rewritten possibly duplicating a
subderivation; otherwise the transformation is said to be global.) Using results concerning explicit sub-
stitution calculi we can replace this global operation with completely local proof transformations and
obtain again a strongly normalising cut-elimination procedure. This result allows us to prove strong
normalisation for a slight variant of Gentzen’s original cut-elimination procedure for LK. The details are
given in [25].

While both cut-elimination procedure], -<“) and (T, -24%), are complete, in the sense that they
are effective procedures for eliminating all instances of a cut-rule in a sequent (ffogf’) can be
used to show strong normalisation for normalisation in natural deduction using the standard translations
between natural deduction proofs and sequent proofs as presented, for example, in [27]. This result, too,
is given in [25].

Note also that our term annotation encodes precisely the structure of sequent proofs. In consequence,
we were able to adopt proof techniques from term rewriting for proving the strong normalisation property
of cut-elimination. Pfenning used a similar term annotation for proving in LF the weak normalisation
property [20]. A different term annotation, called the symmetric lambda calculus, was introduced by Bar-
banera and Berardi [2]. Although in the (v)-fragment of classical logic there are simple translations
between symmetric lambda terms and our terms, we found that our reduction rules are more general, in
that strong normalisation of the symmetric lambda calculus can be inferred from our strong normalisation
result, but not vice versa (using a simple translation [25]). Moreover, for implication and multiplicative
connectives the symmetric lambda calculus seems very inconvenient, because it does not allow multiple
binders. Yet another term annotation, motivated by a study of a specific computational interpretation of
classical logic, was introduced by Curien and Herbelin [8]. Independent from our work [26], and oth-
ers [20], they also proposed to use multiple binders for dealing with the implicational-right rule. Their
main finding is that if one consistently gives priority to one of the clauses“ef (see Figure 4), then
one obtains either a call-by-name or call-by-value lambda calculus. Of course imposing a priority means
that the resulting reduction system is deterministic, like the cut-elimination procedure presentetifor LK
[9]. While the observation of Curien and Herbelin is interesting, our suspicion is that it does not extend
to our non-deterministic setting.

Most of the work concerning the computational interpretation of classical logic focuses on functional
programs enriched with control operators, such as operators for continuation passing [4, 5, 8, 16]. We
should like to promote the view that the computational content of classical logic can also be seen as
non-deterministic computation. A similar view is taken in [2]. However the consequences of this view
for programming remain to be investigated. We leave this and a semantical study of our cut-elimination
procedure to future work.

Acknowledgements

We should like to thank Roy Dyckhoff and Martin Hyland for their help and encouragement. The work
has greatly benefited from discussions with Harold Schellinx and Jean-Baptiste Joinet conceffiing LK
The work was completed whilst Urban was at the University of Cambridge Computer Laboratory and
supported by a scholarship from the DAAD. Bierman was supported by EPSRC Grant GR-M04716 and
Gonville & Caius College, Cambridge.

32 C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic

References

[1] F. Baader and T. NipkowTerm Rewriting and All ThatCambridge University Press, 1998.

[2] F. Barbanera and S. Berardi. A Symmetric Lambda Calculus for “Classical” Program Extractidhedn
retical Aspects of Computer Softwamlume 789 oLLNCS pages 495-515. Springer Verlag, 1994.

[3] H. Barendregt and S. Ghilezan. Theoretical Pearls: Lambda Terms for Natural Deduction, Sequent Calculus
and Cut Elimination.Journal of Functional Programming.0(1):121-134, 2000.

[4] U. Berger and H. Schwichtenberg. Program Extraction from Classical Proofsgin and Computational
Complexity volume 960 olLNCS pages 77-97, 1995.

[5] G. M. Bierman. A Computational Interpretation of thg-calculus. InMathematical Foundations of Com-
puter Sciencevolume 1450 oL NCS pages 336—345. Springer-Verlag, 1998.

[6] E.T.Bittar. Strong Normalisation Proofs for Cut-Elimination in Gentzen’s Sequent Calculbgic, Algebra
and Computer Sciengeolume 46 ofBanach-Center Publicationpages 179-225, 1999.

[7] E.A.Cichon, M. Rusinowitch, and S. Selhab. Cut-Elimination and Rewriting: Termination Proofs. Technical
Report, 1996.

[8] P.-L. Curien and H. Herbelin. The Duality of Computation. Qonference on Functional Programming
pages 233-243. ACM Press, 2000.

[9] V. Danos, J.-B. Joinet, and H. Schellinx. A New Deconstructive Logic: Linear Laiparnal of Symbolic
Logic, 62(3):755-807, 1997.

[10] A. G. Dragalin. Mathematical Intuitionism: Introduction to Proof Thegryolume 67 ofTranslations of
Mathematical MonographsAmerican Mathematical Society, 1988.

[11] R. Dyckhoff and L. Pinto. Cut-Elimination and a Permutation-Free Sequent Calculus for Intuitionistic Logic.
Studia Logica60(1):107-118, 1998.

[12] J. Gallier. Constructive Logics. Part I: A Tutorial on Proof Systems and Typealculi. Theoretical Com-
puter Sciencel10(2):249-239, 1993.

[13] G. Gentzen. Untersuchungéber das logische SchlieRen | and Mathematische Zeitschrjf89:176-210,
405-431, 1935.

[14] J.-Y. Girard. Linear LogicTheoretical Computer Sciencg0(1):1-102, 1987.

[15] J.-Y. Girard, Y. Lafont, and P. TaylorProofs and Typesvolume 7 ofCambridge Tracts in Theoretical
Computer ScienceCambridge University Press, 1989.

[16] T. Griffin. A Formulae-as-Types Notion of Control. Rrinciples of Programming Languaggsages 47-58.
ACM Press, 1990.

[17] H. Herbelin. AX-calculus Structure Isomorphic to Sequent Calculus Structur€omputer Science Logic
volume 933 ofLNCS pages 67—75. Springer Verlag, 1995.

[18] J.-B. Joinet, H. Schellinx, and L. Tortora de Falco. SN and CR for Free-Styl& ILhear Decorations and
Simulation of Normalisation. Preprint No. 1067, Utrecht University, Department of Mathematics, 1998.

[19] S. C. Kleenelntroduction to Metamathematic®lorth-Holland, 1952.

[20] F. Pfenning. Structural Cut-Elimination. lrogic and Computer Sciencpages 156-166. IEEE Computer
Society, 1995.

C. Urban and G.M. Bierman/ Strong Normalisation of Cut-Elimination in Classical Logic 33

[21] G. Pottinger. Normalisation as Homomorphic Image of Cut-Eliminatiémnals of Mathematical Logic
12:323-357, 1977.

[22] D. Prawitz. ldeas and Results of Proof Theory.Pimceedings of the 2nd Scandinavian Logic Sympaosium
volume 63 ofStudies in Logic and the Foundations of Mathematiegyes 235-307. North-Holland, 1971.

[23] H. Schellinx. The Noble Art of Linear Decorating?hD thesis, Institute for Logic, Language and Computa-
tion, University of Amsterdam, 1994. ILLC dissertation series.

[24] A. S. Troelstra and H. Schwichtenbem@asic Proof Theoryvolume 43 ofCambridge Tracts in Theoretical
Computer ScienceCambridge University Press, 1996.

[25] C. Urban.Classical Logic and ComputatioPhD thesis, Cambridge University, October 2000.

[26] C. Urbanand G. M. Bierman. Strong Normalisation of Cut-Elimination in Classical Logityped Lambda
Calculi and Applicationsvolume 1581 oL NCS pages 365-380. Springer Verlag, 1999.

[27] J. Zucker. The Correspondence Between Cut-Elimination and NormalisAtimals of Mathematical Logjc
7:1-112, 1974.

