
POSIX Lexing with Bitcoded Derivatives
Chengsong Tan #

Imperial College London

Christian Urban #

King’s College London

Abstract
Sulzmann and Lu describe a lexing algorithm that calculates Brzozowski derivatives using bitcodes
annotated to regular expressions. Their algorithm generates POSIX values which encode the
information of how a regular expression matches a string—that is, which part of the string is
matched by which part of the regular expression. This information is needed in the context of
lexing in order to extract and to classify tokens. The purpose of the bitcodes is to generate POSIX
values incrementally while derivatives are calculated. They also help with designing an “aggressive”
simplification function that keeps the size of derivatives finitely bounded. Without simplification
the size of some derivatives can grow arbitrarily big, resulting in an extremely slow lexing algorithm.
In this paper we describe a variant of Sulzmann and Lu’s algorithm: Our variant is a recursive
functional program, whereas Sulzmann and Lu’s version involves a fixpoint construction. We (i)
prove in Isabelle/HOL that our variant is correct and generates unique POSIX values (no such proof
has been given for the original algorithm by Sulzmann and Lu); we also (ii) establish finite bounds
for the size of our derivatives.

2012 ACM Subject Classification Design and analysis of algorithms; Formal languages and automata
theory

Keywords and phrases POSIX matching and lexing, derivatives of regular expressions, Isabelle/HOL

1 Introduction

In the last fifteen or so years, Brzozowski’s derivatives of regular expressions have sparked
quite a bit of interest in the functional programming and theorem prover communities.
Derivatives of a regular expressions, written r\c, give a simple solution to the problem of
matching a string s with a regular expression r : if the derivative of r w.r.t. (in succession) all
the characters of the string matches the empty string, then r matches s (and vice versa). The
beauty of Brzozowski’s derivatives [4] is that they are neatly expressible in any functional
language, and easily definable and reasoned about in theorem provers—the definitions just
consist of inductive datatypes and simple recursive functions. Another attractive feature of
derivatives is that they can be easily extended to bounded regular expressions, such as r{n}

or r{..n}, where numbers or intervals of numbers specify how many times a regular expression
should be used during matching.

However, there are two difficulties with derivative-based matchers: First, Brzozowski’s
original matcher only generates a yes/no answer for whether a regular expression matches a
string or not. This is too little information in the context of lexing where separate tokens
must be identified and also classified (for example as keywords or identifiers). Sulzmann and
Lu [15] overcome this difficulty by cleverly extending Brzozowski’s matching algorithm. Their
extended version generates additional information on how a regular expression matches a
string following the POSIX rules for regular expression matching. They achieve this by adding
a second “phase” to Brzozowski’s algorithm involving an injection function. In our own
earlier work we provided the formal specification of what POSIX matching means and proved
in Isabelle/HOL the correctness of Sulzmann and Lu’s extended algorithm accordingly [2].

The second difficulty is that Brzozowski’s derivatives can grow to arbitrarily big sizes.
For example if we start with the regular expression (a + aa)∗ and take successive derivatives

© Chengsong Tan and Christian Urban;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 26; pp. 26:1–26:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ctan1@ic.ac.uk
mailto:christian.urban@kcl.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 POSIX Lexing with Bitcoded Derivatives

according to the character a, we end up with a sequence of ever-growing derivatives like

(a + aa)∗ _\a−→ (1 + 1a) · (a + aa)∗

_\a−→ (0 + 0a + 1) · (a + aa)∗ + (1 + 1a) · (a + aa)∗

_\a−→ (0 + 0a + 0) · (a + aa)∗ + (1 + 1a) · (a + aa)∗ +
(0 + 0a + 1) · (a + aa)∗ + (1 + 1a) · (a + aa)∗

_\a−→ . . . (regular expressions of sizes 98, 169, 283, 468, 767, . . .)

where after around 35 steps we run out of memory on a typical computer (we shall define
shortly the precise details of our regular expressions and the derivative operation). Clearly,
the notation involving 0s and 1s already suggests simplification rules that can be applied to
regular regular expressions, for example 0 r ⇒ 0, 1 r ⇒ r, 0 + r ⇒ r and r + r ⇒ r. While
such simple-minded simplifications have been proved in our earlier work to preserve the
correctness of Sulzmann and Lu’s algorithm [2], they unfortunately do not help with limiting
the growth of the derivatives shown above: the growth is slowed, but some derivatives can
still grow rather quickly beyond any finite bound.

Sulzmann and Lu address this “growth problem” in a second algorithm [15] where they
introduce bitcoded regular expressions. In this version, POSIX values are represented as
bitsequences and such sequences are incrementally generated when derivatives are calculated.
The compact representation of bitsequences and regular expressions allows them to define
a more “aggressive” simplification method that keeps the size of the derivatives finitely
bounded no matter what the length of the string is. They make some informal claims about
the correctness and linear behaviour of this version, but do not provide any supporting
proof arguments, not even “pencil-and-paper” arguments. They write about their bitcoded
incremental parsing method (that is the algorithm to be fixed and formalised in this paper):

“Correctness Claim: We further claim that the incremental parsing method [..] in
combination with the simplification steps [..] yields POSIX parse trees. We have tested
this claim extensively [..] but yet have to work out all proof details.” [15, Page 14]

Contributions: We fill this gap by implementing in Isabelle/HOL our version of the
derivative-based lexing algorithm of Sulzmann and Lu [15] where regular expressions are
annotated with bitsequences. We define the crucial simplification function as a recursive
function, without the need of a fixpoint operation. One objective of the simplification
function is to remove duplicates of regular expressions. For this Sulzmann and Lu use in
their paper the standard nub function from Haskell’s list library, but this function does not
achieve the intended objective with bitcoded regular expressions. The reason is that in the
bitcoded setting, each copy generally has a different bitcode annotation—so nub would never
“fire”. Inspired by Scala’s library for lists, we shall instead use a distinctWith function that
finds duplicates under an “erasing” function that deletes bitcodes before comparing regular
expressions. We shall also introduce our own arguments and definitions for establishing the
correctness of the bitcoded algorithm when simplifications are included. Finally we establish
that the size of derivatives can be finitely bounded.

In this paper, we shall first briefly introduce the basic notions of regular expressions and
describe the definition of POSIX lexing from our earlier work [2]. This serves as a reference
point for what correctness means in our Isabelle/HOL proofs. We shall then prove the
correctness for the bitcoded algorithm without simplification, and after that extend the proof
to include simplification. Our Isabelle code including the results from Sec. 5 is available from
https://github.com/urbanchr/posix.

https://github.com/urbanchr/posix

C. Tan and C. Urban 26:3

2 Background

In our Isabelle/HOL formalisation strings are lists of characters with the empty string
being represented by the empty list, written [], and list-cons being written as _ ::_ ; string
concatenation is _ @ _ . We often use the usual bracket notation for lists also for strings; for
example a string consisting of just a single character c is written [c]. Our regular expressions
are defined as the following inductive datatype:

r ::= 0 | 1 | c | r1 + r2 | r1 · r2 | r∗ | r{n}

where 0 stands for the regular expression that does not match any string, 1 for the regular
expression that matches only the empty string and c for matching a character literal. The
constructors + and · represent alternatives and sequences, respectively. We sometimes omit
the · in a sequence regular expression for brevity. The language of a regular expression,
written L(r), is defined as usual and we omit giving the definition here (see for example [2]).

In our work here we also add to the usual “basic” regular expressions the bounded regular
expression r{n} where the n specifies that r should match exactly n-times (it is not included in
Sulzmann and Lu’s original work). For brevity we omit the other bounded regular expressions
r{..n}, r{n..} and r{n..m} which specify intervals for how many times r should match. The
results presented in this paper extend straightforwardly to them, too. The importance of
the bounded regular expressions is that they are often used in practical applications, such
as Snort (a system for detecting network intrusions) and also in XML Schema definitions.
According to Björklund et al [3], bounded regular expressions occur frequently in the latter
and can have counters of up to ten million. The problem is that tools based on the classic
notion of automata need to expand r{n} into n connected copies of the automaton for r.
This leads to very inefficient matching algorithms or algorithms that consume large amounts
of memory. A classic example is the regular expression (a + b)∗ · a · (a + b){n} where the
minimal DFA requires at least 2n+1 states (see [16]). Therefore regular expression matching
libraries that rely on the classic notion of DFAs often impose adhoc limits for bounded regular
expressions: For example in the regular expression matching library in the Go language and
also in Google’s RE2 library the regular expression a{1001} is not permitted, because no
counter can be above 1000; and in the regular expression library in Rust expressions such as
a{1000}{100}{5} give an error message for being too big. Up until recently,1 Rust however
happily generated automata for regular expressions such as a{0}{4294967295}. This was
due to a bug in the algorithm that decides when a regular expression is acceptable or too
big according to Rust’s classification (it did not account for the fact that a{0} and similar
examples can match the empty string). We shall come back to this example later in the paper.
These problems can of course be solved in matching algorithms where automata go beyond
the classic notion and for instance include explicit counters (e.g. [16]). The point here is that
Brzozowski derivatives and the algorithms by Sulzmann and Lu can be straightforwardly
extended to deal with bounded regular expressions and moreover the resulting code still
consists of only simple recursive functions and inductive datatypes. Finally, bounded regular
expressions do not destroy our finite boundedness property, which we shall prove later on.

Central to Brzozowski’s regular expression matcher are two functions called nullable and
derivative. The latter is written r\c for the derivative of the regular expression r w.r.t. the
character c. Both functions are defined by recursion over regular expressions.

1 up until version 1.5.4 of the regex library in Rust; see also CVE-2022-24713.

ITP 2023

26:4 POSIX Lexing with Bitcoded Derivatives

0\c def= 0
1\c def= 0
d\c def= if c = d then 1 else 0

(r1 + r2)\c def= r1\c + r2\c
(r1 · r2)\c def= if nullable r1

then (r1\c) · r2 + r2\c
else (r1\c) · r2

(r∗)\c def= (r\c) · r∗

(r{n})\c def= if n = 0 then 0 else (r\c) · r{n − 1}

nullable (0) def= False
nullable (1) def= True
nullable (c) def= False
nullable (r1 + r2) def= nullable r1 ∨ nullable r2

nullable (r1 · r2) def= nullable r1 ∧ nullable r2

nullable (r∗) def= True
nullable (r{n}) def= if n = 0

then True
else nullable r

We can extend this definition to give derivatives w.r.t. strings, namely as r\[] def= r and
r\(c :: s) def= (r\c)\s. Using nullable and the derivative operation, we can define a simple regular
expression matcher, namely match s r def= nullable(r\s). This is essentially Brzozowski’s
algorithm from 1964. Its main virtue is that the algorithm can be easily implemented as a
functional program (either in a functional programming language or in a theorem prover).
The correctness of match amounts to establishing the property:

▶ Proposition 1. match s r if and only if s ∈ L(r)

It is a fun exercise to formally prove this property in a theorem prover. We are aware of a
mechanised correctness proof of Brzozowski’s derivative-based matcher in HOL4 by Owens
and Slind [12]. Another one in Isabelle/HOL is part of the work by Krauss and Nipkow [8].
And another one in Coq is given by Coquand and Siles [5]. Also Ribeiro and Du Bois give
one in Agda [14].

The novel idea of Sulzmann and Lu is to extend this algorithm for lexing, where it is
important to find out which part of the string is matched by which part of the regular
expression. For this Sulzmann and Lu presented two lexing algorithms in their paper [15].
The first algorithm consists of two phases: first a matching phase (which is Brzozowski’s
algorithm) and then a value construction phase. The values encode how a regular expression
matches a string. Values are defined as the inductive datatype

v ::= Empty | Char c | Left v | Right v | Seq v1 v2 | Stars vs

where we use vs to stand for a list of values. The string underlying a value can be calculated
by a flat function, written | |. It traverses a value and collects the characters contained in it
(see [2]).

Sulzmann and Lu also define inductively an inhabitation relation that associates values
to regular expressions. Our version of this relation is defined by the following six rules:

⊢ Empty : 1
⊢ v1 : r1

⊢ Left v1 : r1 + r2

⊢ v2 : r2

⊢ Right v2 : r1 + r2

⊢ v1 : r1 ⊢ v2 : r2

⊢ Seq v1 v2 : r1 · r2

⊢ Char c : c
∀ v ∈ vs. ⊢ v : r ∧ |v| ̸= []

⊢ Stars vs : r∗

∀ v ∈ vs1. ⊢ v : r ∧ |v| ̸= []
∀ v ∈ vs2. ⊢ v : r ∧ |v| = [] len (vs1 @ vs2) = n

⊢ Stars (vs1 @ vs2) : r{n}

Note that no values are associated with the regular expression 0, since it cannot match any
string. Interesting is our version of the rule for r∗ where we require that each value in vs
flattens to a non-empty string. This means if r∗ matches the empty string, the related value
must be of the form Stars []. But if r∗ “fires” one or more times, then each copy in Stars
vs needs to match a non-empty string. Similarly, in the rule for r{n} we require that the

C. Tan and C. Urban 26:5

([], 1) → Empty
P1

([c], c) → Char c
Pc

(s, r1) → v
(s, r1 + r2) → Left v

P+L
(s, r2) → v s /∈ L r1

(s, r1 + r2) → Right v
P+R

(s1, r1) → v1 (s2, r2) → v2 ∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r1 ∧ s4 ∈ L r2

(s1 @ s2, r1 · r2) → Seq v1 v2
PS

([], r∗) → Stars []
P[]

(s1, r) → v (s2, r∗) → Stars vs |v| ̸= []
∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r ∧ s4 ∈ L (r∗)

(s1 @ s2, r∗) → Stars (v :: vs)
P⋆

∀ v ∈ vs. ([], r) → v len vs = n
([], r{n}) → Stars vs

Pn[]

(s1, r) → v (s2, r{n}) → Stars vs |v| ̸= []
∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r ∧ s4 ∈ L (r{n})

(s1 @ s2, r{n + 1}) → Stars (v :: vs)
Pn+

Figure 1 The inductive definition of POSIX values taken from our earlier paper [2]. The ternary
relation, written (s, r) → v, formalises the notion of given a string s and a regular expression r what
is the unique value v that satisfies the informal POSIX constraints for regular expression matching.

length of the list vs1 @ vs2 equals n (meaning the regular expression r matches n-times) and
that the first segment of this list contains values that flatten to non-empty strings followed
by a segment that only contains values that flatten to the empty string. It is routine to
establish how values “inhabiting” a regular expression correspond to the language of a regular
expression, namely L r = {|v| | ⊢ v : r}.

In general there is more than one value inhabiting a regular expression (meaning regular
expressions can typically match more than one string). But even when fixing a string from
the language of the regular expression, there are generally more than one way of how the
regular expression can match this string. POSIX lexing is about identifying the unique
value for a given regular expression and a string that satisfies the informal POSIX rules (see
[13, 9, 11, 15, 17]). Sometimes these informal rules are called maximal munch rule and rule
priority. One contribution of our earlier paper is to give a convenient specification for what
POSIX values are (the inductive rules are shown in Figure 1).

The clever idea by Sulzmann and Lu [15] in their first algorithm is to define an injection
function on values that mirrors (but inverts) the construction of the derivative on regular
expressions. Essentially it injects back a character into a value. For this they define two
functions called mkeps and inj:

mkeps 1 def= Empty
mkeps (r1 · r2) def= Seq (mkeps r1) (mkeps r2)
mkeps (r1 + r2) def= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)
mkeps (r∗) def= Stars []
mkeps (r{n}) def= Stars (replicate n (mkeps r))

inj d c (Empty) def= Char c
inj (r1 + r2) c (Left v1) def= Left (inj r1 c v1)
inj (r1 + r2) c (Right v2) def= Right (inj r2 c v2)
inj (r1 · r2) c (Seq v1 v2) def= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Left (Seq v1 v2)) def= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Right v2) def= Seq (mkeps r1) (inj r2 c v2)
inj (r∗) c (Seq v (Stars vs)) def= Stars (inj r c v :: vs)
inj (r{n}) c (Seq v (Stars vs)) def= Stars (inj r c v :: vs)

ITP 2023

26:6 POSIX Lexing with Bitcoded Derivatives

The function mkeps is run when the last derivative is nullable, that is the string to be
matched is in the language of the regular expression. It generates a value for how the last
derivative can match the empty string. In case of r{n} we use the function replicate in
order to generate a list of exactly n copies, which is the length of the list we expect in this
case. The injection function then calculates the corresponding value for each intermediate
derivative until a value for the original regular expression is generated. Graphically the
algorithm by Sulzmann and Lu can be illustrated by the following picture where the path
from the left to the right involving derivatives/nullable is the first phase of the algorithm
(calculating successive Brzozowski’s derivatives) and mkeps/inj, the path from right to left,
the second phase.

r1 r2
\a

r3
\b

r4
\c nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

The picture shows the steps required when a regular expression, say r1, matches the string
[a, b, c]. The first lexing algorithm by Sulzmann and Lu can be defined as:

lexer r [] def= if nullable r then Some (mkeps r) else None
lexer r (c :: s) def= case lexer (r\c) s of None ⇒ None | Some v ⇒ Some (inj r c v)

We have shown in our earlier paper [2] that this algorithm is correct, that is it generates
POSIX values. The central property we established relates the derivative operation to the
injection function.

▶ Proposition 2. If (s, r\c) → v then (c :: s, r) → inj r c v.

With this in place we were able to prove:

▶ Proposition 3. (1) s /∈ L r if and only if lexer r s = None.
(2) s ∈ L r if and only if ∃ v. lexer r s = Some v ∧ (s, r) → v.

In fact we have shown that, in the success case, the generated POSIX value v is unique
and in the failure case that there is no POSIX value v that satisfies (s, r) → v. While the
algorithm is correct, it is excruciatingly slow in cases where the derivatives grow arbitrarily
(recall the example from the Introduction). However it can be used as a convenient reference
point for the correctness proof of the second algorithm by Sulzmann and Lu, which we shall
describe next.

3 Bitcoded Regular Expressions and Derivatives

In the second part of their paper [15], Sulzmann and Lu describe another algorithm that also
generates POSIX values but dispenses with the second phase where characters are injected
“back” into values. For this they annotate bitcodes to regular expressions, which we define in
Isabelle/HOL as the datatype

breg ::= ZERO | ONE bs | CHAR bs c | ALTs bs rs | SEQ bs r1 r2 | STAR bs r | NT bs r n

C. Tan and C. Urban 26:7

decode′ bs (1) def= (Empty, bs)
decode′ bs (c) def= (Char c, bs)
decode′ (Z ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r1 in (Left v, bs1)
decode′ (S ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r2 in (Right v, bs1)
decode′ bs (r1 · r2) def= let (v1, bs1) = decode′ bs r1 in

let (v2, bs2) = decode′ bs1 r2 in (Seq v1 v2, bs2)
decode′ (S ::bs) (r∗) def= (Stars [], bs)
decode′ (Z ::bs) (r∗) def= let (v, bs1) = decode′ bs r in

let (Stars vs, bs2) = decode′ bs1 (r∗) in (Stars v ::vs, bs2)
decode′ bs (r{n}) def= decode′ bs (r∗)

decode bs r
def= let (v, bs′) = decode′ bs r in if bs′ = [] then Some v else None

Figure 2 Two functions, called decode′ and decode, for decoding a value from a bitsequence with
the help of a regular expression. The first function terminates because in each call the size of the
regular expression decreases or stays the same (the size of r{n} is assumed to be bigger than the
size of r∗). In the star-case where the size stays the same in the second recursive call, the length
of the decoded bitsequence is shorter. Therefore a lexicographic measure of the size of the regular
expression and the length of the bitsequence decreases in every recursive call.

where bs stands for bitsequences; r, r1 and r2 for bitcoded regular expressions; and rs
for lists of bitcoded regular expressions. The binary alternative ALT bs r1 r2 is just an
abbreviation for ALTs bs [r1, r2]. The NT -regular expression, called N-Times, contains an
integer n, which corresponds to how many times r{n} should fire. For bitsequences we use
lists made up of the constants Z and S. The idea with bitcoded regular expressions is to
incrementally generate the value information (for example Left and Right) as bitsequences.
For this Sulzmann and Lu follow Nielsen and Henglein [10] and define a coding function for
how values can be coded into bitsequences.

code (Empty) def= []
code (Char c) def= []
code (Left v) def= Z :: code v
code (Right v) def= S :: code v

code (Seq v1 v2) def= code v1 @ code v2

code (Stars []) def= [S]
code (Stars (v :: vs)) def= Z :: code v @ code (Stars vs)

As can be seen, this coding is “lossy” in the sense that it does not record explicitly character
values and also not sequence values (for them it just appends two bitsequences). However,
the different alternatives for Left, respectively Right, are recorded as Z and S followed by
some bitsequence. Similarly, we use Z to indicate if there is still a value coming in the
list of Stars, whereas S indicates the end of the list. The lossiness makes the process of
decoding a bit more involved, but the point is that if we have a regular expression and a
bitsequence of a corresponding value, then we can always decode the value accurately (see
Fig. 2). The function decode checks whether all of the bitsequence is consumed and returns
the corresponding value as Some v; otherwise it fails with None. We can establish that for
a value v inhabiting a regular expression r, the decoding of its bitsequence never fails (see
also [10]).

▶ Lemma 4. If ⊢ v : r then decode (code v) r = Some v.

Proof. This follows from the property that decode′ ((code v) @ bs) r = (v, bs) holds for any
bit-sequence bs and ⊢ v : r. This property can be easily proved by induction on ⊢ v : r. ◀

ITP 2023

26:8 POSIX Lexing with Bitcoded Derivatives

Sulzmann and Lu define the function internalise in order to transform (standard)
regular expressions into annotated regular expressions. We write this operation as r↑.
This internalisation uses the following fuse function.

fuse bs (ZERO) def= ZERO
fuse bs (ONE bs′) def= ONE (bs @ bs′)
fuse bs (CHAR bs′ c) def= CHAR (bs @ bs′) c

fuse bs (ALTs bs′ rs) def= ALTs (bs @ bs′) rs

fuse bs (SEQ bs′ r1 r2) def= SEQ (bs @ bs′) r1 r2

fuse bs (STAR bs′ r) def= STAR (bs @ bs′) r

fuse bs (NT bs′ r n) def= NT (bs @ bs′) r n

This function “fuses” a bitsequence to the topmost constructor of a bitcoded regular
expressions. A regular expression can then be internalised into a bitcoded regular expression
as follows:

(0)↑ def= ZERO
(1)↑ def= ONE []
(c)↑ def= CHAR [] c

(r∗)↑ def= STAR [] r↑

(r1 + r2)↑ def= ALT [] (fuse [Z] r↑
1) (fuse [S] r↑

2)
(r1 · r2)↑ def= SEQ [] r↑

1 r↑
2

(r{n})↑ def= NT [] r↑ n

There is also an erase-function, written r↓, which transforms a bitcoded regular expression
into a (standard) regular expression by just erasing the annotated bitsequences. We omit the
straightforward definition. For defining the algorithm, we also need the functions bnullable
and bmkeps(s), which are the “lifted” versions of nullable and mkeps acting on bitcoded
regular expressions.

bnullable (ZERO) def= False
bnullable (ONE bs) def= True
bnullable (CHAR bs c) def= False
bnullable (ALTs bs rs) def=

∃ r ∈ rs. bnullable r

bnullable (SEQ bs r1 r2) def=
bnullable r1 ∧ bnullable r2

bnullable (STAR bs r) def= True
bnullable (NT bs r n) def=

if n = 0 then True else bnullable r

bmkeps (ONE bs) def= bs

bmkeps (ALTs bs rs) def= bs @ bmkepss rs
bmkeps (SEQ bs r1 r2) def=

bs @ bmkeps r1 @ bmkeps r2

bmkeps (STAR bs r) def= bs @ [S]
bmkeps (NT bs r n) def=

if n = 0 then bs @ [S]
else bs @ [Z] @ bmkeps r @ bmkeps (NT [] r (n − 1))

bmkepss (r ::rs) def=
if bnullable r then bmkeps r else bmkepss rs

The key function in the bitcoded algorithm is the derivative of a bitcoded regular expression.
This derivative function calculates the derivative but at the same time also the incremental
part of the bitsequences that contribute to constructing a POSIX value.

(ZERO)\c
def= ZERO

(ONE bs)\c
def= ZERO

(CHAR bs d)\c
def= if c = d then ONE bs else ZERO

(ALTs bs rs)\c
def= ALTs bs (map (_\c) rs)

(SEQ bs r1 r2)\c
def= if bnullable r1

then ALT bs (SEQ [] (r1\c) r2) (fuse (bmkeps r1) (r2\c))
else SEQ bs (r1\c) r2

(STAR bs r)\c
def= SEQ (bs @ [Z]) (r\c) (STAR [] r)

(NT bs r n)\c
def= if n = 0 then ZERO else SEQ (bs @ [Z]) (r\c) (NT [] r (n − 1))

This function can also be extended to strings, written r\s, just like the standard derivative.
We omit the details. Finally we can define Sulzmann and Lu’s bitcoded lexer, which we call
blexer :

C. Tan and C. Urban 26:9

blexer r s
def= let rder = (r↑)\s in if bnullable(rder) then decode (bmkeps rder) r else None

This bitcoded lexer first internalises the regular expression r and then builds the bitcoded
derivative according to s. If the derivative is (b)nullable the string is in the language of r

and it extracts the bitsequence using the bmkeps function. Finally it decodes the bitsequence
into a value. If the derivative is not nullable, then None is returned. We can show that this
way of calculating a value generates the same result as lexer.

Before we can proceed we need to define a helper function, called retrieve, which Sulzmann
and Lu introduced for the correctness proof.

retrieve (ONE bs) (Empty) def= bs
retrieve (CHAR bs c) (Char d) def= bs
retrieve (ALTs bs [r]) v def= bs @ retrieve r v
retrieve (ALTs bs (r :: rs)) (Left v) def= bs @ retrieve r v
retrieve (ALTs bs (r :: rs)) (Right v) def= bs @ retrieve (ALTs [] rs) v
retrieve (SEQ bs r1 r2) (Seq v1 v2) def= bs @ retrieve r1 v1 @ retrieve r2 v2

retrieve (STAR bs r) (Stars []) def= bs @ [S]
retrieve (STAR bs r) (Stars (v :: vs)) def=

bs @ [Z] @ retrieve r v @ retrieve (STAR [] r) (Stars vs)
retrieve (NT bs r 0) (Stars []) def= bs @ [S]
retrieve (NT bs r (n + 1)) (Stars (v :: vs)) def=

bs @ [Z] @ retrieve r v @ retrieve (NT [] r n) (Stars vs)

The idea behind this function is to retrieve a possibly partial bitsequence from a bitcoded
regular expression, where the retrieval is guided by a value. For example if the value is Left
then we descend into the left-hand side of an alternative in order to assemble the bitcode.
Similarly for Right. The property we can show is that for a given v and r with ⊢ v : r, the
retrieved bitsequence from the internalised regular expression is equal to the bitcoded version
of v.

▶ Lemma 5. If ⊢ v : r then code v = retrieve (r↑) v.

We also need some auxiliary facts about how the bitcoded operations relate to the “standard”
operations on regular expressions. For example if we build a bitcoded derivative and erase
the result, this is the same as if we first erase the bitcoded regular expression and then
perform the “standard” derivative operation.

▶ Lemma 6. (1) (r\s)↓ = (r↓)\s

(2) bnullable(r) iff nullable(r↓)
(3) bmkeps(r) = retrieve r (mkeps (r↓)) provided nullable(r↓)

Proof. All properties are by induction on annotated regular expressions. ◀

The only difficulty left for the correctness proof is that the bitcoded algorithm has only
a “forward phase” where POSIX values are generated incrementally. We can achieve the
same effect with lexer (which has two phases) by stacking up injection functions during the
forward phase. An auxiliary function, called flex, allows us to recast the rules of lexer in
terms of a single phase and stacked up injection functions.

flex r f [] def= f flex r f (c ::s) def= flex (r\c) (λv. f (inj r c v)) s

ITP 2023

26:10 POSIX Lexing with Bitcoded Derivatives

The point of this function is that when reaching the end of the string, we just need to apply
the stacked up injection functions to the value generated by mkeps. Using this function we
can recast the success case in lexer as follows:

▶ Lemma 7. If lexer r s = Some v then v = flex r id s (mkeps (r\s)).

Note we did not redefine lexer, we just established that the value generated by lexer can also
be obtained by a different method. While this different method is not efficient (we essentially
need to traverse the string s twice, once for building the derivative r\s and another time
for stacking up injection functions), it helps us with proving that incrementally building up
values in blexer generates the same result.

This brings us to our main lemma in this section: if we calculate a derivative, say r\s,
and have a value, say v, inhabiting this derivative, then we can produce the result lexer
generates by applying this value to the stacked-up injection functions that flex assembles.
The lemma establishes that this is the same value as if we build the annotated derivative
r↑\s and then retrieve the bitcoded version of v, followed by a decoding step.

▶ Lemma 8 (Main Lemma). If ⊢ v : r\s then Some (flex r id s v) = decode(retrieve (r↑\s) v) r

Proof. This can be proved by induction on s and generalising over v. The interesting point
is that we need to prove this in the reverse direction for s. This means instead of cases []
and c ::s, we have cases [] and s @ [c] where we unravel the string from the back.2 ◀

We can then prove the correctness of blexer—it indeed produces the same result as lexer.

▶ Theorem 9. blexer r s = lexer r s

This establishes that the bitcoded algorithm without simplification produces correct results.
This was only conjectured by Sulzmann and Lu in their paper [15]. The next step is to add
simplifications.

4 Simplification

Derivatives as calculated by Brzozowski’s method are usually more complex regular expressions
than the initial one; the result is that derivative-based matching and lexing algorithms are
often abysmally slow if the “growth problem” is not addressed. As Sulzmann and Lu wrote,
various optimisations are possible, such as the simplifications 0 r ⇒ 0, 1 r ⇒ r, 0 + r ⇒ r

and r + r ⇒ r. While these simplifications can considerably speed up the two algorithms
in many cases, they do not solve fundamentally the growth problem with derivatives. To
see this let us return to the example from the Introduction that shows the derivatives for
(a + aa)∗. If we delete in the 3rd step all 0s and 1s according to the simplification rules
shown above we obtain

(a + aa)∗ _\[a,a,a]−−−−−−→ (1 + a) · (a + aa)∗︸ ︷︷ ︸
r

+ ((a + aa)∗ + (1 + a) · (a + aa)∗︸ ︷︷ ︸
r

) (1)

This is a simpler derivative, but unfortunately we cannot make any further simplifications.
This is a problem because the outermost alternatives contains two copies of the same regular
expression (underlined with r). These copies will spawn new copies in later derivative

2 Isabelle/HOL provides an induction principle for this way of performing the induction.

C. Tan and C. Urban 26:11

steps and they in turn even more copies. This destroys any hope of taming the size of
the derivatives. But the second copy of r in (1) will never contribute to a value, because
POSIX lexing will always prefer matching a string with the first copy. So it could be safely
removed without affecting the correctness of the algorithm. The issue with the simple-minded
simplification rules above is that the rule r + r ⇒ r will never be applicable because as can
be seen in this example the regular expressions are not next to each other but separated by
another regular expression.

But here is where Sulzmann and Lu’s representation of generalised alternatives in the
bitcoded algorithm shines: in ALTs bs rs we can define a more aggressive simplification
by recursively simplifying all regular expressions in rs and then analyse the resulting list
and remove any duplicates. Another advantage with the bitsequences in bitcoded regular
expressions is that they can be easily modified such that simplification does not interfere
with the value constructions. For example we can “flatten”, or de-nest, or spill out, ALTs as
follows

ALTs bs1 ((ALTs bs2 rs2) :: rs1) bsimp−−−−→ ALTs bs1 ((map (fuse bs2) rs2) @ rs1)

where we just need to fuse the bitsequence that has accumulated in bs2 to the alternatives
in rs2. As we shall show below this will ensure that the correct value corresponding to the
original (unsimplified) regular expression can still be extracted.

However there is one problem with the definition for the more aggressive simplification
rules described by Sulzmann and Lu. Recasting their definition with our syntax they define
the step of removing duplicates as

bsimp (ALTs bs rs) def= ALTs bs (nub (map bsimp rs))

where they first recursively simplify the regular expressions in rs (using map) and then use
Haskell’s nub-function to remove potential duplicates in lists. Nub decides if an element is a
duplicate by checking whether it is an exact copy of an earlier element in the list. While this
makes sense when considering the example shown in (1), nub is the inappropriate function in
the case of bitcoded regular expressions. The reason is that in general the elements in rs will
have a different annotated bitsequence and in this way nub will never find a duplicate to be
removed. One correct way to handle this situation is to first erase the regular expressions
when comparing potential duplicates. This is inspired by Scala’s list functions of the form
distinctWith rs eq acc where eq is an user-defined equivalence relation that compares two
elements in rs. We define this function in Isabelle/HOL as

distinctWith [] eq acc def= []
distinctWith (x :: xs) eq acc def= if (∃ y ∈ acc. eq x y) then distinctWith xs eq acc

else x :: distinctWith xs eq ({x} ∪ acc)

where we scan the list from left to right (because we have to remove later copies). In
distinctWith, eq is intended to be an equivalence relation for bitcoded regular expressions and
acc is an accumulator for bitcoded regular expressions—essentially a set of regular expressions
that we have already seen while scanning the list. Therefore we delete an element, say x, from
the list provided a y with y being equivalent to x is already in the accumulator; otherwise
we keep x and scan the rest of the list but add x as another “seen” element to acc. We will
use distinctWith where eq is an equivalence that deletes bitsequences from bitcoded regular
expressions before comparing the components. One way to define this in Isabelle/HOL is by
the following recursive function from bitcoded regular expressions to bool:

ITP 2023

26:12 POSIX Lexing with Bitcoded Derivatives

ZERO ≈ ZERO def= True
ONE ≈ ONE def= True
STAR r1 ≈ STAR r2

def= r1 ≈ r2

ALTs [] ≈ ALTs [] def= True

CHAR c ≈ CHAR d def= c = d
SEQ r11 r12 ≈ SEQ r21 r22

def=
r11 ≈ r21 ∧ r12 ≈ r22

NT r1 n1 ≈ NT r2 n2
def= r1 ≈ r2 ∧ n1 = n2

ALTs (r1 :: rs1) ≈ ALTs (r2 :: rs2) def= r1 ≈ r2 ∧ ALTs rs1 ≈ ALTs rs2

where all other cases are set to False. This equivalence is clearly a computationally more
expensive operation than nub, but is needed in order to make the removal of unnecessary
copies to work properly.

Our simplification function depends on three more helper functions, one is called flts and
analyses lists of regular expressions coming from alternatives. It is defined by four clauses as
follows:

flts [] def= [] flts ((ALTs bs ′ rs ′) :: rs def= map (fuse bs ′) rs ′ @ flts rs

flts (ZERO :: rs) def= flts rs flts (r :: rs) def= r :: flts rs (otherwise)

The second clause of flts removes all instances of ZERO in alternatives and the third “de-nests”
alternatives (but retains the bitsequence bs ′ accumulated in the inner alternative). There are
some corner cases to be considered when the resulting list inside an alternative is empty or a
singleton list. We take care of those cases in the bsimpALTs function; similarly we define
a helper function that simplifies sequences according to the usual rules about ZEROs and
ONEs:

bsimpALTs bs [] def= ZERO
bsimpALTs bs [r] def= fuse bs r
bsimpALTs bs rs def= ALTs bs rs

bsimpSEQ bs ZERO def= ZERO
bsimpSEQ bs ZERO def= ZERO
bsimpSEQ bs1 (ONE bs2) r2

def= fuse (bs1 @ bs2) r2

bsimpSEQ bs r1 r2
def= SEQ bs r1 r2

With this in place we can define our simplification function as

bsimp (SEQ bs r1 r2) def= bsimpSEQ bs (bsimp r1) (bsimp r2)
bsimp (ALTs bs rs) def= bsimpALTs bs (distinctWith (flts (map bsimp rs)) ≈ ∅)
bsimp r def= r

We believe our recursive function bsimp simplifies bitcoded regular expressions as intended
by Sulzmann and Lu with the small addition of removing “useless” ONEs in sequence
regular expressions. There is no point in applying the bsimp function repeatedly (like the
simplification in their paper which needs to be applied until a fixpoint is reached) because
we can show that bsimp is idempotent, that is

▶ Proposition 10. bsimp (bsimp r) = bsimp r

This can be proved by induction on r but requires a detailed analysis that the de-nesting of
alternatives always results in a flat list of regular expressions. We omit the details since it
does not concern the correctness proof.

Next we can include simplification after each derivative step leading to the following
notion of bitcoded derivatives:

r\bsimp [] def= r r\bsimp (c :: s) def= bsimp (r\c)\bsimp s

and use it in the improved lexing algorithm defined as

C. Tan and C. Urban 26:13

blexer+ r s
def= let rder = (r↑)\bsimp s in if bnullable(rder) then decode (bmkeps rder) r else None

Note that in blexer+ the derivative rder is calculated using the simplifying derivative
_ \bsimp _. The remaining task is to show that blexer and blexer+ generate the same
answers.

When we first attempted this proof we encountered a problem with the idea in Sulzmann
and Lu’s paper where the argument seems to be to appeal again to the retrieve-function
defined for the unsimplified version of the algorithm. But this does not work, because
desirable properties such as

retrieve r v = retrieve (bsimp r) v

do not hold under simplification—this property essentially purports that we can retrieve the
same value from a simplified version of the regular expression. To start with retrieve depends
on the fact that the value v corresponds to the structure of the regular expression r—but the
whole point of simplification is to “destroy” this structure by making the regular expression
simpler. To see this consider the regular expression r = r ′ + 0 and a corresponding value v
= Left v ′. If we annotate bitcodes to r, then we can use retrieve with r and v in order to
extract a corresponding bitsequence. The reason that this works is that r is an alternative
regular expression and v a corresponding Left-value. However, if we simplify r, then v does
not correspond to the shape of the regular expression anymore. So unless one can somehow
synchronise the change in the simplified regular expressions with the original POSIX value,
there is no hope of appealing to retrieve in the correctness argument for blexer+.

For our proof we found it more helpful to introduce the rewriting systems shown in Fig 3.
The idea is to generate simplified regular expressions in small steps (unlike the bsimp-function
which does the same in a big step), and show that each of the small steps preserves the
bitcodes that lead to the POSIX value. The rewrite system is organised such that ⇝ is for
bitcoded regular expressions and s

⇝ for lists of bitcoded regular expressions. The former
essentially implements the simplifications of bsimpSEQ and flts; while the latter implements
the simplifications in bsimpALTs. We can show that any bitcoded regular expression reduces
in zero or more steps to the simplified regular expression generated by bsimp:

▶ Lemma 11. r ⇝∗ bsimp r

Proof. By induction on r. To establish the property we can use the properties rs s
⇝

∗
flts rs

and rs s
⇝

∗
distinctWith rs ≈ ∅. ◀

We can also show that this rewrite system preserves bnullable, that is simplification does not
affect nullability:

▶ Lemma 12. If r1 ⇝ r2 then bnullable r1 = bnullable r2.

Proof. Straightforward mutual induction on the definition of⇝ and s
⇝. The only interesting

case is the rule LD where the property holds since by the side-conditions of that rule the empty
string will be in both L (rsa @ [r1] @ rsb @ [r2] @ rsc) and L (rsa @ [r1] @ rsb @ rsc). ◀

From this, we can show that bmkeps will produce the same bitsequence as long as one of the
bitcoded regular expressions in ⇝ is nullable (this lemma establishes the missing fact we
were not able to establish using retrieve, as suggested in the paper by Sulzmannn and Lu).

▶ Lemma 13. If r1 ⇝ r2 and bnullable r1 ∧ bnullable r2 then bmkeps r1 = bmkeps r2.

ITP 2023

26:14 POSIX Lexing with Bitcoded Derivatives

(SEQ bs ZERO r2) ⇝ (ZERO)
S0l (SEQ bs r1 ZERO) ⇝ (ZERO)

S0r

r1 ⇝ r2

(SEQ bs r1 r3) ⇝ (SEQ bs r2 r3)
SL

(SEQ bs1 (ONE bs2) r) ⇝ fuse (bs1 @ bs2) r
S1

r3 ⇝ r4

(SEQ bs r1 r3) ⇝ (SEQ bs r1 r4)
SR

(ALTs bs []) ⇝ (ZERO)
A0

(ALTs bs [r]) ⇝ fuse bs r
A1

rs1
s
⇝ rs2

(ALTs bs rs1) ⇝ (ALTs bs rs2)
AL

rs1
s
⇝ rs2

r :: rs1
s
⇝ r :: rs2

LT
r1 ⇝ r2

r1 :: rs s
⇝ r2 :: rs

LH
ALTs bs rs1 :: rs2

s
⇝ (map (fuse bs) rs1 @ rs2)

LS

ZERO :: rs s
⇝ rs

L0
L (r2

↓) ⊆ L (r1
↓)

(rs1 @ [r1] @ rs2 @ [r2] @ rs3) s
⇝ (rs1 @ [r1] @ rs2 @ rs3)

LD

Figure 3 The rewrite rules that generate simplified regular expressions in small steps: r1 ⇝ r2 is
for bitcoded regular expressions and rs1

s
⇝ rs2 for lists of bitcoded expressions. Interesting is the

LD rule that allows copies of regular expressions to be removed provided a regular expression earlier
in the list can match the same strings.

Proof. By straightforward mutual induction on the definition of ⇝ and s
⇝. Again the only

interesting case is the rule LD where we need to ensure that bmkeps (rsa @ [r1] @ rsb @ [r2]
@ rsc) = bmkeps (rsa @ [r1] @ rsb @ rsc) holds. This is indeed the case because according
to the POSIX rules the generated bitsequence is determined by the first alternative that can
match the string (in this case being nullable). ◀

Crucial is also the fact that derivative steps and simplification steps can be interleaved, which
is shown by the fact that ⇝ is preserved under derivatives.

▶ Lemma 14. If r1 ⇝ r2 then r1\c ⇝∗ r2\c.

Proof. By straightforward mutual induction on the definition of ⇝ and s
⇝. The case for

LD holds because L ((r2\c)↓) ⊆ L ((r1\c)↓) if and only if L (r2
↓) ⊆ L (r1

↓). ◀

Using this fact together with Lemma 11 allows us to prove the central lemma that the
unsimplified derivative (with a string s) reduces to the simplified derivative (with the same
string).

▶ Lemma 15. r\s ⇝∗ r\bsimp s

Proof. By reverse induction on s generalising over r. ◀

With these lemmas in place we can finally establish that blexer+ and blexer generate the
same value, and using Theorem 9 from the previous section that this value is indeed the
POSIX value as generated by lexer.

▶ Theorem 16. blexer+ r s = blexer r s (= lexer r s by Thm. 9)

Proof. By unfolding the definitions and using Lemmas 15 and 13. ◀

This means that if the algorithm is called with a regular expression r and a string s with
s ∈ L(r), it will return Some v for the unique v we defined by the POSIX relation (s, r) → v;
otherwise the algorithm returns None when s ̸∈ L(r) and no such v exists. This completes
the correctness proof for the second POSIX lexing algorithm by Sulzmann and Lu. The
interesting point of this algorithm is that the sizes of derivatives do not grow arbitrarily big
but can be finitely bounded, which we shall show next.

C. Tan and C. Urban 26:15

5 Finite Bound for the Size of Derivatives

In this section let us sketch our argument for why the size of the simplified derivatives
with the aggressive simplification function can be finitely bounded. Suppose we have a size
function for bitcoded regular expressions, written JrK, which counts the number of nodes if
we regard r as a tree (we omit the precise definition; ditto for lists JrsK). For this we show
that for every r there exists a bound N such that

∀s. Jr\bsimp sK ≤ N

Note that the bound N is a bound for all strings, no matter how long they are. We establish
this bound by induction on r. The base cases for ZERO, ONE bs and CHAR bs c are
straightforward. The interesting case is for sequences of the form SEQ bs r1 r2. In this case
our induction hypotheses state ∃N1.∀s. Jr1\bsimp sK ≤ N1 and ∃N2.∀s. Jr2\bsimp sK ≤ N2.
We can reason as follows

J(SEQ bs r1 r2)\bsimp sK
= Jbsimp (ALTs bs ((SEQ [] (r1\bsimp s) r2) :: [r2\bsimp s ′ | s′ ∈ Suf(r1, s)]))K (1)
≤ JdistinctWith ((SEQ [] (r1\bsimp s) r2) :: [r2\bsimp s ′ | s′ ∈ Suf(r1, s)]) ≈ ∅K + 1 (2)
≤ JSEQ [] (r1\bsimp s) r2K + JdistinctWith [r2\bsimp s ′ | s′ ∈ Suf(r1, s)] ≈ ∅K + 1 (3)
≤ N1 + Jr2K + 2 + JdistinctWith [r2\bsimp s ′ | s′ ∈ Suf(r1, s)] ≈ ∅K (4)
≤ N1 + Jr2K + 2 + lN2 ∗ N2 (5)

where in (1) the set Suf(r1, s) are all the suffixes of s where r1\bsimp s ′ is nullable (s′ being
a suffix of s). In (3) we know that JSEQ [] (r1\bsimp s) r2K is bounded by N1 + Jr2K + 1. In
(5) we know the list comprehension contains only regular expressions of size smaller than N2.
The list length after distinctWith is bounded by a number, which we call lN2 . It stands for
the number of distinct regular expressions smaller than N2 (there can only be finitely many
of them). We reason similarly for STAR and NT.

Clearly we give in this finiteness argument (Step (5)) a very loose bound that is far from
the actual bound we can expect. We can do better than this, but this does not improve the
finiteness property we are proving. If we are interested in a polynomial bound, one would
hope to obtain a similar tight bound as for partial derivatives introduced by Antimirov [1].
After all the idea with distinctWith is to maintain a “set” of alternatives (like the sets in
partial derivatives). Unfortunately to obtain the exact same bound would mean we need to
introduce simplifications, such as (r1 + r2) · r3 −→ (r1 · r3) + (r2 · r3), which exist for partial
derivatives. However, if we introduce them in our setting we would lose the POSIX property
of our calculated values. For example given the regular expressions (a + ab) · (b + 1) and
the string [a, b], then our algorithm generates the following correct POSIX value

Seq (Right (Seq (Char a) (Char b))) (Right Empty)

Essentially it matches the string with the longer Right-alternative in the first sequence (and
then the ‘rest’ with the empty regular expression 1 from the second sequence). If we add the
simplification above, then we obtain the following value Seq (Left (Char a)) (Left (Char b))
where the Left-alternatives get priority. However, this violates the POSIX rules and we have
not been able to reconcile this problem. Therefore we leave better bounds for future work.

Note also that while Antimirov was able to give a bound on the size of his partial
derivatives [1], Brzozowski gave a bound on the number of derivatives, provided they are
quotient via ACI rules [4]. Brzozowski’s result is crucial when one uses his derivatives for
obtaining a DFA (it essentially bounds the number of states). However, this result does not

ITP 2023

26:16 POSIX Lexing with Bitcoded Derivatives

transfer to our setting where we are interested in the size of the derivatives. For example it is
not true that the set of our derivatives r\s for a given r and all strings s is finite (even when
simplified). This is because for our annotated regular expressions the bitcode annotation is
dependent on the number of iterations that are needed for STAR-regular expressions. This
is not a problem for us: Since we intend to do lexing by calculating (as fast as possible)
derivatives, the bound on the size of the derivatives is important, not their number.

6 Conclusion

We set out in this work to prove in Isabelle/HOL the correctness of the second POSIX lexing
algorithm by Sulzmann and Lu [15]. This follows earlier work where we established the
correctness of the first algorithm [2]. In the earlier work we needed to introduce our own
specification for POSIX values, because the informal definition given by Sulzmann and Lu
did not stand up to formal proof. Also for the second algorithm we needed to introduce our
own definitions and proof ideas in order to establish the correctness. Our interest in the
second algorithm lies in the fact that by using bitcoded regular expressions and an aggressive
simplification method there is a chance that the derivatives can be kept universally small (we
established in this paper that for a given r they can be kept finitely bounded for all strings).
Our formalisation is approximately 7500 lines of Isabelle code. A little more than half of
this code concerns the finiteness bound obtained in Section 5. This slight “bloat” in the
latter part is because we had to introduce an intermediate datatype for annotated regular
expressions and repeat many definitions for this intermediate datatype. But overall we think
this made our formalisation work smoother.

Having proved the correctness of the POSIX lexing algorithm, which lessons have we
learned? Well, we feel this is a very good example where formal proofs give further insight into
the matter at hand. For example it is very hard to see a problem with nub vs distinctWith
with only experimental data—one would still see the correct result but find that simplification
does not simplify in well-chosen, but not obscure, examples.

With the results reported here, we can of course only make a claim about the correctness
of the algorithm and the sizes of the derivatives, not about the efficiency or runtime of
our version of Sulzmann and Lu’s algorithm. But we found the size is an important first
indicator about efficiency: clearly if the derivatives can grow to arbitrarily big sizes and the
algorithm needs to traverse the derivatives possibly several times, then the algorithm will be
slow—excruciatingly slow that is. Other works seem to make stronger claims, but during our
formalisation work we have developed a healthy suspicion when for example experimental
data is used to back up efficiency claims. For instance Sulzmann and Lu write about their
equivalent of blexer+ “...we can incrementally compute bitcoded parse trees in linear time
in the size of the input” [15, Page 14]. Given the growth of the derivatives in some cases
even after aggressive simplification, this is a hard to believe claim. A similar claim about
a theoretical runtime of O(n2) for one specific list of regular expressions is made for the
Verbatim lexer, which calculates tokens according to POSIX rules [6]. For this, Verbatim
uses Brzozowski’s derivatives like in our work. About their empirical data, the authors write:
“The results of our empirical tests [..] confirm that Verbatim has O(n2) time complexity.”
[6, Section VII]. While their correctness proof for Verbatim is formalised in Coq, the claim
about the runtime complexity is only supported by some empirical evidence obtained by
using the code extraction facilities of Coq. Given our observation with the “growth problem”
of derivatives, this runtime bound is unlikely to hold universally: indeed we tried out their
extracted OCaml code with the example (a + aa)∗ as a single lexing rule, and it took for

C. Tan and C. Urban 26:17

us around 5 minutes to tokenise a string of 40 a’s and that increased to approximately 19
minutes when the string is 50 a’s long. Taking into account that derivatives are not simplified
in the Verbatim lexer, such numbers are not surprising. Clearly our result of having finite
derivatives might sound rather weak in this context but we think such efficiency claims really
require further scrutiny. The contribution of this paper is to make sure derivatives do not
grow arbitrarily big (universally). In the example (a + aa)∗, all derivatives have a size of
17 or less. The result is that lexing a string of, say, 50 000 a’s with the regular expression
(a + aa)∗ takes approximately 10 seconds with our Scala implementation of the presented
algorithm.3

Finally, let us come back to the point about bounded regular expressions. We have in
this paper only shown that r{n} can be included, but all our results extend straightforwardly
also to the other bounded regular expressions. We find bounded regular expressions fit
naturally into the setting of Brzozowski derivatives and the bitcoded regular expressions
by Sulzmann and Lu. In contrast bounded regular expressions are often the Achilles’ heel
in regular expression matchers that use the traditional automata-based approach to lexing,
primarily because they need to expand the counters of bounded regular expressions into
n-connected copies of an automaton. This is not needed in Sulzmann and Lu’s algorithm.
To see the difference consider for example the regular expression a{1001} · a∗, which is
not permitted in the Go language because the counter is too big. In contrast we have no
problem with matching this regular expression with, say 50 000 a’s, because the counters can
be kept compact. In fact, the overall size of the derivatives is never greater than 5 in this
example. Even in the example from Section 2, where Rust raises an error message, namely
a{1000}{100}{5}, the maximum size for our derivatives is a moderate 14.

Let us also return to the example a{0}{4294967295} which until recently Rust deemed
acceptable. But this was due to a bug. It turns out that it took Rust more than 11 minutes to
generate an automaton for this regular expression and then to determine that a string of just
one(!) a does not match this regular expression. Therefore it is probably a wise choice that
in newer versions of Rust’s regular expression library such regular expressions are declared
as “too big” and raise an error message. While this is clearly a contrived example, the safety
guaranties Rust wants to provide necessitate this conservative approach. However, with the
derivatives and simplifications we have shown in this paper, the example can be solved with
ease: it essentially only involves operations on integers and our Scala implementation takes
only a few seconds to find out that this string, or even much larger strings, do not match.

Let us also compare our work to the verified Verbatim++ lexer where the authors of
the Verbatim lexer introduced a number of improvements and optimisations, for example
memoisation [7]. However, unlike Verbatim, which works with derivatives like in our work,
Verbatim++ compiles first a regular expression into a DFA. While this makes lexing fast
in many cases, with examples of bounded regular expressions like a{100}{5} one needs to
represent them as sequences of a · a · . . . · a (500 a’s in sequence). We have run their extracted
code with such a regular expression as a single lexing rule and a string of 50 000 a’s—lexing
in this case takes approximately 5 minutes. We are not aware of any better translation using
the traditional notion of DFAs so that we can improve on this. Therefore we prefer to stick
with calculating derivatives, but attempt to make this calculation (in the future) as fast as
possible. What we can guarantee with the presented work is that the maximum size of the
derivatives for a{100}{5} · a∗ is never bigger than 9. This means our Scala implementation
again only needs a few seconds for this example and matching 50 000 a’s, say.

3 Our Scala implementation is “hand-crafted” and not generated via Isabelle’s code extraction mechanism.

ITP 2023

26:18 POSIX Lexing with Bitcoded Derivatives

References
1 V. Antimirov. Partial Derivatives of Regular Expressions and Finite Automata Constructions.

Theoretical Computer Science, 155:291–319, 1995.
2 F. Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives of Regular Expressions

(Proof Pearl). In Proc. of the 7th International Conference on Interactive Theorem Proving
(ITP), volume 9807 of LNCS, pages 69–86, 2016.

3 H. Björklund, W. Martens, and T. Timm. Efficient Incremental Evaluation of Succinct Regular
Expressions. In Proc. of the 24th ACM Conf. on Information and Knowledge Management
(CIKM), pages 1541–1550, 2015.

4 J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481–494,
1964.

5 T. Coquand and V. Siles. A Decision Procedure for Regular Expression Equivalence in Type
Theory. In Proc. of the 1st International Conference on Certified Programs and Proofs (CPP),
volume 7086 of LNCS, pages 119–134, 2011.

6 D. Egolf, S. Lasser, and K. Fisher. Verbatim: A Verified Lexer Generator. In 2021 IEEE
Security and Privacy Workshops (SPW), pages 92–100, 2021.

7 D. Egolf, S. Lasser, and K. Fisher. Verbatim++: Verified, Optimized, and Semantically
Rich Lexing with Dderivatives. In Proc. of the 11th ACM SIGPLAN Conference on Certified
Programs and Proofs (CPP), pages 27–39. ACM, 2022.

8 A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence and Relation Algebra.
Journal of Automated Reasoning, 49:95–106, 2012.

9 C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex_Posix.
10 L. Nielsen and F. Henglein. Bit-Coded Regular Expression Parsing. In Proc. of the 5th

International Conference on Language and Automata Theory and Applications (LATA), volume
6638 of LNCS, pages 402–413, 2011.

11 S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching via Position Automata
with Augmented Transitions. In Proc. of the 15th International Conference on Implementation
and Application of Automata (CIAA), volume 6482 of LNCS, pages 231–240, 2010.

12 S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order
and Symbolic Computation, 21(4):377–409, 2008.

13 The Open Group Base Specification Issue 6 IEEE Std 1003.1 2004 Edition, 2004. http:
//pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html.

14 R. Ribeiro and A. Du Bois. Certified Bit-Coded Regular Expression Parsing. In Proc. of the
21st Brazilian Symposium on Programming Languages, pages 4:1–4:8, 2017.

15 M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of
the 12th International Conference on Functional and Logic Programming (FLOPS), volume
8475 of LNCS, pages 203–220, 2014.

16 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar. Regex Matching
with Counting-Set Automata. Proceedings of the ACM on Programming Languages (PACMPL),
4:218:1–218:30, 2020.

17 S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on
Programming Languages and Systems, 28(3):389–428, 2006.

https://wiki.haskell.org/Regex_Posix
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html

	1 Introduction
	2 Background
	3 Bitcoded Regular Expressions and Derivatives
	4 Simplification
	5 Finite Bound for the Size of Derivatives
	6 Conclusion

