
General Bindings and Alpha-Equivalence
in Nominal Isabelle

Christian Urban and Cezary Kaliszyk

TU Munich, Germany

Abstract. Nominal Isabelle is a definitional extension of the Isabelle/HOL theo-
rem prover. It provides a proving infrastructure for reasoning about programming
language calculi involving named bound variables (as opposed to de-Bruijn in-
dices). In this paper we present an extension of Nominal Isabelle for dealing
with general bindings, that means term-constructors where multiple variables are
bound at once. Such general bindings are ubiquitous in programming language
research and only very poorly supported with single binders, such as lambda-
abstractions. Our extension includes new definitions of α-equivalence and estab-
lishes automatically the reasoning infrastructure for α-equated terms. We also
prove strong induction principles that have the usual variable convention already
built in.

1 Introduction

So far, Nominal Isabelle provided a mechanism for constructing α-equated terms, for
example lambda-terms, t ::= x | t t | λx. t, where free and bound variables have names.
For such α-equated terms, Nominal Isabelle derives automatically a reasoning infras-
tructure that has been used successfully in formalisations of an equivalence checking
algorithm for LF [18], Typed Scheme [17], several calculi for concurrency [2] and a
strong normalisation result for cut-elimination in classical logic [21]. It has also been
used by Pollack for formalisations in the locally-nameless approach to binding [14].

However, Nominal Isabelle has fared less well in a formalisation of the algorithm
W [19], where types and type-schemes are, respectively, of the form

T ::= x | T → T S ::= ∀ {x1,. . . , xn}. T (1)

and the ∀ -quantification binds a finite (possibly empty) set of type-variables. While it
is possible to implement this kind of more general binders by iterating single binders,
this leads to a rather clumsy formalisation of W.

Binding multiple variables has interesting properties that cannot be captured easily
by iterating single binders. For example in the case of type-schemes we do not want to
make a distinction about the order of the bound variables. Therefore we would like to
regard the first pair of type-schemes as α-equivalent, but assuming that x, y and z are
distinct variables, the second pair should not be α-equivalent:

∀ {x, y}. x→ y ≈α ∀ {y, x}. y→ x ∀ {x, y}. x→ y 6≈α ∀ {z}. z→ z (2)

Moreover, we like to regard type-schemes as α-equivalent, if they differ only on vacu-
ous binders, such as

∀ {x}. x→ y ≈α ∀ {x, z}. x→ y (3)

where z does not occur freely in the type. In this paper we will give a general bind-
ing mechanism and associated notion of α-equivalence that can be used to faithfully
represent this kind of binding in Nominal Isabelle.

However, the notion of α-equivalence that is preserved by vacuous binders is not
always wanted. For example in terms like

let x = 3 and y = 2 in x − y end (4)

we might not care in which order the assignments x = 3 and y = 2 are given, but it
would be often unusual to regard (4) as α-equivalent with

let x = 3 and y = 2 and z = foo in x − y end

Therefore we will also provide a separate binding mechanism for cases in which the
order of binders does not matter, but the “cardinality” of the binders has to agree.

However, we found that this is still not sufficient for dealing with language con-
structs frequently occurring in programming language research. For example in lets
containing patterns like

let (x, y) = (3, 2) in x − y end (5)

we want to bind all variables from the pattern inside the body of the let, but we
also care about the order of these variables, since we do not want to regard (5) as α-
equivalent with

let (y, x) = (3, 2) in x − y end

As a result, we provide three general binding mechanisms each of which binds multiple
variables at once, and let the user chose which one is intended in a formalisation.

By providing these general binding mechanisms, however, we have to work around
a problem that has been pointed out by Pottier [13] and Cheney [5]: in let-constructs
of the form

let x1 = t1 and . . . and xn = tn in s end

we care about the information that there are as many bound variables xi as there are ti.
We lose this information if we represent the let-constructor by something like

let (λx1. . . xn . s) [t1,. . . ,tn]

where the notation λ . indicates that the list of xi becomes bound in s. In this rep-
resentation the term let (λx . s) [t1, t2] is a perfectly legal instance, but the lengths
of the two lists do not agree. To exclude such terms, additional predicates about well-
formed terms are needed in order to ensure that the two lists are of equal length. This
can result in very messy reasoning (see for example [2]). To avoid this, we will allow
type specifications for lets as follows

trm ::= . . . | let as::assn s::trm bind bn(as) in s
assn ::= anil | acons name trm assn

where assn is an auxiliary type representing a list of assignments and bn an auxiliary
function identifying the variables to be bound by the let. This function can be defined
by recursion over assn as follows

bn(anil) = ∅ bn(acons x t as) = {x} ∪ bn(as)

The scope of the binding is indicated by labels given to the types, for example s::trm,
and a binding clause, in this case bind bn(as) in s. This binding clause states that all the
names the function bn(as) returns should be bound in s. This style of specifying terms
and bindings is heavily inspired by the syntax of the Ott-tool [16].

However, we will not be able to cope with all specifications that are allowed by
Ott. One reason is that Ott lets the user specify “empty” types like t ::= t t | λx. t
where no clause for variables is given. Arguably, such specifications make some sense
in the context of Coq’s type theory (which Ott supports), but not at all in a HOL-based
environment where every datatype must have a non-empty set-theoretic model.

Another reason is that we establish the reasoning infrastructure for α-equated terms.
In contrast, Ott produces a reasoning infrastructure in Isabelle/HOL for non-α-equated,
or “raw”, terms. While our α-equated terms and the raw terms produced by Ott use
names for bound variables, there is a key difference: working with α-equated terms
means, for example, that the two type-schemes

∀ {x}. x→ y = ∀ {x, z}. x→ y

are not just α-equal, but actually equal! As a result, we can only support specifications
that make sense on the level of α-equated terms (offending specifications, which for
example bind a variable according to a variable bound somewhere else, are not excluded
by Ott, but we have to).

Although in informal settings a reasoning infrastructure for α-equated terms is
nearly always taken for granted, establishing it automatically in Isabelle/HOL is a rather
non-trivial task. For every specification we will need to construct type(s) containing as
elements the α-equated terms. To do so, we use the standard HOL-technique of defining
a new type by identifying a non-empty subset of an existing type. The construction we
perform in Isabelle/HOL can be illustrated by the following picture:

α-
clas.

α-eq.
terms

existing
type
(sets of raw terms)

non-empty
subset

new
type

isomorphism

We take as the starting point a definition of raw terms (defined as a datatype in Is-
abelle/HOL); then identify the α-equivalence classes in the type of sets of raw terms
according to our α-equivalence relation, and finally define the new type as these α-
equivalence classes (non-emptiness is satisfied whenever the raw terms are definable as
datatype in Isabelle/HOL and our relation for α-equivalence is an equivalence relation).

The problem with introducing a new type in Isabelle/HOL is that in order to be
useful, a reasoning infrastructure needs to be “lifted” from the underlying subset to the
new type. This is usually a tricky and arduous task. To ease it, we re-implemented in
Isabelle/HOL [8] the quotient package described by Homeier [6] for the HOL4 sys-
tem. This package allows us to lift definitions and theorems involving raw terms to

definitions and theorems involving α-equated terms. For example if we define the free-
variable function over raw lambda-terms

fv(x) = {x} fv(t1 t2) = fv(t1) ∪ fv(t2) fv(λx.t) = fv(t) − {x}

then with the help of the quotient package we can obtain a function fvα operating
on quotients, or α-equivalence classes of lambda-terms. This lifted function is char-
acterised by the equations

fvα(x) = {x} fvα(t1 t2) = fvα(t1) ∪ fvα(t2) fvα(λx.t) = fvα(t) − {x}

(Note that this means also the term-constructors for variables, applications and lambda
are lifted to the quotient level.) This construction, of course, only works ifα-equivalence
is indeed an equivalence relation, and the “raw” definitions and theorems are respectful
w.r.t. α-equivalence. To sum up, every lifting of theorems to the quotient level needs
proofs of some respectfulness properties (see [6]). In the paper we show that we are
able to automate these proofs and as a result can automatically establish a reasoning
infrastructure for α-equated terms.
Contributions: We provide three new definitions for when terms involving general
binders are α-equivalent. These definitions are inspired by earlier work of Pitts [11]. By
means of automatic proofs, we establish a reasoning infrastructure for α-equated terms,
including properties about support, freshness and equality conditions for α-equated
terms. We are also able to derive strong induction principles that have the variable con-
vention already built in. The method behind our specification of general binders is taken
from the Ott-tool, but we introduce crucial restrictions, and also extensions, so that our
specifications make sense for reasoning about α-equated terms. The main improvement
over Ott is that we introduce three binding modes (only one is present in Ott), provide
formalised definitions for α-equivalence and for free variables of our terms, and also
derive a reasoning infrastructure for our specifications from “first principles”.

2 A Short Review of the Nominal Logic Work

At its core, Nominal Isabelle is an adaption of the nominal logic work by Pitts [12].
This adaptation for Isabelle/HOL is described in [7] (including proofs). We shall briefly
review this work to aid the description of what follows.

Two central notions in the nominal logic work are sorted atoms and sort-respecting
permutations of atoms. We will use the letters a, b, c, . . . to stand for atoms and p, q,
. . . to stand for permutations. The purpose of atoms is to represent variables, be they
bound or free. It is assumed that there is an infinite supply of atoms for each sort. In the
interest of brevity, we shall restrict ourselves in what follows to only one sort of atoms.

Permutations are bijective functions from atoms to atoms that are the identity every-
where except on a finite number of atoms. There is a two-place permutation operation
written · :: perm⇒ β ⇒ β where the generic type β is the type of the object over
which the permutation acts. In Nominal Isabelle, the identity permutation is written as
0, the composition of two permutations p and q as p + q, and the inverse permutation of
p as − p. The permutation operation is defined over the type-hierarchy [7]; for example
permutations acting on products, lists, sets, functions and booleans are given by:

p·(x, y)
def
= (p·x, p·y)

p·b
def
= b

p· [] def
= []

p·(x::xs)
def
= (p·x)::(p·xs)

p·X
def
= {p·x | x ∈ X}

p· f
def
= λx. p·(f (− p·x))

Concrete permutations in Nominal Isabelle are built up from swappings, written as
(a b), which are permutations that behave as follows:

(a b) = λc. if a = c then b else if b = c then a else c

The most original aspect of the nominal logic work of Pitts is a general definition
for the notion of the “set of free variables of an object x”. This notion, written supp
x, is general in the sense that it applies not only to lambda-terms (α-equated or not),
but also to lists, products, sets and even functions. The definition depends only on the
permutation operation and on the notion of equality defined for the type of x, namely:

supp x
def
= {a | infinite {b | (a b)·x 6= x}} (6)

There is also the derived notion for when an atom a is fresh for an x, defined as a

x
def
= a /∈ supp x. We use for sets of atoms the abbreviation as #∗ x, defined as

∀ a∈as. a # x. A striking consequence of these definitions is that we can prove without
knowing anything about the structure of x that swapping two fresh atoms, say a and
b, leaves x unchanged, namely if a # x and b # x then (a b) · x = x. While in the older
version of Nominal Isabelle, we used extensively this property to rename single binders,
it proved too unwieldy for dealing with multiple binders. For such binders the following
generalisations turned out to be easier to use.

Property 1. If supp x #∗ p then p·x = x.

Property 2. For a finite set as and a finitely supported x with as #∗ x and also a finitely
supported c, there exists a permutation p such that p·as #∗ c and supp x #∗ p.

The idea behind the second property is that given a finite set as of binders (being bound,
or fresh, in x is ensured by the assumption as #∗ x), then there exists a permutation p
such that the renamed binders p·as avoid c (which can be arbitrarily chosen as long as
it is finitely supported) and also p does not affect anything in the support of x (that is
supp x #∗ p). The last fact and Property 1 allow us to “rename” just the binders as in x,
because p·x = x.

Most properties given in this section are described in detail in [7] and all are for-
malised in Isabelle/HOL. In the next sections we will make extensive use of these prop-
erties in order to define α-equivalence in the presence of multiple binders.

3 General Bindings

In Nominal Isabelle, the user is expected to write down a specification of a term-calculus
and then a reasoning infrastructure is automatically derived from this specification (re-
member that Nominal Isabelle is a definitional extension of Isabelle/HOL, which does
not introduce any new axioms).

In order to keep our work with deriving the reasoning infrastructure manageable,
we will wherever possible state definitions and perform proofs on the “user-level” of

Isabelle/HOL, as opposed to write custom ML-code. To that end, we will consider first
pairs (as, x) of type (atom set) × β. These pairs are intended to represent the abstrac-
tion, or binding, of the set of atoms as in the body x.

The first question we have to answer is when two pairs (as, x) and (bs, y) are α-
equivalent? (For the moment we are interested in the notion of α-equivalence that is
not preserved by adding vacuous binders.) To answer this question, we identify four
conditions: (i) given a free-atom function fa of type β ⇒ atom set, then x and y need to
have the same set of free atoms; moreover there must be a permutation p such that (ii)
p leaves the free atoms of x and y unchanged, but (iii) “moves” their bound names so
that we obtain modulo a relation, say R , two equivalent terms. We also require that
(iv) p makes the sets of abstracted atoms as and bs equal. The requirements (i) to (iv)
can be stated formally as the conjunction of:

(as, x) ≈ set
R, fa, p (bs, y)

def
=

(i) fa x − as = fa y − bs (iii) (p·x) R y
(ii) fa x − as #∗ p (iv) p·as = bs

(7)

Note that this relation depends on the permutation p; α-equivalence between two pairs is
then the relation where we existentially quantify over this p. Also note that the relation
is dependent on a free-atom function fa and a relation R. The reason for this extra
generality is that we will use ≈ set for both “raw” terms and α-equated terms. In the
latter case, R will be replaced by equality = and we will prove that fa is equal to supp.

The definition in (7) does not make any distinction between the order of abstracted
atoms. If we want this, then we can define α-equivalence for pairs of the form (as, x)
with type (atom list) × β as follows

(as, x) ≈ list
R, fa, p (bs, y)

def
=

(i) fa x − set as = fa y − set bs (iii) (p·x) R y
(ii) fa x − set as #∗ p (iv) p·as = bs

(8)

where set is the function that coerces a list of atoms into a set of atoms. Now the last
clause ensures that the order of the binders matters (since as and bs are lists of atoms).

If we do not want to make any difference between the order of binders and also
allow vacuous binders, that means restrict names, then we keep sets of binders, but
drop condition (iv) in (7):

(as, x) ≈ set+
R, fa, p (bs, y)

def
=

(i) fa x − as = fa y − bs (iii) (p·x) R y
(ii) fa x − as #∗ p

(9)

It might be useful to consider first some examples how these definitions of α-
equivalence pan out in practice. For this consider the case of abstracting a set of atoms
over types (as in type-schemes). We set R to be the usual equality = and for fa(T) we
define

fa(x) = {x} fa(T1→ T2) = fa(T1) ∪ fa(T2)

Now recall the examples shown in (2) and (3). It can be easily checked that ({x, y}, x
→ y) and ({y, x}, y→ x) are α-equivalent according to≈ set and≈ set+ by taking p to be
the swapping (x y). In case of x 6= y, then ([x, y], x→ y) 6≈ list ([y, x], x→ y) since there
is no permutation that makes the lists [x, y] and [y, x] equal, and also leaves the type
x→ y unchanged. Another example is ({x}, x) ≈ set+ ({x, y}, x) which holds by taking
p to be the identity permutation. However, if x 6= y, then ({x}, x) 6≈ set ({x, y}, x) since
there is no permutation that makes the sets {x} and {x, y} equal (similarly for ≈ list). It
can also relatively easily be shown that all three notions of α-equivalence coincide, if
we only abstract a single atom.

In the rest of this section we are going to introduce three abstraction types. For this
we define

(as, x) ≈ abs set (bs, x)
def
= ∃ p. (as, x) ≈ set

=, supp, p (bs, x) (10)

(similarly for ≈ abs set+ and ≈ abs list). We can show that these relations are equivalence
relations.

Lemma 1. The relations ≈ abs set, ≈ abs list and ≈ abs set+ are equivalence relations.

Proof. Reflexivity is by taking p to be 0. For symmetry we have a permutation p and for
the proof obligation take −p. In case of transitivity, we have two permutations p and q,
and for the proof obligation use q + p. All conditions are then by simple calculations.

This lemma allows us to use our quotient package for introducing new types β abs set,
β abs set+ and β abs list representing α-equivalence classes of pairs of type (atom
set) × β (in the first two cases) and of type (atom list) × β (in the third case). The el-
ements in these types will be, respectively, written as [as]set.x, [as]set+.x and [as]list.x,
indicating that a set (or list) of atoms as is abstracted in x. We will call the types abstrac-
tion types and their elements abstractions. The important property we need to derive is
the support of abstractions, namely:

Theorem 1 (Support of Abstractions). Assuming x has finite support, then

supp [as]set.x = supp [as]set+.x = supp x − as, and
supp [bs]list.x = supp x − set bs

This theorem states that the bound names do not appear in the support. For brevity we
omit the proof and again refer the reader to our formalisation in Isabelle/HOL.

The method of first considering abstractions of the form [as]set.x etc is motivated
by the fact that we can conveniently establish at the Isabelle/HOL level properties about
them. It would be laborious to write custom ML-code that derives automatically such
properties for every term-constructor that binds some atoms. Also the generality of the
definitions for α-equivalence will help us in the next sections.

4 Specifying General Bindings

Our choice of syntax for specifications is influenced by the existing datatype package
of Isabelle/HOL and by the syntax of the Ott-tool [16]. For us a specification of a term-
calculus is a collection of (possibly mutual recursive) type declarations, say tyα1, . . . ,

tyαn, and an associated collection of binding functions, say bnα1, . . . , bnαm. The syntax in
Nominal Isabelle for such specifications is roughly as follows:

type
declaration part


nominal datatype tyα1 = . . .

and tyα2 = . . .
. . .

and tyαn = . . .

binding
function part

binder bnα1 and . . . and bnαm
where
. . .

(11)

Every type declaration tyα1..n consists of a collection of term-constructors, each of which
comes with a list of labelled types that stand for the types of the arguments of the term-
constructor. For example a term-constructor Cα might be specified with

Cα label1::ty′1 . . . labell::ty′l binding clauses

whereby some of the ty′1..l can be contained in the collection of tyα1..n declared in (11).
In this case we will call the corresponding argument a recursive argument of Cα. The
labels annotated on the types are optional. Their purpose is to be used in the (possibly
empty) list of binding clauses, which indicate the binders and their scope in a term-
constructor. They come in three modes:

bind binders in bodies bind (set) binders in bodies bind (set+) binders in bodies

The first mode is for binding lists of atoms (the order of binders matters); the second
is for sets of binders (the order does not matter, but the cardinality does) and the last is
for sets of binders (with vacuous binders preserving α-equivalence). As indicated, the
labels in the “in-part” of a binding clause will be called bodies; the “bind-part” will be
called binders. In contrast to Ott, we allow multiple labels in binders and bodies.

There are also some restrictions we need to impose on our binding clauses in com-
parison to the ones of Ott. The main idea behind these restrictions is that we obtain a
sensible notion of α-equivalence where it is ensured that within a given scope an atom
occurrence cannot be both bound and free at the same time. The first restriction is that
a body can only occur in one binding clause of a term constructor (this ensures that
the bound atoms of a body cannot be free at the same time by specifying an alternative
binder for the same body).

For binders we distinguish between shallow and deep binders. Shallow binders are
just labels. The restriction we need to impose on them is that in case of bind (set) and
bind (set+) the labels must either refer to atom types or to sets of atom types; in case
of bind the labels must refer to atom types or lists of atom types. Two examples for the
use of shallow binders are the specification of lambda-terms, where a single name is
bound, and type-schemes, where a finite set of names is bound:

nominal datatype lam =
Var name
| App lam lam
| Lam x::name t::lam bind x in t

nominal datatype ty =
TVar name
| TFun ty ty

and tsc = All xs::(name fset) T::ty bind (set+) xs in T

In these specifications name refers to an atom type, and fset to the type of finite sets.
Note that for lam it does not matter which binding mode we use. The reason is that
we bind only a single name. However, having bind (set) or bind in the second case
makes a difference to the semantics of the specification (which we will define in the
next section).

A deep binder uses an auxiliary binding function that “picks” out the atoms in one
argument of the term-constructor, which can be bound in other arguments and also in the
same argument (we will call such binders recursive, see below). The binding functions
are expected to return either a set of atoms (for bind (set) and bind (set+)) or a list of
atoms (for bind). They can be defined by recursion over the corresponding type; the
equations must be given in the binding function part of the scheme shown in (11). For
example a term-calculus containing Lets with tuple patterns might be specified as:

nominal datatype trm =
Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let p::pat trm t::trm bind bn(p) in t

and pat = PNil | PVar name | PTup pat pat
binder bn::pat⇒ atom list
where bn(PNil) = []
| bn(PVar x) = [atom x]
| bn(PTup p1 p2) = bn(p1) @ bn(p2)

(12)

In this specification the function bn determines which atoms of the pattern p are bound
in the argument t. Note that in the second-last bn-clause the function atom coerces a
name into the generic atom type of Nominal Isabelle [7]. This allows us to treat binders
of different atom type uniformly.

As said above, for deep binders we allow binding clauses such as Bar p::pat t::trm
bind bn(p) in p t where the argument of the deep binder also occurs in the body. We call
such binders recursive. To see the purpose of such recursive binders, compare “plain”
Lets and Let recs in the following specification:

nominal datatype trm = . . .
| Let as::assn t::trm bind bn(as) in t
| Let rec as::assn t::trm bind bn(as) in as t

and assn = ANil | ACons name trm assn
binder bn::assn⇒ atom list
where bn(ANil) = []
| bn(ACons a t as) = [atom a] @ bn(as)

(13)

The difference is that with Let we only want to bind the atoms bn(as) in the term t, but
with Let rec we also want to bind the atoms inside the assignment. This difference has
consequences for the associated notions of free-atoms and α-equivalence.

To make sure that atoms bound by deep binders cannot be free at the same time,
we cannot have more than one binding function for a deep binder. Consequently we
exclude specifications such as

Baz1 p::pat t::trm bind bn1(p) bn2(p) in t
Baz2 p::pat t1::trm t2::trm bind bn1(p) in t1, bind bn2(p) in t2

Otherwise it is possible that bn1 and bn2 pick out different atoms to become bound,
respectively be free, in p. (Since the Ott-tool does not derive a reasoning infrastructure
for α-equated terms with deep binders, it can permit such specifications.)

We also need to restrict the form of the binding functions in order to ensure the bn-
functions can be defined for α-equated terms. The main restriction is that we cannot
return an atom in a binding function that is also bound in the corresponding term-
constructor. That means in (12) that the term-constructors PVar and PTup may not have
a binding clause (all arguments are used to define bn). In contrast, in case of (13) the
term-constructor ACons may have a binding clause involving the argument trm (the
only one that is not used in the definition of the binding function). This restriction is
sufficient for lifting the binding function to α-equated terms.

In the version of Nominal Isabelle described here, we also adopted the restriction
from the Ott-tool that binding functions can only return: the empty set or empty list (as
in case PNil), a singleton set or singleton list containing an atom (case PVar), or unions
of atom sets or appended atom lists (case PTup). This restriction will simplify some
automatic definitions and proofs later on.

In order to simplify our definitions of free atoms and α-equivalence, we shall as-
sume specifications of term-calculi are implicitly completed. By this we mean that for
every argument of a term-constructor that is not already part of a binding clause given
by the user, we add implicitly a special empty binding clause, written bind ∅ in labels.
In case of the lambda-terms, the completion produces

nominal datatype lam =
Var x::name bind ∅ in x
| App t1::lam t2::lam bind ∅ in t1 t2
| Lam x::name t::lam bind x in t

The point of completion is that we can make definitions over the binding clauses and
be sure to have captured all arguments of a term constructor.

5 Alpha-Equivalence and Free Atoms

Having dealt with all syntax matters, the problem now is how we can turn specifications
into actual type definitions in Isabelle/HOL and then establish a reasoning infrastructure
for them. As Pottier and Cheney pointed out [13,5], just re-arranging the arguments of
term-constructors so that binders and their bodies are next to each other will result in
inadequate representations in cases like Let x1 = t1. . . xn = tn in s. Therefore we will
first extract “raw” datatype definitions from the specification and then define explicitly
an α-equivalence relation over them. We subsequently construct the quotient of the
datatypes according to our α-equivalence.

The “raw” datatype definition can be obtained by stripping off the binding clauses
and the labels from the types. We also have to invent new names for the types tyα and
term-constructors Cα given by the user. In our implementation we just use the affix
“ raw”. But for the purpose of this paper, we use the superscript α to indicate that a
notion is given for α-equivalence classes and leave it out for the corresponding notion
given on the “raw” level. So for example we have tyα 7→ ty and Cα 7→ C where ty is

the type used in the quotient construction for tyα and C is the term-constructor on the
“raw” type ty.

We subsequently define each of the user-specified binding functions bn1..m by re-
cursion over the corresponding raw datatype. We can also easily define permutation
operations by recursion so that for each term constructor C we have that

p·(C z1 . . . zn) = C (p·z1) . . . (p·zn) (14)

The first non-trivial step we have to perform is the generation of free-atom func-
tions from the specification. For the raw types ty1..n we define the free-atom func-
tions fa ty1..n by recursion. We define these functions together with auxiliary free-
atom functions for the binding functions. Given raw binding functions bn1..m we define
fa bn1..m. The reason for this setup is that in a deep binder not all atoms have to be
bound, as we saw in the example with “plain” Lets. We need therefore a function that
calculates those free atoms in a deep binder.

While the idea behind these free-atom functions is clear (they just collect all atoms
that are not bound), because of our rather complicated binding mechanisms their defini-
tions are somewhat involved. Given a term-constructor C of type ty and some associated
binding clauses bc1. . . bck, the result of fa ty (C z1 . . . zn) will be the union fa(bc1)
∪ . . . ∪ fa(bck) where we will define below what fa for a binding clause means. We
only show the details for the mode bind (set) (the other modes are similar). Suppose
the binding clause bci is of the form bind (set) b1. . . bp in d1. . . dq in which the body-
labels d1..q refer to types ty1..q , and the binders b1..p either refer to labels of atom types
(in case of shallow binders) or to binding functions taking a single label as argument (in
case of deep binders). Assuming D stands for the set of free atoms of the bodies, B for
the set of binding atoms in the binders and B ′ for the set of free atoms in non-recursive
deep binders, then the free atoms of the binding clause bci are

fa(bci)
def
= (D − B) ∪ B ′. (15)

The set D is formally defined as D
def
= fa ty1 d1 ∪ ... ∪ fa tyq dq where in case di

refers to one of the raw types ty1..n from the specification, the function fa tyi is the
corresponding free-atom function we are defining by recursion; otherwise we set fa tyi
di = supp di.

In order to formally define the set B we use the following auxiliary bn-functions for
atom types to which shallow binders may refer

bnatom a
def
= {atom a} bnatom set as

def
= atoms as bnatom list as

def
= atoms (set as)

Like the function atom, the function atoms coerces a set of atoms to a set of the generic
atom type. The set B is then formally defined as

B
def
= bn ty1 b1 ∪ ... ∪ bn typ bp

where we use the auxiliary binding functions for shallow binders. The set B ′ collects
all free atoms in non-recursive deep binders. Let us assume these binders in bci are
bn1 l1, . . . , bnr lr with l1..r ⊆ b1..p and none of the l1..r being among the bodies d1..q .
The set B ′ is defined as

B ′
def
= fa bn1 l1 ∪ ... ∪ fa bnr lr

This completes the definition of the free-atom functions fa ty1..n.
Note that for non-recursive deep binders, we have to add in (15) the set of atoms

that are left unbound by the binding functions bn1..m. We used for the definition of this
set the functions fa bn1..m, which are also defined by mutual recursion. Assume the
user specified a bn-clause of the form bn (C z1 . . . zs) = rhs where the z1..s are of types
ty1..s. For each of the arguments we calculate the free atoms as follows:

• fa tyi zi provided zi does not occur in rhs (that means nothing is bound in zi
by the binding function),

• fa bni zi provided zi occurs in rhs with the recursive call bni zi, and
• ∅ provided zi occurs in rhs, but without a recursive call.

For defining fa bn (C z1 . . . zn) we just union up all these sets.
To see how these definitions work in practice, let us reconsider the term-constructors

Let and Let rec shown in (13) together with the term-constructors for assignments ANil
and ACons. Since there is a binding function defined for assignments, we have three
free-atom functions, namely fatrm, faassn and fabn as follows:

fatrm (Let as t) = (fatrm t − set (bn as)) ∪ fabn as
fatrm (Let rec as t) = (faassn as ∪ fatrm t) − set (bn as)

faassn (ANil) = ∅
faassn (ACons a t as) = (supp a) ∪ (fatrm t) ∪ (faassn as)

fabn (ANil) = ∅
fabn (ACons a t as) = (fatrm t) ∪ (fabn as)

Recall that ANil and ACons have no binding clause in the specification. The correspond-
ing free-atom function faassn therefore returns all free atoms of an assignment (in case
of ACons, they are given in terms of supp, fatrm and faassn). The binding only takes
place in Let and Let rec. In case of Let, the binding clause specifies that all atoms given
by set (bn as) have to be bound in t. Therefore we have to subtract set (bn as) from
fatrm t. However, we also need to add all atoms that are free in as. This is in contrast
with Let rec where we have a recursive binder to bind all occurrences of the atoms in
set (bn as) also inside as. Therefore we have to subtract set (bn as) from both fatrm t
and faassn as.

An interesting point in this example is that a “naked” assignment (ANil or ACons)
does not bind any atoms, even if the binding function is specified over assignments.
Only in the context of a Let or Let rec, where the binding clauses are given, will some
atoms actually become bound. This is a phenomenon that has also been pointed out in
[16]. For us this observation is crucial, because we would not be able to lift the bn-
functions to α-equated terms if they act on atoms that are bound. In that case, these
functions would not respect α-equivalence.

Next we define the α-equivalence relations for the raw types ty1..n from the speci-
fication. We write them as ≈ty1..n. Like with the free-atom functions, we also need to
define auxiliary α-equivalence relations ≈bn1..m for the binding functions bn1..m, To
simplify our definitions we will use the following abbreviations for compound equiva-
lence relations and compound free-atom functions acting on tuples.

(x1,. . . , xn) (R1,. . . , Rn) (x′1,. . . , x′n)
def
= x1 R1 x′1 ∧ . . . ∧ xn Rn x′n

(fa1,. . . , fan) (x1,. . . , xn)
def
= fa1 x1 ∪ . . . ∪ fan xn

The α-equivalence relations are defined as inductive predicates having a single
clause for each term-constructor. Assuming a term-constructor C is of type ty and has
the binding clauses bc1..k, then the α-equivalence clause has the form

prems(bc1) . . . prems(bck)
C z1 . . . zn ≈ty C z′1 . . . z′n

The task below is to specify what the premises of a binding clause are. As a special
instance, we first treat the case where bci is the empty binding clause of the form

bind (set) ∅ in d1. . . dq .

In this binding clause no atom is bound and we only have to α-relate the bodies. For this

we build first the tuples D
def
= (d1,. . . , dq) and D ′

def
= (d′1,. . . , d′q) whereby the labels

d1..q refer to arguments z1..n and respectively d′1..q to z′1..n. In order to relate two such
tuples we define the compound α-equivalence relation R as follows

R
def
= (R1,. . . , Rq) (16)

with Ri being ≈tyi if the corresponding labels di and d′i refer to a recursive argument
of C with type tyi; otherwise we take Ri to be the equality =. This lets us define the

premise for an empty binding clause succinctly as prems(bci)
def
= D R D ′, which can

be unfolded to the series of premises d1 R1 d′1 . . . dq Rq d′q . We will use the unfolded
version in the examples below.

Now suppose the binding clause bci is of the general form

bind (set) b1. . . bp in d1. . . dq . (17)

In this case we define a premise P using the relation ≈ set given in Section 3 (similarly
≈ set+ and ≈ list for the other binding modes). This premise defines α-equivalence of
two abstractions involving multiple binders. As above, we first build the tuples D and
D ′ for the bodies d1..q , and the corresponding compound α-relation R (shown in (16)).
For ≈ set we also need a compound free-atom function for the bodies defined as

fa
def
= (fa ty1,. . . , fa tyq)

with the assumption that the d1..q refer to arguments of types ty1..q . The last ingredient
we need are the sets of atoms bound in the bodies. For this we take

B
def
= bn ty1 b1 ∪ . . . ∪ bn typ bp .

Similarly for B ′ using the labels b′1..p. This lets us formally define the premise P for a
non-empty binding clause as:

P
def
= ∃ p. (B, D) ≈ set

R, fa, p (B ′, D ′) .

This premise accounts for α-equivalence of the bodies of the binding clause. However,
in case the binders have non-recursive deep binders, this premise is not enough: we also
have to “propagate” α-equivalence inside the structure of these binders. An example is
Let where we have to make sure the right-hand sides of assignments are α-equivalent.

For this we use relations ≈bn1..m (which we will formally define shortly). Let us as-
sume the non-recursive deep binders in bci are bn1 l1, . . . , bnr lr. The tuple L is then
(l1,. . . ,lr) (similarly L ′) and the compound equivalence relation R ′ is (≈bn1,. . . ,≈bnr).
All premises for bci are then given by

prems(bci)
def
= P ∧ L R ′ L ′

The auxiliary α-equivalence relations ≈bn1..m in R ′ are defined as follows: assuming a
bn-clause is of the form bn (C z1 . . . zs) = rhs where the z1..s are of types ty1..s, then
the corresponding α-equivalence clause for ≈bn has the form

z1 R1 z′1 . . . zs Rs z′s
C z1 . . . zs ≈bn C z′1 . . . z′s

In this clause the relations R1..s are given by

• zi ≈ty z′i provided zi does not occur in rhs and is a recursive argument of C,
• zi = z′i provided zi does not occur in rhs and is a non-recursive argument of C,
• zi ≈bni z′i provided zi occurs in rhs with the recursive call bni xi and
• True provided zi occurs in rhs but without a recursive call.

This completes the definition of α-equivalence. As a sanity check, we can show that the
premises of empty binding clauses are a special case of the clauses for non-empty ones
(we just have to unfold the definition of ≈ set and take 0 for the existentially quantified
permutation).

Again let us take a look at a concrete example for these definitions. For (13) we
have three relations ≈trm, ≈assn and ≈bn with the following clauses:

∃ p. (bn as, t) ≈ list
≈trm, fatrm, p (bn as ′, t ′) as ≈bn as ′

Let as t ≈trm Let as ′ t ′

∃ p. (bn as, (as, t)) ≈ list
(≈assn, ≈trm), (faassn, fatrm), p (bn as ′, (as, t′))

Let rec as t ≈trm Let rec as ′ t ′

ANil ≈assn ANil

a = a ′ t ≈trm t ′ as ≈assn as ′

ACons a t as ≈assn ACons a ′ t ′ as

ANil ≈bn ANil

t ≈trm t ′ as ≈bn as ′

ACons a t as ≈bn ACons a ′ t ′ as

Note the difference between ≈assn and ≈bn: the latter only “tracks” α-equivalence of
the components in an assignment that are not bound. This is needed in the clause for
Let (which has a non-recursive binder).

6 Establishing the Reasoning Infrastructure

Having made all necessary definitions for raw terms, we can start with establishing
the reasoning infrastructure for the α-equated types tyα1..n, that is the types the user

originally specified. We sketch in this section the proofs we need for establishing this
infrastructure. One main point of our work is that we have completely automated these
proofs in Isabelle/HOL.

First we establish that the α-equivalence relations defined in the previous section
are equivalence relations.

Lemma 2. Given the raw types ty1..n and binding functions bn1..m, the relations≈ty1..n
and ≈bn1..m are equivalence relations.

Proof. The proof is by mutual induction over the definitions. The non-trivial cases in-
volve premises built up by ≈set, ≈set+ and ≈list. They can be dealt with as in Lemma 1.

We can feed this lemma into our quotient package and obtain new types tyα1..n represent-
ing α-equated terms of types ty1..n. We also obtain definitions for the term-constructors
Cα1..k from the raw term-constructors C1..k, and similar definitions for the free-atom
functions fa tyα1..n and fa bnα1..m as well as the binding functions bnα1..m. However,
these definitions are not really useful to the user, since they are given in terms of the
isomorphisms we obtained by creating new types in Isabelle/HOL (recall the picture
shown in the Introduction).

The first useful property for the user is the fact that distinct term-constructors are
not equal, that is

Cα x1 . . . xr 6= Dα y1 . . . ys (18)

whenever Cα 6= Dα. In order to derive this fact, we use the definition of α-equivalence
and establish that

C x1 . . . xr 6≈ty D y1 . . . ys (19)

holds for the corresponding raw term-constructors. In order to deduce (18) from (19),
our quotient package needs to know that the raw term-constructors C and D are respect-
ful w.r.t. the α-equivalence relations (see [6]). Assuming, for example, C is of type ty
with argument types ty1..r, respectfulness amounts to showing that

C x1 . . . xr ≈ty C x′1 . . . x′r

holds under the assumptions that we have xi ≈tyi x′i whenever xi and x′i are recursive
arguments of C and xi = x′i whenever they are non-recursive arguments. We can prove
this implication by applying the corresponding rule in our α-equivalence definition and
by establishing the following auxiliary implications

(i) x ≈tyi x′⇒ fa tyi x = fa tyi x′ (iii) x ≈tyj x′⇒ bnj x = bnj x′

(ii) x ≈tyj x′⇒ fa bnj x = fa bnj x′ (iv) x ≈tyj x′⇒ x ≈bnj x′ (20)

They can be established by induction on ≈ty1..n. Whereas the first, second and last
implication are true by how we stated our definitions, the third only holds because of
our restriction imposed on the form of the binding functions—namely not returning any
bound atoms. In Ott, in contrast, the user may define bn1..m so that they return bound
atoms and in this case the third implication is not true. A result is that the lifting of the
corresponding binding functions in Ott to α-equated terms is impossible.

Having established respectfulness for the raw term-constructors, the quotient pack-
age is able to automatically deduce (18) from (19). Having the facts (20) at our disposal,
we can also lift properties that characterise when two raw terms of the form

C x1 . . . xr ≈ty C x′1 . . . x′r
are α-equivalent. This gives us conditions when the corresponding α-equated terms
are equal, namely Cα x1 . . . xr = Cα x′1 . . . x′r. We call these conditions as quasi-
injectivity. They correspond to the premises in our α-equivalence relations.

Next we can lift the permutation operations defined in (14). In order to make this
lifting to go through, we have to show that the permutation operations are respectful.
This amounts to showing that the α-equivalence relations are equivariant [7]. As a result
we can add the equations

p·(Cα x1 . . . xr) = Cα (p·x1) . . . (p·xr) (21)

to our infrastructure. In a similar fashion we can lift the defining equations of the free-
atom functions fn tyα1..n and fa bnα1..m as well as of the binding functions bnα1..m and
the size functions size tyα1..n. The latter are defined automatically for the raw types
ty1..n by the datatype package of Isabelle/HOL.

Finally we can add to our infrastructure a cases lemma (explained in the next sec-
tion) and a structural induction principle for the types tyα1..n. The conclusion of the
induction principle is of the form P1 x1 ∧ . . . ∧ Pn xn whereby the P1..n are predicates
and the x1..n have types tyα1..n. This induction principle has for each term constructor
Cα a premise of the form

∀ x1. . . xr. Pi xi ∧ . . . ∧ Pj xj ⇒ P (Cα x1 . . . xr) (22)

in which the xi..j ⊆ x1..r are the recursive arguments of Cα.
By working now completely on the α-equated level, we can first show that the free-

atom functions and binding functions are equivariant, namely
p·(fa tyαi x) = fa tyαi (p·x) p·(bnαj x) = bnαj (p·x)

p·(fa bnαj x) = fa bnαj (p·x)

These properties can be established using the induction principle for the types tyα1..n.
Having these equivariant properties established, we can show that the support of term-
constructors Cα is included in the support of its arguments, that means

supp (Cα x1 . . . xr) ⊆ (supp x1 ∪ . . . ∪ supp xr)

holds. This allows us to prove by induction that every x of type tyα1..n is finitely sup-
ported. Lastly, we can show that the support of elements in tyα1..n is the same as fa tyα1..n.
This fact is important in a nominal setting, but also provides evidence that our notions
of free-atoms and α-equivalence are correct.

Theorem 2. For x1..n with type tyα1..n, we have supp xi = fa tyαi xi.

Proof. The proof is by induction. In each case we unfold the definition of supp, move
the swapping inside the term-constructors and then use the quasi-injectivity lemmas
in order to complete the proof. For the abstraction cases we use the facts derived in
Theorem 1.

To sum up this section, we can establish automatically a reasoning infrastructure for the
types tyα1..n by first lifting definitions from the raw level to the quotient level and then
by establishing facts about these lifted definitions. All necessary proofs are generated
automatically by custom ML-code.

7 Strong Induction Principles

In the previous section we derived induction principles for α-equated terms. We call
such induction principles weak, because for a term-constructor Cα x1. . . xr the induc-
tion hypothesis requires us to establish the implications (22). The problem with these
implications is that in general they are difficult to establish. The reason is that we cannot
make any assumption about the bound atoms that might be in Cα.

In [20] we introduced a method for automatically strengthening weak induction
principles for terms containing single binders. These stronger induction principles al-
low the user to make additional assumptions about bound atoms. To sketch how this
strengthening extends to the case of multiple binders, we use as running example the
term-constructors Lam and Let from example (12). Instead of establishing Ptrm t ∧
Ppat p, the stronger induction principle for (12) establishes properties Ptrm c t ∧ Ppat
c p where the additional parameter c controls which freshness assumptions the binders
should satisfy. For the two term constructors this means that the user has to establish in
inductions the implications

∀ a t c. {atom a} #∗ c ∧ (∀ d. Ptrm d t)⇒ Ptrm c (Lam a t)
∀ p t c. (set (bn p)) #∗ c ∧ (∀ d. Ppat d p) ∧ (∀ d. Ptrm d t) ∧⇒ Ptrm c (Let p t)

In [20] we showed how the weaker induction principles imply the stronger ones.
This was done by some quite complicated, nevertheless automated, induction proof.
In this paper we simplify this work by leveraging the automated proof methods from
the function package of Isabelle/HOL. The reasoning principle these methods employ is
well-founded induction. To use them in our setting, we have to discharge two proof obli-
gations: one is that we have well-founded measures (for each type tyα1..n) that decrease
in every induction step and the other is that we have covered all cases. As measures we
use the size functions size tyα1..n, which we lifted in the previous section and which are
all well-founded.

What is left to show is that we covered all cases. To do so, we use a cases lemma
derived for each type. For the terms in (12) this lemma is of the form

∀ x. t = Var x⇒ Ptrm ∀ a t ′. t = Lam a t ′⇒ Ptrm
∀ t1 t2. t = App t1 t2⇒ Ptrm ∀ p t ′. t = Let p t ′⇒ Ptrm

Ptrm (23)

where we have a premise for each term-constructor. The idea behind such cases lemmas
is that we can conclude with a property Ptrm, provided we can show that this property
holds if we substitute for t all possible term-constructors.

The only remaining difficulty is that in order to derive the stronger induction prin-
ciples conveniently, the cases lemma in (23) is too weak. For this note that in order to
apply this lemma, we have to establish Ptrm for all Lam- and all Let-terms. What we
need instead is a cases lemma where we only have to consider terms that have binders
that are fresh w.r.t. a context c. This gives the implications

∀ a t ′. t = Lam a t ′∧ {atom a} #∗ c⇒ Ptrm
∀ p t ′. t = Let p t ′∧ (set (bn p)) #∗ c⇒ Ptrm

which however can be relatively easily be derived from the implications in (23) by a
renaming using Properties 1 and 2. In the first case we know that {atom a} #∗ Lam a

t. Property (2) provides us therefore with a permutation q, such that {atom (q ·a)} #∗

c and supp (Lam a t) #∗ q hold. By using Property 1, we can infer from the latter that
Lam (q·a) (q· t) = Lam a t and we are done with this case.

The Let-case involving a (non-recursive) deep binder is a bit more complicated. The
reason is that the we cannot apply Property 2 to the whole term Let p t, because p might
contain names bound by bn, but also some that are free. To solve this problem we have
to introduce a permutation function that only permutes names bound by bn and leaves
the other names unchanged. We do this again by lifting. For a clause bn (C x1 . . . xr)
= rhs, we define

p·bn (C x1 . . . xr)
def
= C y1 . . . yr with


yi

def
= xi provided xi does not occur in rhs

yi
def
= p·bn ′ xi provided bn ′ xi is in rhs

yi
def
= p·xi otherwise

Now Properties 1 and 2 give us a permutation q such that (set (bn (q·bn p)) #∗ c holds
and such that [q·bn p]list.(q· t) is equal to [p]list. t. We can also show that (q·bn p) ≈bn
p. These facts establish that Let (q ·bn p) (p · t) = Let p t, as we need. This completes
the non-trivial cases in (12) for strengthening the corresponding induction principle.

8 Related Work

To our knowledge the earliest usage of general binders in a theorem prover is described
in [10] about a formalisation of the algorithm W. This formalisation implements binding
in type-schemes using a de-Bruijn indices representation. Since type-schemes in W
contain only a single place where variables are bound, different indices do not refer
to different binders (as in the usual de-Bruijn representation), but to different bound
variables. A similar idea has been recently explored for general binders in the locally
nameless approach to binding [3]. There, de-Bruijn indices consist of two numbers,
one referring to the place where a variable is bound, and the other to which variable is
bound. The reasoning infrastructure for both representations of bindings comes for free
in theorem provers like Isabelle/HOL or Coq, since the corresponding term-calculi can
be implemented as “normal” datatypes. However, in both approaches it seems difficult
to achieve our fine-grained control over the “semantics” of bindings (i.e. whether the
order of binders should matter, or vacuous binders should be taken into account).

Another technique for representing binding is higher-order abstract syntax (HOAS).
This technique supports very elegantly many aspects of single binding, and impressive
work has been done that uses HOAS for mechanising the metatheory of SML [9]. We
are, however, not aware how multiple binders of SML are represented in this work.
Judging from the submitted Twelf-solution for the POPLmark challenge, HOAS cannot
easily deal with binding constructs where the number of bound variables is not fixed.
In the second part of this challenge, Lets involve patterns that bind multiple variables at
once. In such situations, HOAS seems to have to resort to the iterated-single-binders-
approach with all the unwanted consequences when reasoning about the resulting terms.

The most closely related work to the one presented here is the Ott-tool [16] and the
Cαml language [13]. Ott is a nifty front-end for creating LATEX documents from specifi-
cations of term-calculi involving general binders. For a subset of the specifications Ott

can also generate theorem prover code using a raw representation of terms, and in Coq
also a locally nameless representation. The developers of this tool have also put forward
(on paper) a definition for α-equivalence of terms that can be specified in Ott. This defi-
nition is rather different from ours, not using any nominal techniques. To our knowledge
there is no concrete mathematical result concerning this notion of α-equivalence. Also
the definition for the notion of free variables is work in progress.

Although we were heavily inspired by the syntax of Ott, its definition of α-equi-
valence is unsuitable for our extension of Nominal Isabelle. First, it is far too compli-
cated to be a basis for automated proofs implemented on the ML-level of Isabelle/HOL.
Second, it covers cases of binders depending on other binders, which just do not make
sense for our α-equated terms. Third, it allows empty types that have no meaning in a
HOL-based theorem prover. We also had to generalise slightly Ott’s binding clauses. In
Ott you specify binding clauses with a single body; we allow more than one. We have
to do this, because this makes a difference for our notion of α-equivalence in case of
bind (set) and bind (set+). Because of how we set up our definitions, we also had to
impose some restrictions (like a single binding function for a deep binder) that are not
present in Ott.

Pottier presents in [13] a language, called Cαml, for representing terms with general
binders inside OCaml. This language is implemented as a front-end that can be trans-
lated to OCaml with the help of a library. He presents a type-system in which the scope
of general binders can be specified using special markers, written inner and outer. It
seems our and his specifications can be inter-translated as long as ours use the binding
mode bind only. However, we have not proved this. Pottier gives a definition for α-
equivalence, which also uses a permutation operation (like ours). Still, this definition is
rather different from ours and he only proves that it defines an equivalence relation. A
complete reasoning infrastructure is well beyond the purposes of his language. Similar
work for Haskell with similar results was reported by Cheney [4].

In a slightly different domain (programming with dependent types), the paper [1]
presents a calculus with a notion of α-equivalence related to our binding mode bind
(set+). The definition in [1] is similar to the one by Pottier, except that it has a more op-
erational flavour and calculates a partial (renaming) map. In this way, the definition can
deal with vacuous binders. However, to our best knowledge, no concrete mathematical
result concerning this definition of α-equivalence has been proved.

9 Conclusion

We have presented an extension of Nominal Isabelle for dealing with general binders,
that is term-constructors having multiple bound variables. For this extension we in-
troduced new definitions of α-equivalence and automated all necessary proofs in Is-
abelle/HOL. To specify general binders we used the specifications from Ott, but ex-
tended them in some places and restricted them in others so that they make sense in the
context of α-equated terms. We also introduced two binding modes (set and set+) that
do not exist in Ott. We have tried out the extension with calculi such as Core-Haskell,
type-schemes and approximately a dozen of other typical examples from programming
language research [15].

We have left out a discussion about how functions can be defined over α-equated
terms involving general binders. In earlier versions of Nominal Isabelle this turned out
to be a thorny issue. We hope to do better this time by using the function package
that has recently been implemented in Isabelle/HOL and also by restricting function
definitions to equivariant functions (for them we can provide more automation).
Acknowledgements: We thank Peter Sewell for making the informal notes [15] avail-
able to us and also for patiently explaining some of the finer points of the Ott-tool.

References
1. T. Altenkirch, N. A. Danielsson, A. Löh, and N. Oury. PiSigma: Dependent Types Without

the Sugar. In Proc. of the 10th FLOPS Conference, volume 6009 of LNCS, pages 40–55,
2010.

2. J. Bengtson and J. Parrow. Psi-Calculi in Isabelle. In Proc of the 22nd TPHOLs Conference,
volume 5674 of LNCS, pages 99–114, 2009.

3. A. Charguéraud. The Locally Nameless Representation. To appear in J. of Automated
Reasoning.

4. J. Cheney. Scrap your Nameplate (Functional Pearl). In Proc. of the 10th ICFP Conference,
pages 180–191, 2005.

5. J. Cheney. Toward a General Theory of Names: Binding and Scope. In Proc. of the 3rd
MERLIN workshop, pages 33–40, 2005.

6. P. Homeier. A Design Structure for Higher Order Quotients. In Proc. of the 18th TPHOLs
Conference, volume 3603 of LNCS, pages 130–146, 2005.

7. B. Huffman and C. Urban. Proof Pearl: A New Foundation for Nominal Isabelle. In Proc. of
the 1st ITP Conference, volume 6172 of LNCS, pages 35–50, 2010.

8. C. Kaliszyk and C. Urban. Quotients Revisited for Isabelle/HOL. To appear in the Proc. of
the 26th ACM Symposium On Applied Computing, 2011.

9. D. K. Lee, K. Crary, and R. Harper. Towards a Mechanized Metatheory of Standard ML. In
Proc. of the 34th POPL Symposium, pages 173–184, 2007.

10. W. Naraschewski and T. Nipkow. Type Inference Verified: Algorithm W in Isabelle/HOL.
J. of Automated Reasoning, 23:299–318, 1999.

11. A. Pitts. Notes on the Restriction Monad for Nominal Sets and Cpos. Unpublished notes for
an invited talk given at CTCS, 2004.

12. A. M. Pitts. Nominal Logic, A First Order Theory of Names and Binding. Information and
Computation, 183:165–193, 2003.

13. F. Pottier. An Overview of Cαml. In ACM Workshop on ML, volume 148 of ENTCS, pages
27–52, 2006.

14. M. Sato and R. Pollack. External and Internal Syntax of the Lambda-Calculus. J. of Symbolic
Computation, 45:598–616, 2010.

15. P. Sewell. A Binding Bestiary. Unpublished notes.
16. P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strniša. Ott: Effec-

tive Tool Support for the Working Semanticist. J. of Functional Programming, 20(1):70–122,
2010.

17. S. Tobin-Hochstadt and M. Felleisen. The Design and Implementation of Typed Scheme. In
Proc. of the 35rd POPL Symposium, pages 395–406, 2008.

18. C. Urban, J. Cheney, and S. Berghofer. Mechanizing the Metatheory of LF. In Proc. of the
23rd LICS Symposium, pages 45–56, 2008.

19. C. Urban and T. Nipkow. Nominal Verification of Algorithm W. In G. Huet, J.-J. Lévy, and
G. Plotkin, editors, From Semantics to Computer Science. Essays in Honour of Gilles Kahn,
pages 363–382. Cambridge University Press, 2009.

20. C. Urban and C. Tasson. Nominal Techniques in Isabelle/HOL. In Proc. of the 20th CADE
Conference, volume 3632 of LNCS, pages 38–53, 2005.

21. C. Urban and B. Zhu. Revisiting Cut-Elimination: One Difficult Proof is Really a Proof. In
Proc. of the 9th RTA Conference, volume 5117 of LNCS, pages 409–424, 2008.

	General Bindings and Alpha-Equivalence in Nominal Isabelle

