
Barendregt's Variable Convention in RuleIndutionsChristian Urban1, Stefan Berghofer1, and Mihael Norrish21 TU Munih, Germany2 NICTA, AustraliaAbstrat. Indutive de�nitions and rule indutions are two fundamen-tal reasoning tools in logi and omputer siene. When indutive de�ni-tions involve binders, then Barendregt's variable onvention is nearly al-ways employed (expliitly or impliitly) in order to obtain simple proofs.Using this onvention, one does not onsider truly arbitrary bound names,as required by the rule indution priniple, but rather bound namesabout whih various freshness assumptions are made. Unfortunately, nei-ther Barendregt nor others give a formal justi�ation for the variableonvention, whih makes it hard to formalise suh proofs. In this pa-per we identify onditions an indutive de�nition has to satisfy so thata form of the variable onvention an be built into the rule indutionpriniple. In pratie this means we ome quite lose to the informal rea-soning of \penil-and-paper" proofs, while remaining ompletely formal.Our onditions also reveal irumstanes in whih Barendregt's variableonvention is not appliable, and an even lead to faulty reasoning.1 IntrodutionIn informal proofs about languages that feature bound variables, one often as-sumes (expliitly or impliitly) a rather onvenient onvention about those boundvariables. Barendregt's statement of the onvention is:Variable Convention: If M1; : : : ;Mn our in a ertain mathematialontext (e.g. de�nition, proof), then in these terms all bound variablesare hosen to be di�erent from the free variables. [2, Page 26℄The reason for this onvention is that it leads to very slik informal proofs|onean avoid having to rename bound variables.One example of suh a slik informal proof is given in [2, Page 60℄, provingthe substitutivity property of the �!1�! (or \parallel redution") relation, whihis de�ned by the rules:M �!1�!M One1 M �!1�!M 0lam(y:M) �!1�! lam(y:M 0) One2M �!1�!M 0 N �!1�! N 0app(M;N) �!1�! app(M 0; N 0) One3 M �!1�!M 0 N �!1�! N 0app(lam(y:M); N) �!1�!M 0[y := N 0℄ One4 (1)The substitutivity property states:



2 Christian Urban, Stefan Berghofer, and Mihael NorrishLemma. If M �!1�!M 0 and N �!1�! N 0, then M [x := N ℄ �!1�!M 0[x := N 0℄.In [2℄, the proof of this lemma proeeds by an indution over the de�nition ofM �!1�!M 0. Though Barendregt does not aknowledge the fat expliitly, thereare two plaes in his proof where the variable onvention is used. In ase ofrule One2, for example, Barendregt writes (slightly hanged to onform with thesyntax we shall employ for �-terms):Case One2. M �!1�!M 0 is lam(y:P ) �!1�! lam(y:P 0) and is a diret onsequeneof P �!1�! P 0. By indution hypothesis one has P [x := N ℄ �!1�! P [x := N 0℄. Butthen lam(y:P [x := N ℄) �!1�! lam(y:P 0[x := N 0℄), i.e. M [x := N ℄ �!1�! M 0[x :=N 0℄. utHowever, the last step in this ase only works if one knows thatlam(y:P [x := N ℄) = lam(y:P )[x := N ℄ andlam(y:P 0[x := N 0℄) = lam(y:P 0)[x := N 0℄whih only holds when the bound variable y is not equal to x, and not free inN and N 0. These assumptions might be inferred from the variable onvention,provided one has a formal justi�ation for this onvention. Sine one usuallyassumes that �-terms are �-equated, one might think a simple justi�ation forthe variable onvention is along the lines that one an always rename binders withfresh names. This is however not suÆient in the ontext of indutive de�nitions,beause there rules an have the same variable ourring both in binding andnon-binding positions. In rule One4, for example, y ours in binding position inthe subterm lam(y:M), and in the subterm M 0[y := N 0℄ it is in a non-bindingposition. Both ourrenes must refer to the same variable as the ruleM �!1�!M 0 N �!1�! N 0app(lam(z:M); N) �!1�!M 0[y := N 0℄ One04leads to a nonsensial redution relation.In the absene, however, of a formal justi�ation for the variable onvention,Barendregt's argument onsidering only a well-hosen y seems dubious, beausethe indution priniple that omes with the indutive de�nition of �!1�! is:8M: P M M8yM M 0: P M M 0 ) P (lam(y:M)) (lam(y:M 0))8MM 0 N N 0: P M M 0 ^ P N N 0 ) P (app(M;N)) (app(M 0; N 0))8yM M 0 N N 0: P M M 0 ^ P N N 0 ) P (app(lam(y:M); N)) (M 0[y := N 0℄)M �!1�! N ) P M Nwhere both ases One2 and One4 require that the orresponding impliationholds for all y, not just the ones with y 6= x and y 62 FV (N;N 0). Nevertheless,we will show that Barendregt's apparently dubious step an be given a faithful,and sound, mehanisation. Being able to restrit the argument in general to asuitably hosen bound variable will, however, depend on the form of the rules inan indutive de�nition. In this paper we will make preise what this form is andwill show how the variable onvention an be built into the indution priniple.



Barendregt's Variable Convention in Rule Indutions 3The interations between bound and free ourrenes of variables, and theironsequenes for obtaining a formal argument, seem to often be overlooked in theliterature when laiming that proofs by rule indutions are straightforward. Oneexample of this omes with a weakening result for ontexts in the simply-typed�-alulus.We assume types are of the form T ::= X j T ! T , and that typingontexts (�nite lists of variable-type pairs) are valid if no variable ours twie.The typing relation an then be de�ned by the rulesvalid(� ) (x :T ) 2 �� ` var (x) : T Type1 � `M : T1 ! T2 � ` N : T1� ` app(M;N) : T2 Type2x # � (x :T1) ::� `M : T2� ` lam(x:M) : T1 ! T2 Type3 (2)where (x : T ) 2 � stands for list-membership, and x # � for x being fresh for� , or equivalently x not ouring in � . De�ne a ontext � 0 to be weaker than� (written � � � 0), if every name-type pair in � also appears in � 0. Then wehaveLemma (Weakening). If � ` M : T is derivable, and � � � 0 with � 0 valid,then � 0 `M : T is also derivable.The informal proof of this lemma is straightforward, provided(!) one uses thevariable onvention.Informal Proof. By rule indution over � ` M : T showing that � 0 ` M : Tholds for all � 0 with � � � 0 and � 0 being valid.Case Type1: � ` M : T is � ` var (x) : T . By assumption we know valid(� 0),(x :T ) 2 � and � � � 0. Therefore we an use Type1 to derive � 0 ` var (x) : T .Case Type2: � ` M : T is � ` app(M1;M2) : T . Case follows from theindution hypotheses and rule Type2.Case Type3: � ` M : T is � ` lam(x:M1) : T1 ! T2. Using the variableonvention we assume that x # � 0. Then we know that ((x :T1) ::� 0) is valid andhene that ((x :T1) ::� 0) `M1 : T2 holds. By appealing to the variable onventionagain, we have that � 0 ` lam(x:M1) : T1 ! T2 holds using rule Type3 utHowever, in order to make this informal proof work with the indution priniplethat omes with the rules in (2), namely8� xT: valid (� ) ^ (x :T ) 2 � ) P � (var(x)) T8� M N T1 T2: P � M (T1 ! T2) ^ P � N T1 ) P � (app(M;N)) T28x� M T1 T2: x # � ^ P ((x :T1) ::� ) M T2 ) P � (lam(x:M)) (T1 ! T2)� `M : T ) P � M T (3)we need in ase of rule Type3 to be able to rename the bound variable to besuitably fresh for � 0; by the indution we only know that x is fresh for the smallerontext � . To be able to do this renaming depends on two onditions: �rst, there



4 Christian Urban, Stefan Berghofer, and Mihael Norrishmust exist a fresh variable whih we an hoose. In our example this means thatthe ontext � 0 must not ontain all possible free variables. Seond, the relation� ` M : T must be invariant under suitable renamings. This is beause whenwe hange the goal from � 0 ` lam(x:M1) : T1 ! T2 to � 0 ` lam(z:M1[x :=z℄) : T1 ! T2, we must be able to infer from ((x : T1) :: � 0) ` M1 : T2 that((z : T1) :: � 0) ` M1[x := z℄ : T2 holds. This invariane under renamings does,however, not hold in general, not even under renamings with fresh variables. Forexample if we assume that variables are linearly ordered, then the relationv = minfv0; : : : ; vng(fv0; : : : ; vng; v)that assoiates �nite subsets of these variables to the smallest variable ourringin it, is not invariant (apply the renaming [v := v0℄ where v0 is a variable that isbigger than every variable in fv0; : : : ; vng). Other examples are rules that involvea substitution for onrete variables or a substitution with onrete terms. Inorder to avoid suh pathologial ases, we require that the relation for whih onewants to employ the variable onvention must be invariant under renamings;from the indution we require that the variable onvention an only be appliedin ontexts where there are only �nitely many free names.However, these two requirements are not yet suÆient, and we need to im-pose a seond ondition that indutive de�nitions have to satisfy. Consider thefuntion that takes a list of variables and binds them in �-abstrations, that isbind t [ ℄ def= t bind t (x ::xs) def= lam(x:(bind t xs))Further onsider the relation ,!, whih \unbinds" the outermost abstrations ofa �-term and is de�ned by:var (x) ,! [ ℄; var (x) Unbind1 app(t1; t2) ,! [ ℄; app(t1; t2) Unbind2t ,! xs ; t0lam(x:t) ,! x ::xs ; t0 Unbind3 (4)Of ourse, this relation annot be expressed as a funtion beause the boundvariables do not have \partiular" names. Nonetheless it is well-de�ned, and nottrivial. For example, we havelam(x:lam(y:app(var(x); app(var(y); var(z))))),! [x; y℄; app(var(x); app(var(y); var(z))) andlam(x:lam(y:app(var(x); app(var(y); var(z))))),! [y; x℄; app(var(y); app(var(x); var(z)))but we also have 8t0: lam(x:lam(y:app(x; app(var (y); var (z))))) 6,! [x; z℄; t0.Further, one an also easily establish (by indution on the term t) that forevery t there exists a t0 and a list xs of distint variables suh that t ,! xs ; t0holds, demonstrating that the relation is \total" if the last two parameters areviewed as results.If one wished to do rule indutions over the de�nition of this relation, onemight imagine that the variable onvention allowed us to assume that the bound



Barendregt's Variable Convention in Rule Indutions 5name x was distint from the free variables of the onlusion of the rule, andin partiular that x ould not appear in the list xs. However, this use of thevariable onvention quikly leads to the faulty lemma:Lemma (Faulty). If t ,! (x ::xs); t0 and x 2 FV (t0) then x 2 FV (bind t0 xs).The \proof" is by an indution over the rules given in (4) and assumes that thebinder x in the third rule is fresh with respet to xs . This lemma is of oursefalse as witnessed by the term lam(x:lam(x:var (x))). Therefore, inluding thevariable onvention in the indution priniple that omes with the rules in (4),would produe an inonsisteny. To prevent this problem we introdue a seondondition for rules, whih requires that all variables ourring as a binder ina rule must be fresh (a notion whih we shall make preise later on) for theonlusion of this rule, and if a rule has several suh variables, they must bemutually distint.Our Contribution: We introdue two onditions indutive de�nitions mustsatisfy in order to make sure they are ompatible with the variable onvention.We will build a version of this onvention into the indution priniples that omewith the indutive de�nitions. Moreover, it will be shown how these new (\v-ompatible") indution priniples an be automatially derived in the nominaldatatype pakage [11, 9℄. The presented results have already been extensivelyused in formalisations: for example in our formalisations of the CR and SNproperties in the �-alulus, in a formalisation by Bengtson and Parrow forseveral proofs in the pi-alulus [3℄, in a formalisation of Crary's hapter onlogial relation [4℄, and in various formalised proofs on strutural operationalsemantis.2 Nominal LogiBefore proeeding, we briey introdue some important notions from nominallogi [8, 11℄. In partiular, we will build on the three entral notions of permuta-tions, support and equivariane. Permutations are �nite bijetive mappings fromatoms to atoms, where atoms are drawn from a ountably in�nite set denotedby A . We represent permutations as �nite lists whose elements are swappings(i.e., pairs of atoms). We write suh permutations as (a1 b1)(a2 b2) � � � (an bn);the empty list [ ℄ stands for the identity permutation. A permutation � atingon an atom a is de�ned as:[ ℄�a def= a ((a1 a2) ::�)�a def= 8<:a2 if ��a = a1a1 if ��a = a2��a otherwisewhere (a b) :: � is the omposition of a permutation followed by the swapping(a b). The omposition of � followed by another permutation �0 is given by list-onatenation, written as �0��, and the inverse of a permutation is given by listreversal, written as ��1. Our representation of permutations as lists does notgive unique representatives: for example, the permutation (a a) is \equal" to theidentity permutation. We equate permutations with a relation �:



6 Christian Urban, Stefan Berghofer, and Mihael NorrishDe�nition 1 (Permutation Equality). Two permutations are equal, written�1 � �2, provided �1�a = �2�a, for all a 2 A .The permutation ation on atoms an be lifted to other types.De�nition 2 (The Ation of a Permutation). A permutation ation ��(�)lifts to a type T provided it the following three properties hold on all values x 2 T(i) [ ℄�x = x(ii) (�1��2)�x = �1�(�2�x)(iii) if �1 � �2 then �1�x = �2�xFor example, lists and tuples an be given the following permutation ation:lists: ��[ ℄ def= [ ℄��(h :: t) def= (��h) :: (��t)tuples: ��(x1; : : : ; xn) def= (��x1; : : : ; ��xn) (5)Further, on �-equated �-terms we an de�ne the permutation ation:��var(x) def= var(��x)��app(M1;M2) def= app(��M1; ��M2)��lam(x:M) def= lam(��x:��M) (6)The seond notion that we use is that of support (roughly speaking, thesupport of an element is its set of free atoms). The set supporting an elementis de�ned in terms of permutation ations on that element, so that as soon asone has de�ned a permutation ation for a type, one automatially derives itsaompanying notion of support, whih in turn determines the notion of freshness(see [11℄):De�nition 3 (Support and Freshness). The support of x is de�ned as:supp(x) def= fa j infinitefb j (a b)�x 6= xgg. An atom a is said to be freshfor an x, written a # x, if a 62 supp(x).We will also use the auxiliary notation a # xs, in whih xs stands for a olletionof objets x1 : : : xn, to mean a # x1 : : : a # xn. We further generalise this nota-tion to a olletion of atoms, namely as # xs, whih means a1 # xs : : : am # xs.Later on we will often make use of the following two properties of freshness,whih an be derived from the de�nition of support, the permutation ation onA and the requirements of permutation ations on other types (see [11℄).Lemma 1.� (a) a # x implies ��a # ��x; and� (b) if a # x and b # x, then (a b)�x = x.Heneforth we will only be interested in those objets whih have �nite support,beause for them there exists always a fresh atom (reall that the set of atomsA is in�nite).



Barendregt's Variable Convention in Rule Indutions 7Lemma 2. If x is �nitely supported, then there exists an atom a suh that a # x.Unwinding the de�nitions of permutation ations and support one an ofteneasily alulate the support of an objet:atoms: supp(a) = fagtuples: supp(x1; : : : ; xn) = supp(x1) [ : : : [ supp(xn)lists: supp([ ℄) = ?, supp(h :: t) = supp(h) [ supp(t)�-equated �-terms: supp(var(x)) = fxgsupp(app(M;N)) = supp(M) [ supp(N)supp(lam(x:M)) = supp(M)� fxgWe therefore note the following: all elements in A and all �-equated �-terms are�nitely supported. Lists (similarly tuples) ontaining �nitely supported elementsare �nitely supported. The last three equations show that the support of �-equated �-terms oinides with the usual notion of free variables. Hene, a # Mwith M being an �-equated �-term oinides with a not being free in M . If b isan atom, then a # b oinides with a 6= b.The last notion of nominal logi we use here is that of equivariane.De�nition 4 (Equivariane).� A relation R is equivariant if R (��xs) is implied by R xs for all �.� A funtion f is equivariant provided ��(f xs) = f (��xs) for all �.Remark 1. Note that if we regard the term-onstrutors var , app and lam asfuntions, then they are equivariant on aount of the de�nition given in (6).Beause of the de�nition in (5), the ons-onstrutors of lists are equivariant.By a simple strutural indution on the list argument of valid, we an establishthat the relation valid is equivariant. By Lem. 1(a) freshness is equivariant. Alsolist-membership, (�) 2 (�), is equivariant, whih an be shown by an indutionon the length of lists.3 Shemati Terms and Shemati RulesIndutive relations are de�ned as the smallest relation losed under some shematirules. In this setion we will formally speify the form of suh rules. Diagram-matially they have the formpremises side-onditionsonlusion % (7)where the premises, side-onditions and onlusions are prediates of the formR ts where we use the letters R, S, P and Q to stand for prediates; ts stands fora olletion of shemati terms (the arguments of R). They are either variables,abstrations or funtions, namely t ::= x j a:t j f ts where a is a variablestanding for an atom and f stands for a funtion. We all the variable a in a:tas being in binding position. Note that a shemati rule may ontain the samevariable in binding and non-binding positions (One4 and Type3 are examples).



8 Christian Urban, Stefan Berghofer, and Mihael NorrishAssuming an indutive de�nition of the prediate R, the shemati rule in(7) must be of the formR ts1 : : : R tsn S1ss1 : : : SmssmR ts % (8)where the prediates Sissi (the ones di�erent fromR) stand for the side-onditionsin the shemati rule.For proving our main result in the next setion it is onvenient to introdueseveral auxiliary notions for shemati terms and rules. The following funtionsalulate for a shemati term the set of variables in non-binding position andthe set of variables in binding position, respetively:vars(x) = fxgvars(a:t) = vars(t)�fagvars(f ts) = vars(ts) varsbp(x) = ?varsbp(a:t) = varsbp(t) [ fagvarsbp(f ts) = varsbp(ts) (9)The notation t[as ; xs℄ will be used for shemati terms to indiate that the vari-ables in binding position of t are inluded in as and the other variables of t areeither in as or xs . That means we have for t[as ; xs℄ that varsbp(t) � as andvars(t) � as [ xs hold.We extend this notation also to shemati rules: by writing %[as ; xs ℄ for (8) wemean R ts1[as ; xs ℄ : : : R tsn[as ; xs ℄ S1 ss1[as ; xs ℄ : : : Sm ssm[as ; xs ℄R ts[as ; xs℄ % (10)However, unlike in the notation for shemati terms, we mean in %[as ; xs℄ that theas stand exatly for the variables ourring somewhere in % in binding positionand the xs stand for the rest of variables. That means we have for %[as ; xs℄ thatvarsbp(%) = as and vars(%) = xs hold, assuming suitable generalisations of thefuntions vars and varsbp to shemati rules. To see how the shemati notationworks out in examples, reonsider the de�nitions for the relations One, given in(1), and Type, given in (2). Using our shemati notation for the rules, we haveOne1[�;M ℄One2[y;M;M 0℄One3[�;M;N;M 0; N 0℄One4[y;M;N;M 0; N 0℄ Type1[�;�; x; T ℄Type2[�;�;M;N; T1; T2℄Type3[x;�;M; T1; T2℄where `�' stands for no variable in binding position.The main property of an indutive de�nition, say for the indutive prediateR, is that it omes with an indution priniple, whih establishes a propertyP ts under the assumption that R ts holds. This means we have an indutionpriniple diagrammatially looking as follows: : :8as xs : P ts1[as ; xs ℄ ^ : : : ^ P tsn[as ; xs ℄ ^Sss1[as ; xs ℄ ^ : : : ^ Sssm[as ; xs ℄ ) P ts[as ; xs℄: : : R ts ) P ts (11)



Barendregt's Variable Convention in Rule Indutions 9where for every shemati rule % in the indutive de�nition we have to establishan impliation. These impliations state that we an assume the property forall premises and also an assume that the side-onditions hold; we have to showthat the property holds for the onlusion of the shemati rule.As explained in the introdution, we need to impose some onditions onshemati rules in order to avoid faulty reasoning and to permit an argumentemploying the variable onvention. A rule %[as ; xs℄, as given in (10), is variableonvention ompatible, short v-ompatible, provided the following two onditionsare satis�ed.De�nition 5 (Variable Convention Compatibility). A rule %[as ; xs℄ withonlusion R ts is v-ompatible provided that:� all funtions and side-onditions ourring in % are equivariant, and� the side-onditions S1ss1 ^ : : : ^ Smssm imply that as # ts holds andthat the as are distint.If every shemati rule in an indutive de�nition satis�es these onditions, thenthe indution priniple an be strengthened suh that it inludes a version ofthe variable onvention.4 Strengthening of the Indution PrinipleIn this setion we will show how to obtain a stronger indution priniple thanthe one given in (11). By stronger we mean that it has the variable onventionalready built in (this will then enable us to give slik proofs by rule indutionwhih do not need any renaming). Formally we show that indution priniplesof the form: : :8as xs C: (8C:P C ts1[as ; xs ℄) ^ : : : ^ (8C:P C tsn[as ; xs℄) ^Sss1[as ; xs ℄ ^ : : : ^ Sssn[as ; xs ℄ ^ as # C ) P C ts [as ; xs ℄: : : R ts ) P C ts (12)an be used, where C stands for an indution ontext. This indution ontextan be instantiated appropriately (we will explain this in the next setion). Theonly requirement we have about C is that it needs to be �nitely supported. Themain di�erene between the stronger indution priniple in (12) and the weakerone in (11) is that in a proof using the stronger we an assume that the as ,i.e. the variables in binding-position, are fresh with respet to the ontext C(see highlighted freshness-ondition). This additional assumption allows us toreason as in informal \paper-and-penil" proofs where one assumes the variableonvention (we will also show this in the next setion).The �rst ondition of v-ompatibility implies that the indutively de�nedprediate R is equivariant and that every shemati subterm ourring in a ruleis equivariant.



10 Christian Urban, Stefan Berghofer, and Mihael NorrishLemma 3. (a) If all funtions in a shemati term t[as ; xs℄ are equivariant,then (viewed as a funtion) t is equivariant, that is �� t[as ; xs℄ = t[��as ;��xs℄.(b) If all funtions and side-onditions in the rules of an indutive de�nition forthe prediate R are equivariant, then R is equivariant, that is if R ts holds thanalso R (��ts) holds.Proof. The �rst part is by a routine indution on the struture of the shematiterm t. The seond part is by a simple rule indution using the weak indutionpriniple given in (11).We now prove our main theorem: if the rules of an indutive de�nition are v-ompatible, then the strong indution priniple in (12) holds.Theorem 1. Given an indutive de�nition for the prediate R involving v-ompatible shemati rules only, then a strong indution priniple is availablefor this de�nition establishing the impliation R ts ) P C ts with the indutionontext C being �nitely supported.Proof. We need to establish R ts ) P C ts using the impliations indiated in(12). To do so we will use the weak indution from (11) and establish that theproposition R ts ) 8� C:P C (��ts) holds. For eah shemati rule %[as ; xs℄R ts1[as ; xs ℄ : : : R tsn[as ; xs ℄ S1 ss1[as ; xs ℄ : : : Sm ssm[as ; xs ℄R ts[as ; xs℄ %in the indutive de�nition we have to analyse one ase. The reasoning proeedsin eah of them as follows: By indution hypothesis and side-onditions we have(8� C:P C (��ts1[as ; xs ℄)) : : : (8� C:P C (��tsn[as ; xs℄)) (13)S1 ss1[as ; xs ℄ : : : Sm ssm[as ; xs ℄ (14)hold. Sine % is assumed to be v-ompatible, we have by Lem. 3 that (*)��tsi[as ; xs℄ is equal to ts i[��as ;��xs ℄ in (13). For (14) we an further inferfrom the v-ompatibility of % that(a) as # ts [as ; xs ℄ and (b) distint(as) (15)hold. We have to show that P C (��ts[as ; xs℄) holds, whih beause of Lem. 3 isequivalent to P C ts[��as ;��xs℄.The proof proeeds by using Lem. 2 and hoosing for every atom a in as a freshatom  suh that for all the s the following holds:(a) s # ts [��as ;��xs ℄ (b) s # ��as () s # C (d) distint(s) (16)Suh s always exists: the �rst and the seond property an be obtained sinethe shemati terms ts[��as ;��xs ℄ and ��as stand for �nitely supported objets;the third an also be obtained sine we assumed that the indution ontext C is�nitely supported; the last an be obtained by hoosing the s one after anotheravoiding the ones that have already been hosen.



Barendregt's Variable Convention in Rule Indutions 11Now we form the permutation �0 def= (��as s) where (��as s) stands for thesequene of swappings (��a1 1) : : : (��aj j). Sine permutations are bijetiverenamings, we an infer from (15.b) that distint(��as) holds. This and the fatin (16.d) implies that �0���as = �0�(��as) = s (17)We then instantiate the � in the indution hypotheses given in (13) with �0��and obtain using (17) and (*) so that(8C:P C ts1[s ;�0���xs ℄)) : : : (8C:P C tsn[s ;�0���xs ℄)) (18)hold. Sine the rule % is v-ompatible, we an infer from (14) and the equivari-ane of the side-onditions thatS1 ss1[s ;�0���xs ℄ : : : Sm ssm[s ;�0���xs ℄ (19)hold (we use here the fat that �0���(ss i[as ; xs℄) is equal to ss i[s ;�0���xs ℄).From (16.), (18), (19) and the impliation from the strong indution priniplewe an infer P C ts [s ;�0���xs ℄ whih by Lem. 3 is equivalent toP C �0�ts [��as ;��xs ℄ (20)From (15.a) we an by Lem. 1(a) infer that ��as # ts[��as ;��xs ℄ holds. Thishowever implies by (16.a) and by repeated appliation of Lem. 1(b) that�0�ts[��as;��xs ℄ = ts [��as ;��xs ℄ (21)Substituting this equation into (20) establishes the proof obligation for the rule%. Provided we analysed all suh ases, we have shown R ts ) 8� C:P C (��ts).We obtain our original goal by instantiating � with the identity permutation. ut5 ExamplesWe an now apply our tehnique to the examples from the Introdution.5.1 Simple TypingGiven the typing relation de�ned in (2), we must �rst hek the onditions speltout in De�nition 5. The �rst ondition is that all of the de�nition's funtions(namely var , app, lam and ::) and side-onditions (namely valid, 2 and #) mustbe equivariant. This is easily on�rmed (see Remark 1). The seond onditionrequires that all variables in binding positions be distint (there is just one, thex in Type3); and that it be fresh for all the terms appearing in the onlusionof that rule, namely � ` lam(x:M) : T1 ! T2, under the assumption that theside-ondition, x # � , of this rule holds.In this ase, therefore, we must hek that x # � , x # lam(x:M) andx # T1 ! T2 hold. The �rst is immediate given our assumption; the seondfollows from the de�nition of support for lambda-terms (x # lam(x:M) for all xand M); and the third follows from the de�nition of support for types (we de�nepermutation on types T as ��T def= T and thus obtain that supp(T ) = ?).



12 Christian Urban, Stefan Berghofer, and Mihael NorrishWith these onditions established, Theorem 1 tells us that the strong, orv-ompatible priniple exists, and that it is8� xT C: valid(� ) ^ (x : T ) 2 � ) P C � (var(x)) T8� M N T1 T2 C: (8C: P C � M (T1 ! T2)) ^ (8C: P C � N T1) )P C � (app(M;N)) T28� xM T1 T2 C: x # � ^ (8C: P C ((x : T1) ::� ) M T2) ^ x # C )P C � (lam(x:M)) (T1 ! T2)� `M : T ) P C � M TThis priniple an now be used to establish the weakening result. The statementis � `M : T ) � � � 0 ) valid(� 0) ) � 0 `M : T (22)With the strong indution priniple, the formal proof of this statement proeedslike the informal one given in the Introdution. There, in the Type3 ase, weused the variable onvention to assume that the bound x was fresh for � 0. Giventhis information, we instantiate the indution ontext C in the strong indutionpriniple with � 0 (whih is �nitely supported). The omplete instantiation of thev-ompatible indution priniple isP = �� M T � 0: � � � 0 ) valid(� 0)) � 0 `M : TC = � 0 � = � M = M T = Twhih after some beta-ontrations gives us the statement in (22). The indutionases are then as follows (stripping o� the outermost quanti�ers):(1) valid (� ) ^ (x : T ) 2 � ) � � � 0 ) valid (� 0)) � 0 ` var (x) : T(2) (8� 00: � � � 00 ) valid (� 00)) � 00 `M1 : T1 ! T2) ^(8� 00: � � � 00 ) valid (� 00)) � 00 `M2 : T1) )� � � 0 ) valid (� 0) ) � 0 ` app(M1;M2) : T2(3) (8� 00: (x : T1) ::� � � 00 ) valid (� 00) ) � 00 `M : T2) ^ x # � 0 )� � � 0 ) valid (� 0) ) � 0 ` lam(x:M) : T1 ! T2The �rst two ases are trivial. For (3), we instantiate � 00 in the indutionhypothesis to be (x : T1) :: � 0. From the assumption � � � 0 we have (x :T1) :: � � (x : T1) :: � 0. Moreover from the assumption valid (� 0) we also havevalid ((x : T1) ::� 0) using the variable onvention's x # � 0. Hene we an derive(x : T1) ::� 0 `M : T2 using the indution hypothesis. Now applying rule Type3we an obtain � 0 ` lam(x:M) : T1 ! T2, again using the variable onvention'sx # � 0. This ompletes the proof. Its readable version expressed in Isabelle'sIsar-language [12℄ and using the nominal datatype pakage [9℄ is shown in Fig. 1.By way of ontrast, reall that a proof without the stronger indution prini-ple would not be able to assume anything about the relationship between x and� 0, foring the prover to �-onvert lam(x:M) to a form with a new and suitablyfresh bound variable, lam(z:((z x)�M)), say. At this point, the simpliity of theproof using the variable onvention disappears: the indutive hypothesis is muhharder to show appliable beause it mentions M , but the desired goal is interms of (z x)�M .



Barendregt's Variable Convention in Rule Indutions 13lemma weakening :assumes a1: � ` M :T and a2: � � � 0 and a3: valid � 0shows � 0 ` M :Tusing a1 a2 a3proof (nominal-indut � M T avoiding : � 0 rule: strong-typing-indut)ase (Type3 x � T 1 T 2 M )have v: x#� 0 by fat | variable onventionhave ih: (x :T 1)::��(x :T 1)::� 0=)valid ((x :T 1)::� 0)=)(x :T 1)::� 0̀ M :T 2 by fathave � � � 0 by fatthen have (x :T 1)::� � (x :T 1)::� 0 by simpmoreoverhave valid � 0 by fatthen have valid ((x :T 1)::� 0) using v by (simp add : valid-ons)ultimately have (x :T 1)::� 0 ` M :T 2 using ih by simpwith v show � 0 ` lam(x :M ) : T 1 ! T 2 by autoqed (auto) | ases Type1 and Type2Fig. 1. A readable Isabelle-Isar proof for the weakening lemma using the strong in-dution priniple of the typing relation. The stronger indution priniple allows usto assume a variable onvention, in this proof x # � 0, whih makes the proof to gothrough without diÆulties.5.2 Parallel RedutionIn [2℄, the entral lemma of the proof for the Churh-Rosser property of beta-redution is the substitutivity property of the �!1�!-redution. To formalise thisproof while preserving the informal version's simpliity, we will need the strongindution priniple for �!1�!.Before proeeding, we need two important properties of the substitution fun-tion, whih ours in the redex rule One4. We haraterise the ation of a per-mutation over a substitution (showing that substitution is equivariant), andthe support of a substitution. Both proofs are by straightforward v-ompatiblestrutural indution over M :��(M [x := N ℄) = (��M)[(��x) := (��N)℄ (23)supp(M [x := N ℄) � (supp(M)� fxg) [ supp(N) (24)With this we an start to hek the v-ompatibility onditions: the onditionabout equivariane of funtions and side-onditions is again easily on�rmed. Theseond ondition is that bound variables are free in the relation's rules' onlu-sions. In rule One2, this is trivial beause y # lam(y:M) and y # lam(y:M 0)hold. A problem arises, however, with rule One4. Here we have to show thaty # app(lam(y:M); N) and y # M 0[y := N 0℄, and we have no assumptions tohand about y.It is ertainly true that y is fresh for lam(y:M), but it may our in N . As forthe term M 0[y := N 0℄, we know that any ourrenes of y in M 0 will be maskedby the substitution (see (24)), but y may still be free in N 0.



14 Christian Urban, Stefan Berghofer, and Mihael NorrishWe need to reformulate One4 to ready # N y # N 0 M �!1�!M 0 N �!1�! N 0app(lam(y:M); N) �!1�!M 0[y := N 0℄ One004so that the v-ompatibility onditions an be disharged. In other words, if wehave rule One004 we an apply Theorem 1, but not if we use One4. This is annoyingbeause both versions an be shown to de�ne the same relation, but we haveno general, and automatable, method for determining this. For the moment, werejet rule One4 and require the user of the nominal datatype pakage to useOne004 . If this is done, the substitutivity lemma is almost automati:lemma substitutivity-aux :assumes a: N�!1N 0shows M [x :=N ℄ �!1 M [x :=N 0℄using a by (nominal-indut M avoiding : x N N 0 rule: strong-lam-indut) (auto)lemma subtitutivity :assumes a1: M�!1M 0 and a2: N�!1N 0shows M [x :=N ℄�!1M 0[x :=N 0℄using a1 a2 by (nominal-indut M M 0 avoiding : N N 0 x rule: strong-parallel-indut)(auto simp add : substitutivity-aux substitution-lemma fresh-atm)The �rst lemma is proved by a v-ompatible strutural indution over M ; theseond, the atual substitutivity property, is proved by a v-ompatible ruleindution relying on the substitution lemma, and the lemma fresh-atm, whihstates that x # y is the same as x 6= y when y is an atom.6 Related WorkApart from our own preliminary work in this area [10℄, we believe the prettiestformal proof of the weakening lemma to be that in Pitts [8℄. This proof usesthe equivariane property of the typing relation, and inludes a renaming stepusing permutations. Beause of the pleasant properties that permutations enjoy(they are bijetive renamings, in ontrast to substitutions whih might identifytwo names), the renaming an be done with relatively minimal overhead. Ourontribution is that we have built this renaming into our v-ompatible indutionpriniples one and for all. Proofs using the v-ompatible priniples then do notneed to perform any expliit renaming steps.Somewhat similar to our approah is the work of Pollak and MKinna [6℄.Starting from the standard indution priniple that is assoiated with an indu-tive de�nition, we derived an indution priniple that allows emulation of Baren-dregt's variable onvention. Pollak and MKinna, in ontrast, gave a \weak"and \strong" version of the typing relation. These versions di�er in the way therule for abstrations is stated:x # M (x : T1) :: � `M [y := x℄ : T2� ` lam(y:M) : T1 ! T2 weak8x: x # � ) (x : T1) :: � `M [y := x℄ : T2� ` lam(y:M) : T1 ! T2 strong



Barendregt's Variable Convention in Rule Indutions 15They then showed that both versions derive the same typing judgements. Withthis they proved the weakening lemma using the \strong" version of the prini-ple, while knowing that the result held for the \weak" relation as well. The maindi�erene between this and our work seems to be of onveniene: we an rela-tively easily derive, in a uniform way, an indution priniple for v-ompatiblerelations (we have illustrated this point with two examples). Ahieving the sameuniformity in the style of MKinna and Pollak does not seem as straightforward.7 Future WorkOur future work will onentrate on two aspets: �rst on generalising our de�ni-tion of shemati rules so that they may, for example, inlude quanti�ers. Seondon being more liberal about whih variables an be inluded in the indutionontext. To see what we have in mind with this, reall that we allowed in theindution ontext only variables that are in binding position. However there areexamples where this is too restritive: for example Crary gives in [4, Page 231℄the following mutual indutive de�nition for the judgements � ` s , t : Tand � ` p $ q : T (they represent a type-driven equivalene algorithm forlambda-terms with onstants):s + p t + q � ` p$ q : T� ` s, t : b Ae1 (x : T1) ::� ` s x, t x : T2� ` s, t : T1 ! T2 Ae2 � ` s, t : unitAe3(x : T ) 2 �� ` x$ x : T Pe1 � ` p$ q : T1 ! T2 � ` s$ t : T1� ` p s$ q t : T2 Pe2 � ` k $ k : b Pe3What is interesting is that these rules do not ontain any variable in bindingposition. Still, in some proofs by indution over those rules one wants to beable to assume that the variable x in the rule Ae2 satis�es ertain freshnessonditions. Our implementation already deals with this situation by expliitlygiving the information that x should appear in the indution ontext. However,we have not yet worked out the theory.8 ConlusionIn the POPLmark Challenge [1℄, the proof of the weakening lemma is desribedas a \straightforward indution". In fat, mehanising this informal proof is notstraightforward at all (see for example [6, 5, 8℄). We have given a novel ruleindution priniple for the typing relation that makes proving the weakeninglemma mehanially as simple as performing the informal proof.Importantly, this new priniple an be derived from the original indutivede�nition of the typing relation in a mehanial way. This method extends ourearlier work [10, 7℄, where we onstruted our new indution priniples by hand.By formally deriving priniples that avoid the need to rename bound variables,we advane the state-of-the-art in mehanial theorem-proving over syntax withbinders. The results of this paper have already been used many times in thenominal datatype pakage: for example in the proofs of the CR and SN properties



16 Christian Urban, Stefan Berghofer, and Mihael Norrishin the �-alulus, in proofs about the pi-alulus, in proofs about logial relationsand in several proofs from strutural operational semantis.The fat that our tehnique may require users to ast some indutive de�-nitions in alternative forms is unfortunate. In the earlier [10℄, our hand-proofsorretly derived a v-ompatible priniple from the original de�nition of �!1�!;we hope that future work will automatially justify omparable derivations.Aknowledgements We are very grateful to Andrew Pitts for the many dis-ussions with him on the subjet of this paper.Referenes1. B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Piere, P. Sewell,D. Vytiniotis, G. Washburn, S. Weirih, and S. Zdanewi. Mehanized Metathe-ory for the Masses: The PoplMark Challenge. In Pro. of the 18th InternationalConferene on Theorem Proving in Higher-Order Logis (TPHOLs), volume 3603of LNCS, pages 50{65, 2005.2. H. Barendregt. The Lambda Calulus: its Syntax and Semantis, volume 103 ofStudies in Logi and the Foundations of Mathematis. North-Holland, 1981.3. J. Bengtson and J. Parrow. Formalising the pi-Calulus using Nominal Logi. InPro. of the 10th International Conferene on Foundations of Software Siene andComputation Strutures (FOSSACS), volume 4423 of LNCS, pages 63{77, 2007.4. K. Crary. Advaned Topis in Types and Programming Languages, hapter LogialRelations and a Case Study in Equivalene Cheking, pages 223{244. MIT Press,2005.5. J. Gallier. Logi for Computer Siene: Foundations of Automati Theorem Prov-ing. Harper & Row, 1986.6. J. MKinna and R. Pollak. Some type theory and lambda alulus formalised.Journal of Automated Reasoning, 23(1-4), 1999.7. M. Norrish. Mehanising �-alulus using a lassial �rst order theory of termswith permutation. Higher-Order and Symboli Computation, 19:169{195, 2006.8. A. M. Pitts. Nominal Logi, A First Order Theory of Names and Binding. Infor-mation and Computation, 186:165{193, 2003.9. C. Urban and S. Berghofer. A Reursion Combinator for Nominal DatatypesImplemented in Isabelle/HOL. In Pro. of the 3rd International Joint Confereneon Automated Reasoning (IJCAR), volume 4130 of LNAI, pages 498{512, 2006.10. C. Urban and M. Norrish. A formal treatment of the Barendregt Variable Conven-tion in rule indutions. In MERLIN '05: Proeedings of the 3rd ACM SIGPLANworkshop on Mehanized reasoning about languages with variable binding, pages25{32, New York, NY, USA, 2005. ACM Press.11. C. Urban and C. Tasson. Nominal tehniques in Isabelle/HOL. In Pro. of the20th International Conferene on Automated Dedution (CADE), volume 3632 ofLeture Notes in Computer Siene, pages 38{53, 2005.12. M. Wenzel. Isar | A Generi Interpretative Approah to Readable Formal ProofDouments. In Pro. of the 12th International Conferene on Theorem Proving inHigher Order Logis (TPHOLs), number 1690 in LNCS, pages 167{184, 1999.


