
Barendregt's Variable Convention in RuleIndu
tionsChristian Urban1, Stefan Berghofer1, and Mi
hael Norrish21 TU Muni
h, Germany2 NICTA, AustraliaAbstra
t. Indu
tive de�nitions and rule indu
tions are two fundamen-tal reasoning tools in logi
 and 
omputer s
ien
e. When indu
tive de�ni-tions involve binders, then Barendregt's variable 
onvention is nearly al-ways employed (expli
itly or impli
itly) in order to obtain simple proofs.Using this 
onvention, one does not 
onsider truly arbitrary bound names,as required by the rule indu
tion prin
iple, but rather bound namesabout whi
h various freshness assumptions are made. Unfortunately, nei-ther Barendregt nor others give a formal justi�
ation for the variable
onvention, whi
h makes it hard to formalise su
h proofs. In this pa-per we identify 
onditions an indu
tive de�nition has to satisfy so thata form of the variable 
onvention 
an be built into the rule indu
tionprin
iple. In pra
ti
e this means we 
ome quite 
lose to the informal rea-soning of \pen
il-and-paper" proofs, while remaining 
ompletely formal.Our 
onditions also reveal 
ir
umstan
es in whi
h Barendregt's variable
onvention is not appli
able, and 
an even lead to faulty reasoning.1 Introdu
tionIn informal proofs about languages that feature bound variables, one often as-sumes (expli
itly or impli
itly) a rather 
onvenient 
onvention about those boundvariables. Barendregt's statement of the 
onvention is:Variable Convention: If M1; : : : ;Mn o

ur in a 
ertain mathemati
al
ontext (e.g. de�nition, proof), then in these terms all bound variablesare 
hosen to be di�erent from the free variables. [2, Page 26℄The reason for this 
onvention is that it leads to very sli
k informal proofs|one
an avoid having to rename bound variables.One example of su
h a sli
k informal proof is given in [2, Page 60℄, provingthe substitutivity property of the �!1�! (or \parallel redu
tion") relation, whi
his de�ned by the rules:M �!1�!M One1 M �!1�!M 0lam(y:M) �!1�! lam(y:M 0) One2M �!1�!M 0 N �!1�! N 0app(M;N) �!1�! app(M 0; N 0) One3 M �!1�!M 0 N �!1�! N 0app(lam(y:M); N) �!1�!M 0[y := N 0℄ One4 (1)The substitutivity property states:



2 Christian Urban, Stefan Berghofer, and Mi
hael NorrishLemma. If M �!1�!M 0 and N �!1�! N 0, then M [x := N ℄ �!1�!M 0[x := N 0℄.In [2℄, the proof of this lemma pro
eeds by an indu
tion over the de�nition ofM �!1�!M 0. Though Barendregt does not a
knowledge the fa
t expli
itly, thereare two pla
es in his proof where the variable 
onvention is used. In 
ase ofrule One2, for example, Barendregt writes (slightly 
hanged to 
onform with thesyntax we shall employ for �-terms):Case One2. M �!1�!M 0 is lam(y:P ) �!1�! lam(y:P 0) and is a dire
t 
onsequen
eof P �!1�! P 0. By indu
tion hypothesis one has P [x := N ℄ �!1�! P [x := N 0℄. Butthen lam(y:P [x := N ℄) �!1�! lam(y:P 0[x := N 0℄), i.e. M [x := N ℄ �!1�! M 0[x :=N 0℄. utHowever, the last step in this 
ase only works if one knows thatlam(y:P [x := N ℄) = lam(y:P )[x := N ℄ andlam(y:P 0[x := N 0℄) = lam(y:P 0)[x := N 0℄whi
h only holds when the bound variable y is not equal to x, and not free inN and N 0. These assumptions might be inferred from the variable 
onvention,provided one has a formal justi�
ation for this 
onvention. Sin
e one usuallyassumes that �-terms are �-equated, one might think a simple justi�
ation forthe variable 
onvention is along the lines that one 
an always rename binders withfresh names. This is however not suÆ
ient in the 
ontext of indu
tive de�nitions,be
ause there rules 
an have the same variable o

urring both in binding andnon-binding positions. In rule One4, for example, y o

urs in binding position inthe subterm lam(y:M), and in the subterm M 0[y := N 0℄ it is in a non-bindingposition. Both o

urren
es must refer to the same variable as the ruleM �!1�!M 0 N �!1�! N 0app(lam(z:M); N) �!1�!M 0[y := N 0℄ One04leads to a nonsensi
al redu
tion relation.In the absen
e, however, of a formal justi�
ation for the variable 
onvention,Barendregt's argument 
onsidering only a well-
hosen y seems dubious, be
ausethe indu
tion prin
iple that 
omes with the indu
tive de�nition of �!1�! is:8M: P M M8yM M 0: P M M 0 ) P (lam(y:M)) (lam(y:M 0))8MM 0 N N 0: P M M 0 ^ P N N 0 ) P (app(M;N)) (app(M 0; N 0))8yM M 0 N N 0: P M M 0 ^ P N N 0 ) P (app(lam(y:M); N)) (M 0[y := N 0℄)M �!1�! N ) P M Nwhere both 
ases One2 and One4 require that the 
orresponding impli
ationholds for all y, not just the ones with y 6= x and y 62 FV (N;N 0). Nevertheless,we will show that Barendregt's apparently dubious step 
an be given a faithful,and sound, me
hanisation. Being able to restri
t the argument in general to asuitably 
hosen bound variable will, however, depend on the form of the rules inan indu
tive de�nition. In this paper we will make pre
ise what this form is andwill show how the variable 
onvention 
an be built into the indu
tion prin
iple.



Barendregt's Variable Convention in Rule Indu
tions 3The intera
tions between bound and free o

urren
es of variables, and their
onsequen
es for obtaining a formal argument, seem to often be overlooked in theliterature when 
laiming that proofs by rule indu
tions are straightforward. Oneexample of this 
omes with a weakening result for 
ontexts in the simply-typed�-
al
ulus.We assume types are of the form T ::= X j T ! T , and that typing
ontexts (�nite lists of variable-type pairs) are valid if no variable o

urs twi
e.The typing relation 
an then be de�ned by the rulesvalid(� ) (x :T ) 2 �� ` var (x) : T Type1 � `M : T1 ! T2 � ` N : T1� ` app(M;N) : T2 Type2x # � (x :T1) ::� `M : T2� ` lam(x:M) : T1 ! T2 Type3 (2)where (x : T ) 2 � stands for list-membership, and x # � for x being fresh for� , or equivalently x not o

uring in � . De�ne a 
ontext � 0 to be weaker than� (written � � � 0), if every name-type pair in � also appears in � 0. Then wehaveLemma (Weakening). If � ` M : T is derivable, and � � � 0 with � 0 valid,then � 0 `M : T is also derivable.The informal proof of this lemma is straightforward, provided(!) one uses thevariable 
onvention.Informal Proof. By rule indu
tion over � ` M : T showing that � 0 ` M : Tholds for all � 0 with � � � 0 and � 0 being valid.Case Type1: � ` M : T is � ` var (x) : T . By assumption we know valid(� 0),(x :T ) 2 � and � � � 0. Therefore we 
an use Type1 to derive � 0 ` var (x) : T .Case Type2: � ` M : T is � ` app(M1;M2) : T . Case follows from theindu
tion hypotheses and rule Type2.Case Type3: � ` M : T is � ` lam(x:M1) : T1 ! T2. Using the variable
onvention we assume that x # � 0. Then we know that ((x :T1) ::� 0) is valid andhen
e that ((x :T1) ::� 0) `M1 : T2 holds. By appealing to the variable 
onventionagain, we have that � 0 ` lam(x:M1) : T1 ! T2 holds using rule Type3 utHowever, in order to make this informal proof work with the indu
tion prin
iplethat 
omes with the rules in (2), namely8� xT: valid (� ) ^ (x :T ) 2 � ) P � (var(x)) T8� M N T1 T2: P � M (T1 ! T2) ^ P � N T1 ) P � (app(M;N)) T28x� M T1 T2: x # � ^ P ((x :T1) ::� ) M T2 ) P � (lam(x:M)) (T1 ! T2)� `M : T ) P � M T (3)we need in 
ase of rule Type3 to be able to rename the bound variable to besuitably fresh for � 0; by the indu
tion we only know that x is fresh for the smaller
ontext � . To be able to do this renaming depends on two 
onditions: �rst, there
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hael Norrishmust exist a fresh variable whi
h we 
an 
hoose. In our example this means thatthe 
ontext � 0 must not 
ontain all possible free variables. Se
ond, the relation� ` M : T must be invariant under suitable renamings. This is be
ause whenwe 
hange the goal from � 0 ` lam(x:M1) : T1 ! T2 to � 0 ` lam(z:M1[x :=z℄) : T1 ! T2, we must be able to infer from ((x : T1) :: � 0) ` M1 : T2 that((z : T1) :: � 0) ` M1[x := z℄ : T2 holds. This invarian
e under renamings does,however, not hold in general, not even under renamings with fresh variables. Forexample if we assume that variables are linearly ordered, then the relationv = minfv0; : : : ; vng(fv0; : : : ; vng; v)that asso
iates �nite subsets of these variables to the smallest variable o

urringin it, is not invariant (apply the renaming [v := v0℄ where v0 is a variable that isbigger than every variable in fv0; : : : ; vng). Other examples are rules that involvea substitution for 
on
rete variables or a substitution with 
on
rete terms. Inorder to avoid su
h pathologi
al 
ases, we require that the relation for whi
h onewants to employ the variable 
onvention must be invariant under renamings;from the indu
tion we require that the variable 
onvention 
an only be appliedin 
ontexts where there are only �nitely many free names.However, these two requirements are not yet suÆ
ient, and we need to im-pose a se
ond 
ondition that indu
tive de�nitions have to satisfy. Consider thefun
tion that takes a list of variables and binds them in �-abstra
tions, that isbind t [ ℄ def= t bind t (x ::xs) def= lam(x:(bind t xs))Further 
onsider the relation ,!, whi
h \unbinds" the outermost abstra
tions ofa �-term and is de�ned by:var (x) ,! [ ℄; var (x) Unbind1 app(t1; t2) ,! [ ℄; app(t1; t2) Unbind2t ,! xs ; t0lam(x:t) ,! x ::xs ; t0 Unbind3 (4)Of 
ourse, this relation 
annot be expressed as a fun
tion be
ause the boundvariables do not have \parti
ular" names. Nonetheless it is well-de�ned, and nottrivial. For example, we havelam(x:lam(y:app(var(x); app(var(y); var(z))))),! [x; y℄; app(var(x); app(var(y); var(z))) andlam(x:lam(y:app(var(x); app(var(y); var(z))))),! [y; x℄; app(var(y); app(var(x); var(z)))but we also have 8t0: lam(x:lam(y:app(x; app(var (y); var (z))))) 6,! [x; z℄; t0.Further, one 
an also easily establish (by indu
tion on the term t) that forevery t there exists a t0 and a list xs of distin
t variables su
h that t ,! xs ; t0holds, demonstrating that the relation is \total" if the last two parameters areviewed as results.If one wished to do rule indu
tions over the de�nition of this relation, onemight imagine that the variable 
onvention allowed us to assume that the bound
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tions 5name x was distin
t from the free variables of the 
on
lusion of the rule, andin parti
ular that x 
ould not appear in the list xs. However, this use of thevariable 
onvention qui
kly leads to the faulty lemma:Lemma (Faulty). If t ,! (x ::xs); t0 and x 2 FV (t0) then x 2 FV (bind t0 xs).The \proof" is by an indu
tion over the rules given in (4) and assumes that thebinder x in the third rule is fresh with respe
t to xs . This lemma is of 
oursefalse as witnessed by the term lam(x:lam(x:var (x))). Therefore, in
luding thevariable 
onvention in the indu
tion prin
iple that 
omes with the rules in (4),would produ
e an in
onsisten
y. To prevent this problem we introdu
e a se
ond
ondition for rules, whi
h requires that all variables o

urring as a binder ina rule must be fresh (a notion whi
h we shall make pre
ise later on) for the
on
lusion of this rule, and if a rule has several su
h variables, they must bemutually distin
t.Our Contribution: We introdu
e two 
onditions indu
tive de�nitions mustsatisfy in order to make sure they are 
ompatible with the variable 
onvention.We will build a version of this 
onvention into the indu
tion prin
iples that 
omewith the indu
tive de�nitions. Moreover, it will be shown how these new (\v
-
ompatible") indu
tion prin
iples 
an be automati
ally derived in the nominaldatatype pa
kage [11, 9℄. The presented results have already been extensivelyused in formalisations: for example in our formalisations of the CR and SNproperties in the �-
al
ulus, in a formalisation by Bengtson and Parrow forseveral proofs in the pi-
al
ulus [3℄, in a formalisation of Crary's 
hapter onlogi
al relation [4℄, and in various formalised proofs on stru
tural operationalsemanti
s.2 Nominal Logi
Before pro
eeding, we brie
y introdu
e some important notions from nominallogi
 [8, 11℄. In parti
ular, we will build on the three 
entral notions of permuta-tions, support and equivarian
e. Permutations are �nite bije
tive mappings fromatoms to atoms, where atoms are drawn from a 
ountably in�nite set denotedby A . We represent permutations as �nite lists whose elements are swappings(i.e., pairs of atoms). We write su
h permutations as (a1 b1)(a2 b2) � � � (an bn);the empty list [ ℄ stands for the identity permutation. A permutation � a
tingon an atom a is de�ned as:[ ℄�a def= a ((a1 a2) ::�)�a def= 8<:a2 if ��a = a1a1 if ��a = a2��a otherwisewhere (a b) :: � is the 
omposition of a permutation followed by the swapping(a b). The 
omposition of � followed by another permutation �0 is given by list-
on
atenation, written as �0��, and the inverse of a permutation is given by listreversal, written as ��1. Our representation of permutations as lists does notgive unique representatives: for example, the permutation (a a) is \equal" to theidentity permutation. We equate permutations with a relation �:
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hael NorrishDe�nition 1 (Permutation Equality). Two permutations are equal, written�1 � �2, provided �1�a = �2�a, for all a 2 A .The permutation a
tion on atoms 
an be lifted to other types.De�nition 2 (The A
tion of a Permutation). A permutation a
tion ��(�)lifts to a type T provided it the following three properties hold on all values x 2 T(i) [ ℄�x = x(ii) (�1��2)�x = �1�(�2�x)(iii) if �1 � �2 then �1�x = �2�xFor example, lists and tuples 
an be given the following permutation a
tion:lists: ��[ ℄ def= [ ℄��(h :: t) def= (��h) :: (��t)tuples: ��(x1; : : : ; xn) def= (��x1; : : : ; ��xn) (5)Further, on �-equated �-terms we 
an de�ne the permutation a
tion:��var(x) def= var(��x)��app(M1;M2) def= app(��M1; ��M2)��lam(x:M) def= lam(��x:��M) (6)The se
ond notion that we use is that of support (roughly speaking, thesupport of an element is its set of free atoms). The set supporting an elementis de�ned in terms of permutation a
tions on that element, so that as soon asone has de�ned a permutation a
tion for a type, one automati
ally derives itsa

ompanying notion of support, whi
h in turn determines the notion of freshness(see [11℄):De�nition 3 (Support and Freshness). The support of x is de�ned as:supp(x) def= fa j infinitefb j (a b)�x 6= xgg. An atom a is said to be freshfor an x, written a # x, if a 62 supp(x).We will also use the auxiliary notation a # xs, in whi
h xs stands for a 
olle
tionof obje
ts x1 : : : xn, to mean a # x1 : : : a # xn. We further generalise this nota-tion to a 
olle
tion of atoms, namely as # xs, whi
h means a1 # xs : : : am # xs.Later on we will often make use of the following two properties of freshness,whi
h 
an be derived from the de�nition of support, the permutation a
tion onA and the requirements of permutation a
tions on other types (see [11℄).Lemma 1.� (a) a # x implies ��a # ��x; and� (b) if a # x and b # x, then (a b)�x = x.Hen
eforth we will only be interested in those obje
ts whi
h have �nite support,be
ause for them there exists always a fresh atom (re
all that the set of atomsA is in�nite).
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tions 7Lemma 2. If x is �nitely supported, then there exists an atom a su
h that a # x.Unwinding the de�nitions of permutation a
tions and support one 
an ofteneasily 
al
ulate the support of an obje
t:atoms: supp(a) = fagtuples: supp(x1; : : : ; xn) = supp(x1) [ : : : [ supp(xn)lists: supp([ ℄) = ?, supp(h :: t) = supp(h) [ supp(t)�-equated �-terms: supp(var(x)) = fxgsupp(app(M;N)) = supp(M) [ supp(N)supp(lam(x:M)) = supp(M)� fxgWe therefore note the following: all elements in A and all �-equated �-terms are�nitely supported. Lists (similarly tuples) 
ontaining �nitely supported elementsare �nitely supported. The last three equations show that the support of �-equated �-terms 
oin
ides with the usual notion of free variables. Hen
e, a # Mwith M being an �-equated �-term 
oin
ides with a not being free in M . If b isan atom, then a # b 
oin
ides with a 6= b.The last notion of nominal logi
 we use here is that of equivarian
e.De�nition 4 (Equivarian
e).� A relation R is equivariant if R (��xs) is implied by R xs for all �.� A fun
tion f is equivariant provided ��(f xs) = f (��xs) for all �.Remark 1. Note that if we regard the term-
onstru
tors var , app and lam asfun
tions, then they are equivariant on a

ount of the de�nition given in (6).Be
ause of the de�nition in (5), the 
ons-
onstru
tors of lists are equivariant.By a simple stru
tural indu
tion on the list argument of valid, we 
an establishthat the relation valid is equivariant. By Lem. 1(a) freshness is equivariant. Alsolist-membership, (�) 2 (�), is equivariant, whi
h 
an be shown by an indu
tionon the length of lists.3 S
hemati
 Terms and S
hemati
 RulesIndu
tive relations are de�ned as the smallest relation 
losed under some s
hemati
rules. In this se
tion we will formally spe
ify the form of su
h rules. Diagram-mati
ally they have the formpremises side-
onditions
on
lusion % (7)where the premises, side-
onditions and 
on
lusions are predi
ates of the formR ts where we use the letters R, S, P and Q to stand for predi
ates; ts stands fora 
olle
tion of s
hemati
 terms (the arguments of R). They are either variables,abstra
tions or fun
tions, namely t ::= x j a:t j f ts where a is a variablestanding for an atom and f stands for a fun
tion. We 
all the variable a in a:tas being in binding position. Note that a s
hemati
 rule may 
ontain the samevariable in binding and non-binding positions (One4 and Type3 are examples).
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hael NorrishAssuming an indu
tive de�nition of the predi
ate R, the s
hemati
 rule in(7) must be of the formR ts1 : : : R tsn S1ss1 : : : SmssmR ts % (8)where the predi
ates Sissi (the ones di�erent fromR) stand for the side-
onditionsin the s
hemati
 rule.For proving our main result in the next se
tion it is 
onvenient to introdu
eseveral auxiliary notions for s
hemati
 terms and rules. The following fun
tions
al
ulate for a s
hemati
 term the set of variables in non-binding position andthe set of variables in binding position, respe
tively:vars(x) = fxgvars(a:t) = vars(t)�fagvars(f ts) = vars(ts) varsbp(x) = ?varsbp(a:t) = varsbp(t) [ fagvarsbp(f ts) = varsbp(ts) (9)The notation t[as ; xs℄ will be used for s
hemati
 terms to indi
ate that the vari-ables in binding position of t are in
luded in as and the other variables of t areeither in as or xs . That means we have for t[as ; xs℄ that varsbp(t) � as andvars(t) � as [ xs hold.We extend this notation also to s
hemati
 rules: by writing %[as ; xs ℄ for (8) wemean R ts1[as ; xs ℄ : : : R tsn[as ; xs ℄ S1 ss1[as ; xs ℄ : : : Sm ssm[as ; xs ℄R ts[as ; xs℄ % (10)However, unlike in the notation for s
hemati
 terms, we mean in %[as ; xs℄ that theas stand exa
tly for the variables o

urring somewhere in % in binding positionand the xs stand for the rest of variables. That means we have for %[as ; xs℄ thatvarsbp(%) = as and vars(%) = xs hold, assuming suitable generalisations of thefun
tions vars and varsbp to s
hemati
 rules. To see how the s
hemati
 notationworks out in examples, re
onsider the de�nitions for the relations One, given in(1), and Type, given in (2). Using our s
hemati
 notation for the rules, we haveOne1[�;M ℄One2[y;M;M 0℄One3[�;M;N;M 0; N 0℄One4[y;M;N;M 0; N 0℄ Type1[�;�; x; T ℄Type2[�;�;M;N; T1; T2℄Type3[x;�;M; T1; T2℄where `�' stands for no variable in binding position.The main property of an indu
tive de�nition, say for the indu
tive predi
ateR, is that it 
omes with an indu
tion prin
iple, whi
h establishes a propertyP ts under the assumption that R ts holds. This means we have an indu
tionprin
iple diagrammati
ally looking as follows: : :8as xs : P ts1[as ; xs ℄ ^ : : : ^ P tsn[as ; xs ℄ ^Sss1[as ; xs ℄ ^ : : : ^ Sssm[as ; xs ℄ ) P ts[as ; xs℄: : : R ts ) P ts (11)



Barendregt's Variable Convention in Rule Indu
tions 9where for every s
hemati
 rule % in the indu
tive de�nition we have to establishan impli
ation. These impli
ations state that we 
an assume the property forall premises and also 
an assume that the side-
onditions hold; we have to showthat the property holds for the 
on
lusion of the s
hemati
 rule.As explained in the introdu
tion, we need to impose some 
onditions ons
hemati
 rules in order to avoid faulty reasoning and to permit an argumentemploying the variable 
onvention. A rule %[as ; xs℄, as given in (10), is variable
onvention 
ompatible, short v
-
ompatible, provided the following two 
onditionsare satis�ed.De�nition 5 (Variable Convention Compatibility). A rule %[as ; xs℄ with
on
lusion R ts is v
-
ompatible provided that:� all fun
tions and side-
onditions o

urring in % are equivariant, and� the side-
onditions S1ss1 ^ : : : ^ Smssm imply that as # ts holds andthat the as are distin
t.If every s
hemati
 rule in an indu
tive de�nition satis�es these 
onditions, thenthe indu
tion prin
iple 
an be strengthened su
h that it in
ludes a version ofthe variable 
onvention.4 Strengthening of the Indu
tion Prin
ipleIn this se
tion we will show how to obtain a stronger indu
tion prin
iple thanthe one given in (11). By stronger we mean that it has the variable 
onventionalready built in (this will then enable us to give sli
k proofs by rule indu
tionwhi
h do not need any renaming). Formally we show that indu
tion prin
iplesof the form: : :8as xs C: (8C:P C ts1[as ; xs ℄) ^ : : : ^ (8C:P C tsn[as ; xs℄) ^Sss1[as ; xs ℄ ^ : : : ^ Sssn[as ; xs ℄ ^ as # C ) P C ts [as ; xs ℄: : : R ts ) P C ts (12)
an be used, where C stands for an indu
tion 
ontext. This indu
tion 
ontext
an be instantiated appropriately (we will explain this in the next se
tion). Theonly requirement we have about C is that it needs to be �nitely supported. Themain di�eren
e between the stronger indu
tion prin
iple in (12) and the weakerone in (11) is that in a proof using the stronger we 
an assume that the as ,i.e. the variables in binding-position, are fresh with respe
t to the 
ontext C(see highlighted freshness-
ondition). This additional assumption allows us toreason as in informal \paper-and-pen
il" proofs where one assumes the variable
onvention (we will also show this in the next se
tion).The �rst 
ondition of v
-
ompatibility implies that the indu
tively de�nedpredi
ate R is equivariant and that every s
hemati
 subterm o

urring in a ruleis equivariant.
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hael NorrishLemma 3. (a) If all fun
tions in a s
hemati
 term t[as ; xs℄ are equivariant,then (viewed as a fun
tion) t is equivariant, that is �� t[as ; xs℄ = t[��as ;��xs℄.(b) If all fun
tions and side-
onditions in the rules of an indu
tive de�nition forthe predi
ate R are equivariant, then R is equivariant, that is if R ts holds thanalso R (��ts) holds.Proof. The �rst part is by a routine indu
tion on the stru
ture of the s
hemati
term t. The se
ond part is by a simple rule indu
tion using the weak indu
tionprin
iple given in (11).We now prove our main theorem: if the rules of an indu
tive de�nition are v
-
ompatible, then the strong indu
tion prin
iple in (12) holds.Theorem 1. Given an indu
tive de�nition for the predi
ate R involving v
-
ompatible s
hemati
 rules only, then a strong indu
tion prin
iple is availablefor this de�nition establishing the impli
ation R ts ) P C ts with the indu
tion
ontext C being �nitely supported.Proof. We need to establish R ts ) P C ts using the impli
ations indi
ated in(12). To do so we will use the weak indu
tion from (11) and establish that theproposition R ts ) 8� C:P C (��ts) holds. For ea
h s
hemati
 rule %[as ; xs℄R ts1[as ; xs ℄ : : : R tsn[as ; xs ℄ S1 ss1[as ; xs ℄ : : : Sm ssm[as ; xs ℄R ts[as ; xs℄ %in the indu
tive de�nition we have to analyse one 
ase. The reasoning pro
eedsin ea
h of them as follows: By indu
tion hypothesis and side-
onditions we have(8� C:P C (��ts1[as ; xs ℄)) : : : (8� C:P C (��tsn[as ; xs℄)) (13)S1 ss1[as ; xs ℄ : : : Sm ssm[as ; xs ℄ (14)hold. Sin
e % is assumed to be v
-
ompatible, we have by Lem. 3 that (*)��tsi[as ; xs℄ is equal to ts i[��as ;��xs ℄ in (13). For (14) we 
an further inferfrom the v
-
ompatibility of % that(a) as # ts [as ; xs ℄ and (b) distin
t(as) (15)hold. We have to show that P C (��ts[as ; xs℄) holds, whi
h be
ause of Lem. 3 isequivalent to P C ts[��as ;��xs℄.The proof pro
eeds by using Lem. 2 and 
hoosing for every atom a in as a freshatom 
 su
h that for all the 
s the following holds:(a) 
s # ts [��as ;��xs ℄ (b) 
s # ��as (
) 
s # C (d) distin
t(
s) (16)Su
h 
s always exists: the �rst and the se
ond property 
an be obtained sin
ethe s
hemati
 terms ts[��as ;��xs ℄ and ��as stand for �nitely supported obje
ts;the third 
an also be obtained sin
e we assumed that the indu
tion 
ontext C is�nitely supported; the last 
an be obtained by 
hoosing the 
s one after anotheravoiding the ones that have already been 
hosen.



Barendregt's Variable Convention in Rule Indu
tions 11Now we form the permutation �0 def= (��as 
s) where (��as 
s) stands for thesequen
e of swappings (��a1 
1) : : : (��aj 
j). Sin
e permutations are bije
tiverenamings, we 
an infer from (15.b) that distin
t(��as) holds. This and the fa
tin (16.d) implies that �0���as = �0�(��as) = 
s (17)We then instantiate the � in the indu
tion hypotheses given in (13) with �0��and obtain using (17) and (*) so that(8C:P C ts1[
s ;�0���xs ℄)) : : : (8C:P C tsn[
s ;�0���xs ℄)) (18)hold. Sin
e the rule % is v
-
ompatible, we 
an infer from (14) and the equivari-an
e of the side-
onditions thatS1 ss1[
s ;�0���xs ℄ : : : Sm ssm[
s ;�0���xs ℄ (19)hold (we use here the fa
t that �0���(ss i[as ; xs℄) is equal to ss i[
s ;�0���xs ℄).From (16.
), (18), (19) and the impli
ation from the strong indu
tion prin
iplewe 
an infer P C ts [
s ;�0���xs ℄ whi
h by Lem. 3 is equivalent toP C �0�ts [��as ;��xs ℄ (20)From (15.a) we 
an by Lem. 1(a) infer that ��as # ts[��as ;��xs ℄ holds. Thishowever implies by (16.a) and by repeated appli
ation of Lem. 1(b) that�0�ts[��as;��xs ℄ = ts [��as ;��xs ℄ (21)Substituting this equation into (20) establishes the proof obligation for the rule%. Provided we analysed all su
h 
ases, we have shown R ts ) 8� C:P C (��ts).We obtain our original goal by instantiating � with the identity permutation. ut5 ExamplesWe 
an now apply our te
hnique to the examples from the Introdu
tion.5.1 Simple TypingGiven the typing relation de�ned in (2), we must �rst 
he
k the 
onditions speltout in De�nition 5. The �rst 
ondition is that all of the de�nition's fun
tions(namely var , app, lam and ::) and side-
onditions (namely valid, 2 and #) mustbe equivariant. This is easily 
on�rmed (see Remark 1). The se
ond 
onditionrequires that all variables in binding positions be distin
t (there is just one, thex in Type3); and that it be fresh for all the terms appearing in the 
on
lusionof that rule, namely � ` lam(x:M) : T1 ! T2, under the assumption that theside-
ondition, x # � , of this rule holds.In this 
ase, therefore, we must 
he
k that x # � , x # lam(x:M) andx # T1 ! T2 hold. The �rst is immediate given our assumption; the se
ondfollows from the de�nition of support for lambda-terms (x # lam(x:M) for all xand M); and the third follows from the de�nition of support for types (we de�nepermutation on types T as ��T def= T and thus obtain that supp(T ) = ?).



12 Christian Urban, Stefan Berghofer, and Mi
hael NorrishWith these 
onditions established, Theorem 1 tells us that the strong, orv
-
ompatible prin
iple exists, and that it is8� xT C: valid(� ) ^ (x : T ) 2 � ) P C � (var(x)) T8� M N T1 T2 C: (8C: P C � M (T1 ! T2)) ^ (8C: P C � N T1) )P C � (app(M;N)) T28� xM T1 T2 C: x # � ^ (8C: P C ((x : T1) ::� ) M T2) ^ x # C )P C � (lam(x:M)) (T1 ! T2)� `M : T ) P C � M TThis prin
iple 
an now be used to establish the weakening result. The statementis � `M : T ) � � � 0 ) valid(� 0) ) � 0 `M : T (22)With the strong indu
tion prin
iple, the formal proof of this statement pro
eedslike the informal one given in the Introdu
tion. There, in the Type3 
ase, weused the variable 
onvention to assume that the bound x was fresh for � 0. Giventhis information, we instantiate the indu
tion 
ontext C in the strong indu
tionprin
iple with � 0 (whi
h is �nitely supported). The 
omplete instantiation of thev
-
ompatible indu
tion prin
iple isP = �� M T � 0: � � � 0 ) valid(� 0)) � 0 `M : TC = � 0 � = � M = M T = Twhi
h after some beta-
ontra
tions gives us the statement in (22). The indu
tion
ases are then as follows (stripping o� the outermost quanti�ers):(1) valid (� ) ^ (x : T ) 2 � ) � � � 0 ) valid (� 0)) � 0 ` var (x) : T(2) (8� 00: � � � 00 ) valid (� 00)) � 00 `M1 : T1 ! T2) ^(8� 00: � � � 00 ) valid (� 00)) � 00 `M2 : T1) )� � � 0 ) valid (� 0) ) � 0 ` app(M1;M2) : T2(3) (8� 00: (x : T1) ::� � � 00 ) valid (� 00) ) � 00 `M : T2) ^ x # � 0 )� � � 0 ) valid (� 0) ) � 0 ` lam(x:M) : T1 ! T2The �rst two 
ases are trivial. For (3), we instantiate � 00 in the indu
tionhypothesis to be (x : T1) :: � 0. From the assumption � � � 0 we have (x :T1) :: � � (x : T1) :: � 0. Moreover from the assumption valid (� 0) we also havevalid ((x : T1) ::� 0) using the variable 
onvention's x # � 0. Hen
e we 
an derive(x : T1) ::� 0 `M : T2 using the indu
tion hypothesis. Now applying rule Type3we 
an obtain � 0 ` lam(x:M) : T1 ! T2, again using the variable 
onvention'sx # � 0. This 
ompletes the proof. Its readable version expressed in Isabelle'sIsar-language [12℄ and using the nominal datatype pa
kage [9℄ is shown in Fig. 1.By way of 
ontrast, re
all that a proof without the stronger indu
tion prin
i-ple would not be able to assume anything about the relationship between x and� 0, for
ing the prover to �-
onvert lam(x:M) to a form with a new and suitablyfresh bound variable, lam(z:((z x)�M)), say. At this point, the simpli
ity of theproof using the variable 
onvention disappears: the indu
tive hypothesis is mu
hharder to show appli
able be
ause it mentions M , but the desired goal is interms of (z x)�M .



Barendregt's Variable Convention in Rule Indu
tions 13lemma weakening :assumes a1: � ` M :T and a2: � � � 0 and a3: valid � 0shows � 0 ` M :Tusing a1 a2 a3proof (nominal-indu
t � M T avoiding : � 0 rule: strong-typing-indu
t)
ase (Type3 x � T 1 T 2 M )have v
: x#� 0 by fa
t | variable 
onventionhave ih: (x :T 1)::��(x :T 1)::� 0=)valid ((x :T 1)::� 0)=)(x :T 1)::� 0̀ M :T 2 by fa
thave � � � 0 by fa
tthen have (x :T 1)::� � (x :T 1)::� 0 by simpmoreoverhave valid � 0 by fa
tthen have valid ((x :T 1)::� 0) using v
 by (simp add : valid-
ons)ultimately have (x :T 1)::� 0 ` M :T 2 using ih by simpwith v
 show � 0 ` lam(x :M ) : T 1 ! T 2 by autoqed (auto) | 
ases Type1 and Type2Fig. 1. A readable Isabelle-Isar proof for the weakening lemma using the strong in-du
tion prin
iple of the typing relation. The stronger indu
tion prin
iple allows usto assume a variable 
onvention, in this proof x # � 0, whi
h makes the proof to gothrough without diÆ
ulties.5.2 Parallel Redu
tionIn [2℄, the 
entral lemma of the proof for the Chur
h-Rosser property of beta-redu
tion is the substitutivity property of the �!1�!-redu
tion. To formalise thisproof while preserving the informal version's simpli
ity, we will need the strongindu
tion prin
iple for �!1�!.Before pro
eeding, we need two important properties of the substitution fun
-tion, whi
h o

urs in the redex rule One4. We 
hara
terise the a
tion of a per-mutation over a substitution (showing that substitution is equivariant), andthe support of a substitution. Both proofs are by straightforward v
-
ompatiblestru
tural indu
tion over M :��(M [x := N ℄) = (��M)[(��x) := (��N)℄ (23)supp(M [x := N ℄) � (supp(M)� fxg) [ supp(N) (24)With this we 
an start to 
he
k the v
-
ompatibility 
onditions: the 
onditionabout equivarian
e of fun
tions and side-
onditions is again easily 
on�rmed. These
ond 
ondition is that bound variables are free in the relation's rules' 
on
lu-sions. In rule One2, this is trivial be
ause y # lam(y:M) and y # lam(y:M 0)hold. A problem arises, however, with rule One4. Here we have to show thaty # app(lam(y:M); N) and y # M 0[y := N 0℄, and we have no assumptions tohand about y.It is 
ertainly true that y is fresh for lam(y:M), but it may o

ur in N . As forthe term M 0[y := N 0℄, we know that any o

urren
es of y in M 0 will be maskedby the substitution (see (24)), but y may still be free in N 0.
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hael NorrishWe need to reformulate One4 to ready # N y # N 0 M �!1�!M 0 N �!1�! N 0app(lam(y:M); N) �!1�!M 0[y := N 0℄ One004so that the v
-
ompatibility 
onditions 
an be dis
harged. In other words, if wehave rule One004 we 
an apply Theorem 1, but not if we use One4. This is annoyingbe
ause both versions 
an be shown to de�ne the same relation, but we haveno general, and automatable, method for determining this. For the moment, wereje
t rule One4 and require the user of the nominal datatype pa
kage to useOne004 . If this is done, the substitutivity lemma is almost automati
:lemma substitutivity-aux :assumes a: N�!1N 0shows M [x :=N ℄ �!1 M [x :=N 0℄using a by (nominal-indu
t M avoiding : x N N 0 rule: strong-lam-indu
t) (auto)lemma subtitutivity :assumes a1: M�!1M 0 and a2: N�!1N 0shows M [x :=N ℄�!1M 0[x :=N 0℄using a1 a2 by (nominal-indu
t M M 0 avoiding : N N 0 x rule: strong-parallel-indu
t)(auto simp add : substitutivity-aux substitution-lemma fresh-atm)The �rst lemma is proved by a v
-
ompatible stru
tural indu
tion over M ; these
ond, the a
tual substitutivity property, is proved by a v
-
ompatible ruleindu
tion relying on the substitution lemma, and the lemma fresh-atm, whi
hstates that x # y is the same as x 6= y when y is an atom.6 Related WorkApart from our own preliminary work in this area [10℄, we believe the prettiestformal proof of the weakening lemma to be that in Pitts [8℄. This proof usesthe equivarian
e property of the typing relation, and in
ludes a renaming stepusing permutations. Be
ause of the pleasant properties that permutations enjoy(they are bije
tive renamings, in 
ontrast to substitutions whi
h might identifytwo names), the renaming 
an be done with relatively minimal overhead. Our
ontribution is that we have built this renaming into our v
-
ompatible indu
tionprin
iples on
e and for all. Proofs using the v
-
ompatible prin
iples then do notneed to perform any expli
it renaming steps.Somewhat similar to our approa
h is the work of Polla
k and M
Kinna [6℄.Starting from the standard indu
tion prin
iple that is asso
iated with an indu
-tive de�nition, we derived an indu
tion prin
iple that allows emulation of Baren-dregt's variable 
onvention. Polla
k and M
Kinna, in 
ontrast, gave a \weak"and \strong" version of the typing relation. These versions di�er in the way therule for abstra
tions is stated:x # M (x : T1) :: � `M [y := x℄ : T2� ` lam(y:M) : T1 ! T2 weak8x: x # � ) (x : T1) :: � `M [y := x℄ : T2� ` lam(y:M) : T1 ! T2 strong
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tions 15They then showed that both versions derive the same typing judgements. Withthis they proved the weakening lemma using the \strong" version of the prin
i-ple, while knowing that the result held for the \weak" relation as well. The maindi�eren
e between this and our work seems to be of 
onvenien
e: we 
an rela-tively easily derive, in a uniform way, an indu
tion prin
iple for v
-
ompatiblerelations (we have illustrated this point with two examples). A
hieving the sameuniformity in the style of M
Kinna and Polla
k does not seem as straightforward.7 Future WorkOur future work will 
on
entrate on two aspe
ts: �rst on generalising our de�ni-tion of s
hemati
 rules so that they may, for example, in
lude quanti�ers. Se
ondon being more liberal about whi
h variables 
an be in
luded in the indu
tion
ontext. To see what we have in mind with this, re
all that we allowed in theindu
tion 
ontext only variables that are in binding position. However there areexamples where this is too restri
tive: for example Crary gives in [4, Page 231℄the following mutual indu
tive de�nition for the judgements � ` s , t : Tand � ` p $ q : T (they represent a type-driven equivalen
e algorithm forlambda-terms with 
onstants):s + p t + q � ` p$ q : T� ` s, t : b Ae1 (x : T1) ::� ` s x, t x : T2� ` s, t : T1 ! T2 Ae2 � ` s, t : unitAe3(x : T ) 2 �� ` x$ x : T Pe1 � ` p$ q : T1 ! T2 � ` s$ t : T1� ` p s$ q t : T2 Pe2 � ` k $ k : b Pe3What is interesting is that these rules do not 
ontain any variable in bindingposition. Still, in some proofs by indu
tion over those rules one wants to beable to assume that the variable x in the rule Ae2 satis�es 
ertain freshness
onditions. Our implementation already deals with this situation by expli
itlygiving the information that x should appear in the indu
tion 
ontext. However,we have not yet worked out the theory.8 Con
lusionIn the POPLmark Challenge [1℄, the proof of the weakening lemma is des
ribedas a \straightforward indu
tion". In fa
t, me
hanising this informal proof is notstraightforward at all (see for example [6, 5, 8℄). We have given a novel ruleindu
tion prin
iple for the typing relation that makes proving the weakeninglemma me
hani
ally as simple as performing the informal proof.Importantly, this new prin
iple 
an be derived from the original indu
tivede�nition of the typing relation in a me
hani
al way. This method extends ourearlier work [10, 7℄, where we 
onstru
ted our new indu
tion prin
iples by hand.By formally deriving prin
iples that avoid the need to rename bound variables,we advan
e the state-of-the-art in me
hani
al theorem-proving over syntax withbinders. The results of this paper have already been used many times in thenominal datatype pa
kage: for example in the proofs of the CR and SN properties



16 Christian Urban, Stefan Berghofer, and Mi
hael Norrishin the �-
al
ulus, in proofs about the pi-
al
ulus, in proofs about logi
al relationsand in several proofs from stru
tural operational semanti
s.The fa
t that our te
hnique may require users to 
ast some indu
tive de�-nitions in alternative forms is unfortunate. In the earlier [10℄, our hand-proofs
orre
tly derived a v
-
ompatible prin
iple from the original de�nition of �!1�!;we hope that future work will automati
ally justify 
omparable derivations.A
knowledgements We are very grateful to Andrew Pitts for the many dis-
ussions with him on the subje
t of this paper.Referen
es1. B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pier
e, P. Sewell,D. Vytiniotis, G. Washburn, S. Weiri
h, and S. Zdan
ewi
. Me
hanized Metathe-ory for the Masses: The PoplMark Challenge. In Pro
. of the 18th InternationalConferen
e on Theorem Proving in Higher-Order Logi
s (TPHOLs), volume 3603of LNCS, pages 50{65, 2005.2. H. Barendregt. The Lambda Cal
ulus: its Syntax and Semanti
s, volume 103 ofStudies in Logi
 and the Foundations of Mathemati
s. North-Holland, 1981.3. J. Bengtson and J. Parrow. Formalising the pi-Cal
ulus using Nominal Logi
. InPro
. of the 10th International Conferen
e on Foundations of Software S
ien
e andComputation Stru
tures (FOSSACS), volume 4423 of LNCS, pages 63{77, 2007.4. K. Crary. Advan
ed Topi
s in Types and Programming Languages, 
hapter Logi
alRelations and a Case Study in Equivalen
e Che
king, pages 223{244. MIT Press,2005.5. J. Gallier. Logi
 for Computer S
ien
e: Foundations of Automati
 Theorem Prov-ing. Harper & Row, 1986.6. J. M
Kinna and R. Polla
k. Some type theory and lambda 
al
ulus formalised.Journal of Automated Reasoning, 23(1-4), 1999.7. M. Norrish. Me
hanising �-
al
ulus using a 
lassi
al �rst order theory of termswith permutation. Higher-Order and Symboli
 Computation, 19:169{195, 2006.8. A. M. Pitts. Nominal Logi
, A First Order Theory of Names and Binding. Infor-mation and Computation, 186:165{193, 2003.9. C. Urban and S. Berghofer. A Re
ursion Combinator for Nominal DatatypesImplemented in Isabelle/HOL. In Pro
. of the 3rd International Joint Conferen
eon Automated Reasoning (IJCAR), volume 4130 of LNAI, pages 498{512, 2006.10. C. Urban and M. Norrish. A formal treatment of the Barendregt Variable Conven-tion in rule indu
tions. In MERLIN '05: Pro
eedings of the 3rd ACM SIGPLANworkshop on Me
hanized reasoning about languages with variable binding, pages25{32, New York, NY, USA, 2005. ACM Press.11. C. Urban and C. Tasson. Nominal te
hniques in Isabelle/HOL. In Pro
. of the20th International Conferen
e on Automated Dedu
tion (CADE), volume 3632 ofLe
ture Notes in Computer S
ien
e, pages 38{53, 2005.12. M. Wenzel. Isar | A Generi
 Interpretative Approa
h to Readable Formal ProofDo
uments. In Pro
. of the 12th International Conferen
e on Theorem Proving inHigher Order Logi
s (TPHOLs), number 1690 in LNCS, pages 167{184, 1999.


